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Remark 2. Let X(r) = xr be the r-th order statistic of a random sample

of size n from FMM (2.1) and Zr = zr be associated latent vector with

xr. Let Zl = zl be the latent vector associated with unobserved l-th order

statistic where l ≤ r. From Lemma 1, the joint distribution of (X(r),Zr,Zl)

is

f(xr, zr, zl) ∝{F (xr; Ψ)}r−2
M∏
j=1

{πjFj(xr; θj)}zlj {πjfj(xr; θj)}zrj

×
{
F̄ (xr; Ψ)

}n−r
.

Remark 3. Let X(r) = xr and X(s) = xs be the r-th and s-th order

statistics of a random sample of size n from FMM (2.1) where r < s.

Let Zr = zr and Zs = zs be the latent vector associated with xr and xs,

respectively. Let Zl = zl be the latent vector associated with unobserved

l-th order statistic, where r ≤ l ≤ s. From Lemma 1, the joint distribution

of (X(r), X(s),Zr,Zl,Zs) is given by

f(xr, xs, zr, zl, zs) ∝{F (xr; Ψ)}r−1
M∏
j=1

{πjfj(xr; θj)}zrj {πjfj(xs; θj)}zsj

× [πj {Fj(xs; θj)− Fj(xr; θj)}]zlj

× {F (xs; Ψ)− F (xr; Ψ)}s−r−2 {F̄ (xs; Ψ)
}n−s

.

Remark 4. Let X(r) = xr be the r-th order statistic of a random sample

of size n from FMM (2.1) and Zr = zr be the latent vector associated with
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xr. Let Zl = zl be the latent vector associated with unobserved l-th order

statistic, where r ≤ l. From Lemma 1, the joint distribution of (X,Zr,Zl)

is given by

f(xr, zr, zl) ∝{F (xr; Ψ)}r−1
M∏
j=1

{πjfj(xr; θj)}zrj
{
πjF̄j(xr; θj)

}zlj
×
{
F̄ (xr; Ψ)

}n−r−1
.

Remark 5. Let X̃ = {X(i1), X(i2), . . . , X(ik)} be a collection of k = 2, . . . , n−

1 order statistics from a random sample of size n from (2.1) and let ∆ =

(Z1, . . . ,Zk,W1, . . . ,Wk+1) be the collection of latent vectors defined above.

Using Lemma 1, the pdf of (X̃,W1) can be derived as

f(x̃,w1) ∝
M∏
j=1

{πjFj(xi1 ; θj)}
w1j

k∏
s=1

f(xis ; Ψ)
{
F̄ (xik ; Ψ)

}n−ik
×

k∏
s=2

{
F (xis ; Ψ)− F (xis−1 ; Ψ)

}is−is−1−1
(S0.1)

Remark 6. In a similar vein to Remark 5, the joint distribution of (X̃,Ws);

s = 2, . . . , k, is given by

f(x̃,ws) ∝{F (xi1 ; Ψ)}i1−1
k∏
r=1

f(xir ; Ψ)
M∏
j=1

[
πj
{
Fj(xis ; θj)− Fj(xis−1 ; θj)

}]wsj

×

 k∏
l=2
l 6=s

{
F (xil ; Ψ)− F (xil−1

; Ψ)
}il−il−1−1

{F̄ (xik ; Ψ)
}n−ik

(S0.2)
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Remark 7. In a similar vein to Remark 5, the joint pdf of (X̃,Wk+1) is

given by

f(x̃,wk+1) ∝{F (xi1 ; Ψ)}i1−1
k∏
s=2

{
F (xis ; Ψ)− F (xis−1 ; Ψ)

}is−is−1−1

×
M∏
j=1

{
πjF̄j(x(ik); θj)

}wk+1 j

k∏
s=1

f(xis ; Ψ). (S0.3)

Remark 8. Given X(r) = x(r) and Z(r) = z(r), suppose we are interested

in classifying an unobserved order statistic X(l) for l ≥ r. The component

membership vector Zl = (Zl1, . . . , ZlM) can be estimated similarly as ex-

plained above. From Remark 4, the posterior distribution of Zl given x(r)

and z(r) is

P(Zl = zl|Zr = zr, x(r)) =

(
1

zl1, . . . , zlM

) M∏
h=1

{
πhF̄h(x(r); θh)

F̄ (x(r); Ψ)

}zlh
,

where γh(x(r); Ψ) = πh F̄h(x(r); θh)/F̄ (x(r); Ψ). Hence, given the observation

y from the FMM, an unobserved data but bigger than y will be classified

into the j-th component of the FMM, if γj(y; Ψ̂) > γh(y; Ψ̂) for all h =

1, . . . ,M ; j 6= h.

Remark 9. Given X(r) = x(r),Z(r) = z(r), X(s) = x(s) and Z(s) = z(s), if

the interest is to classify an unobserved order statistic X(l) for s ≤ l ≤ r,

we can estimate the component membership vector Zl = (Zl1, . . . , ZlM).

From Remark 3, the posterior distribution of Zl given x(r), z(r) and x(s), z(s)
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becomes

P(Zl = zl|zr, x(r), zs, x(s)) ∝
M∏
h=1

{
πh[Fh(x(r); θh)− Fh(x(s); θh)]

F (x(r); Ψ)− F (x(s); Ψ)

}zlh
,

so γh(x(s), x(r); Ψ) = πh[Fh(x(r); θh)− Fh(x(s); θh)]/[F (x(r); Ψ)− F (x(s); Ψ)].

Hence, given the observations y1, y2 such that y1 < y2 from the underly-

ing FMM, an unobserved data between y1 and y2 will be classified into

the j-th component of the FMM, if γj(y1, y2; Ψ̂) > γh(y1, y2; Ψ̂) for all

h = 1, . . . ,M ; j 6= h.

Proof of Lemma 4

Proof. From (2.5), we have W1j|X(r) = xr ∼ B
(
r − 1,

πjFj(xr;θj)

F (xr;Ψ)

)
, where

W1j represents the number of the order statistics smaller than xr from

component j; j = 1, . . . ,M . Lemma 3 for the variable W1j|xr completes

the proof.

Proof of Lemma 5

Proof. From (2.6), Wrl,j|{xr, xl} ∼ B
(
l − r − 1,

πj [Fj(xl;θj)−Fj(xr;θj)]

F (xl;Ψ)−F (xr;Ψ)

)
, where

Wrl,j represents the number of the order statistics between X(r) and X(l)

from component j = 1, . . . ,M . One completes the proof by applying

Lemma 3 for Wrl,j|{xr, xl}.
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Proof of Lemma 6

Proof. From (2.7), Wlj|xr ∼ B
(
n− l, πj F̄j(xl;θj)

F̄ (xl;Ψ)

)
, where Wlj represents

the number of the order statistics bigger than xl from component j, j =

1, . . . ,M . Applying Lemma 3 to Wlj|xr completes the proof.

S0.1 Simulation Study 2

In the second simulation study, we investigate the performance of the

ML estimates of all parameters of FMM (6.1) with Ψ = {π, µ1, µ2, σ} =

{0.80, 9.01, 11.70, 1.15} using the designs in Table 1. We evaluate the es-

timation procedures for both supervised and unsupervised learning ap-

proaches over 5000 simulations. In each simulation, we use the stopping

criteria ||Ψ(k+1)−Ψ(k)||∞ < 10−6 and the initial values in the EM-algorithms

are computed using the method of moments by treating the order statistics

as a simple random sample data (Furman and Lindsay, 1994). In addition,

for each simulation, we generate a fixed test data of size n = 30 for esti-

mation procedures under both supervised and unsupervised order statistics

and SRS counterparts. Tables 8 and 10 show the bias and square root

of MSE as performance measures for each estimation procedure. Tables 9

and 11 present different computational aspects associated with each esti-

mation procedure. For each simulation, CVR% and CLP% are obtained
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as explained in simulation study 1. In addition to these criteria, we also

compare the performance of MLEs based on the average of the number of

iterations required for convergence (ITR) and the average time (in seconds)

required for convergence (TIME). Tables 9 and 11 illustrate the significant

impact of various collection order statistics on the estimation and classifica-

tion procedures of FMMs suffering from rarely observed components. From

Table 9, using collection of lower order statistics (design D1), we are not

capable of observing the rare event (second component) and the estimation

procedures are practically not convergent; however, appropriate collection

of order statistics (e.g., design D2) guarantees observation of rare compo-

nent and convergence of the procedures under labelled data. Table 11 shows

that the convergence rate is almost stable and high under various collection

of unlabeled order statistics (except for D1) similar to that of SRS. Unlike

the convergence rate, the impact of various collection of unlabeled order

statistics is evident on classification precision compared to unlabeled SRS

counterparts.
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Table 8: Bias,
√
MSE under supervised learning approach based on designs Di; i = 1, . . . , 5 in Table

1, against those of SRS data of the same size.

OS SRS

π µ1 µ2 σ π µ1 µ2 σ

D1 Bias -0.43 -1.27 -3.55 -0.69 -0.08 -0.01 0.02 -0.26
√
MSE 0.67 1.82 5.04 1.00 0.17 0.56 0.99 0.49

D2 Bias -0.01 1.85 0.26 -0.47 -0.04 0.00 0.01 -0.19
√
MSE 0.14 2.66 0.62 0.71 0.13 0.47 0.92 0.3900

D3 Bias -0.11 -1.45 0.86 -0.34 -0.07 -0.02 0.00 -0.27
√
MSE 0.33 2.16 1.35 0.77 0.16 0.56 1.00 0.50

D4 Bias -0.04 -0.94 0.54 -0.03 -0.02 0.01 0.01 -0.15
√
MSE 0.17 1.44 0.93 0.46 0.11 0.42 0.87 0.33

D5 Bias -0.01 -0.44 0.76 0.10 -0.07 -0.02 -0.02 -0.26
√
MSE 0.12 0.74 1.38 0.29 0.16 0.56 0.99 0.49

Table 9: Computational aspects of the estimators under supervised learning approach based on designs

Di; i = 1, . . . , 5 in Table 1, against those of SRS data of the same size.

OS SRS

iteration CLP% time Conv. iteration CLP% time Conv.

D1 7.60 38.76 0.0032 0.92 1.00 87.72 0.0003 73.94

D2 4.78 84.52 0.0022 94.14 1.00 88.54 0.0003 83.62

D3 7.90 83.23 0.0034 99.44 1.00 87.75 0.0003 73.14

D4 6.14 86.49 0.0030 99.72 1.00 89.10 0.0003 89.38

D5 5.03 88.01 0.0036 97.42 1.00 87.74 0.0003 73.54
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Table 10: Bias,
√
MSE under unsupervised learning approach based on designs Di; i = 1, . . . , 5 in

Table 1, against those of SRS data of the same size.

OS SRS

π µ1 µ2 σ π µ1 µ2 σ

D1 Bias -0.77 -2.12 -3.90 -0.84 -0.23 -0.58 -0.55 -0.52
√
MSE 1.08 3.07 5.53 1.20 0.39 1.17 1.48 0.79

D2 Bias 0.15 2.20 1.00 -0.61 -0.20 -0.53 -0.39 -0.42
√
MSE 0.22 3.16 1.66 0.91 0.36 1.09 1.35 0.65

D3 Bias -0.18 -1.78 0.79 -0.66 -0.23 -0.59 -0.56 -0.53
√
MSE 0.40 2.56 1.27 0.98 0.39 1.18 1.48 0.79

D4 Bias -0.15 -1.45 0.37 -0.50 -0.18 -0.49 -0.31 -0.35
√
MSE 0.30 2.12 0.78 0.79 0.34 1.02 1.28 0.56

D5 Bias -0.05 -0.44 0.51 0.18 -0.23 -0.59 -0.54 -0.52
√
MSE 0.25 0.9400 1.46 0.53 0.39 1.18 1.46 0.79

Table 11: Computational aspects of the estimators under unsupervised learning approach based on

designs Di; i = 1, . . . , 5 in Table 1, against those of SRS data of the same size.

OS SRS

iteration CLP% time Conv. iteration CLP% time Conv.

D1 15.98 23.14 0.0073 79.50 9.77 73.63 0.0033 99.16

D2 18.34 84.22 0.0088 97.34 11.71 75.54 0.0040 98.96

D3 7.55 79.70 0.0034 99.72 9.73 73.59 0.0031 99.16

D4 7.12 78.96 0.0036 99.80 13.68 76.67 0.0045 98.42

D5 25.16 80.51 0.0190 92.10 9.73 73.78 0.0031 99.08
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