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A1. Plot of Common Large Margin Loss Functions
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A2. Additional Discussions on Soft and Hard Classifiers

Following the discussion at the end of Section 2 of the main paper, we would like

continue to illustrate the discussions about the performance comparison between soft

and hard classifiers. To explore the difference between soft and hard MOML clas-

sifiers, we use a toy example in Figure S1 for demonstration. In particular, we let
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k = 3, and plot the log of the reward ratio log{R(x, 1)/R(x, 2)} (denoted by r12

in Figure S1) against 〈f ∗,W 1〉 and 〈f ∗,W 2〉 (f ∗ indicates the underlying optimal

classifier, and W j indicates the jth vertex of the simplex). One can see that for

c = 0 (the soft classifier), MOML can provide estimation of R(x, 1)/R(x, 2) for

{f ∗ : 〈f ∗,W 1〉 > 0 or 〈f ∗,W 2〉 > 0}. As c increases, the flat region enlarges and the

function gets closer to a step function. Consequently, the ratio estimation becomes

more difficult. In the limit when c→∞, the hard classifier in MOML provides little

information about the rewards ratio. This is similar to the binary case as discussed

in Section 2.2 of the main paper.
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Figure S1: Plot of log{R(x, 1)/R(x, 2)} (r12 on the y axis) against 〈f∗,W 1〉 and 〈f∗,W 2〉
for some LUM loss functions. Here c = 0 corresponds to the soft LUM loss, and c → ∞
corresponds to the SVM hinge loss, which is a hard classifier. We fix a = 1 as in the binary

case (see Figure 1).

In Section 2.1 of the main paper, we claimed that soft classifiers can show better

performance than hard classifiers when the underlying optimal treatment probability
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ratios are relatively smooth functions of the covariates. Otherwise, hard classifiers

may outperform soft classifiers. To show such differences, we use Example 1 and

Example 6 from the numerical section of the main paper as two representatives of the

smooth and non-smooth ratios. We repeat the settings of the two examples as below:

Example 1 We consider three points (c1, c2, c3) of equal distances from the p-

dimensional space to represent the cluster centroids of the true optimal treatments.

For each cj where j = 1, 2, 3, we generate its covariate Xi from a multivariate normal

distribution N(cj, Ip) where Ip is a p-dimensional identity matrix. The actually as-

signed Ai follows a discrete uniform distribution U{1, 2, 3}. The reward Ri follows a

Gaussian distribution N(µ(Xi, Ai, di), 1), where the µ(Xi, Ai, di) = XT
i β+ 5 · I(Ai =

di), β
T = (1Tp/2,−1Tp/2) and di is the optimal treatment for Xi determined by the

cluster centroids. The training dataset is of size 300.

Example 6 In this example, the optimal treatment di for each Xi is determined

with probability 95% by the signs of two underlying non-linear functions f1(X) =

X2
1 + X2

2 + exp{0.5X3} and f2(X) = X2
4 − X3

5 − X6 while a random noise is added

to di with probability 5% to create a positive Bayes error. In particular, we have di

defined as

di = d(Xi) =


1 + [sign(f1(Xi)−m1)]+ + 2× [sign(f2(Xi)−m2)]+

Ui

w/t prob. 0.95

w/t prob. 0.05

,

where m1 and m2 are the medians of f1 and f2 respectively, and Ui follows a discrete

U{1, 2, 3, 4} which is independent of (Ai, Xi). The covariates Xi follows a continuous

uniform distribution U(0, 1), Ai ∼ U{1, · · · , 4}, and Ri ∼ N(µ(Xi, Ai, di), 1), where
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µ(Xi, Ai, di) = XT
i β+ 5 · I(Ai = di)−1 and βT = (1Tp/2,−1Tp/2). The training dataset

is of size 500.

We draw the predicted optimal treatment for test datasets under different values

of c. Note that the classifier of MOML becomes soft when c → 0 and hard when

c → ∞. Thus, we pick c ∈ {0, 10, 1000}, and note that c = 1000 leads to an

approximately hard classifier. In addition, we only include the first two covariates in

Example 1 to better visualize the observations in a 2-D graph. The underlying true

optimal treatments and predicted optimal treatments in one realization are displayed

in Figure S2 (Example 1) and Figure S3 (Example 6). The dashed lines indicate the

underlying boundaries that are determined by the Bayes classifiers.

By Figure S2, when the underlying optimal treatment probability ratios are smooth

functions of covariates, the predicted treatment results become worse as c goes up

in the sense that the estimated boundaries move away from the Bayes classifier. In

particular, the misclassification rate increases from 6.2% when c = 0 to 10.5% when

c = 1000. In contrast, Figure S3 shows that when the underlying optimal treatment

probability ratios are non-smooth functions, the predicted treatment accuracy be-

comes slightly better as c becomes larger, i.e. the misclassification rate drops from

23.5% at c = 0 to 22.9% at c = 1000. This is consistent to our previous conclusion

that hard classifiers can perform better than soft ones when it is difficult to fit the

probability ratios.

A3. Additional Simulation Results for the Main Paper

Tables S1 and S2 report the sample means and standard deviations of the misclas-

sification rates and the empirical value functions produced by all the models for the
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Figure S2: Prediction performance of soft classifiers (c = 0) and an approximately
hard classifier (c = 1000) in one realization of Example 1 in two-dimension when the
underlying optimal treatment probability ratios are smooth functions. The dashed
lines indicate the true underlying decision boundary. The point symbols show the
actually assigned treatments and point colors show the predicted ITRs for testing
samples. The corresponding misclassification rates are 6.2%, 6.8% and 10.5%, for
c = 0, c = 10 and c = 1000.

simulation examples in the main paper.

A4. Additional Statistical Learning Theory

In this section, we explore some additional theoretical properties of our proposed

MOML. We begin by showing that the one-versus-rest SVM approach in ITR prob-

lems can be inconsistent in Section A4.1. Then in Section A4.2, we demonstrate

that under certain conditions, MOML can enjoy selection consistency in linear learn-

ing. Asymptotic convergence rates for the excess risks of MOML are obtained in

Section A4.3.
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Figure S3: Prediction performance of soft classifiers (c = 0) and an approximately
hard classifier (c = 1000) in one realization of Example 6 when the underlying optimal
treatment probability ratios are non-smooth functions. The dashed lines indicate the
true underlying decision boundary. The point symbols show the actually assigned
treatments and point colors show the predicted ITRs for testing samples. The corre-
sponding misclassification rates are 23.5%, 23.4% and 22.9%, for c = 0, c = 10 and
c = 1000.

A4.1 Fisher Inconsistency of the One-versus-rest SVM Approach

In Zhao et al. (2012), it was shown that the binary OWL approach using the SVM

hinge loss is Fisher consistent. However, its direct generalization to the multicate-

gory framework can be more involved, and the Fisher consistency cannot be always

guaranteed. The next proposition shows that if one generalizes a binary margin-based

classifier to handle multiple treatments using the one-versus-rest approach, the classi-

fier can be inconsistent. Consequently, the corresponding methods can be suboptimal

for real applications. Therefore, it is desirable to consider multiple treatments in one
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Dimension p = 10 p = 50
Method OWL-1 OWL-2 MOML MOML-l1 Bayes OWL-1 OWL-2 MOML MOML-l1 Bayes

Example 1
0.083 0.127 0.081 0.086 0.068 0.139 0.173 0.136 0.174 0.067

(0.007) (0.043) (0.013) (0.015) (0.004) (0.054) (0.069) (0.031) (0.049) (0.004)

Example 2
0.185 0.252 0.150 0.151 0.098 0.369 0.362 0.224 0.220 0.097

(0.065) (0.036) (0.016) (0.017) (0.005) (0.081) (0.078) (0.024) (0.022) (0.004)

Example 3
0.508 0.669 0.318 0.326 0.074 0.636 0.844 0.431 0.419 0.074

(0.055) (0.048) (0.050) (0.072) (0.004) (0.049) (0.062) (0.046) (0.047) (0.003)

Example 4
0.197 0.257 0.154 0.149 0.098 0.378 0.386 0.237 0.216 0.097

(0.094) (0.037) (0.018) (0.013) (0.005) (0.127) (0.085) (0.026) (0.019) (0.004)

Example 5
0.254 0.333 0.148 - 0.076 0.355 0.387 0.291 - 0.077

(0.063) (0.061) (0.016) - (0.005) (0.040) (0.071) (0.024) - (0.005)

Example 6
0.276 0.397 0.220 - 0.038 0.384 0.487 0.323 - 0.038

(0.031) (0.063) (0.020) - (0.003) (0.017) (0.021) (0.019) - (0.003)

Table S1: Misclassification results of simulation studies: means and standard devia-
tions (in parenthesis) of the misclassification rates. OWL-1 and OWL-2 represent the
two extensions of outcome weighted learning (one-versus-rest and one-versus-one),
MOML and MOML-l1 represent the outcome weighted margin-based learning with l2
and l1 penalties respectively, and Bayes represents the empirical Bayes error. In each
scenario, the model producing the best criterion is in bold.

optimization problem.

Proposition S1. Suppose for a given x, we have R(x, j) <
∑

i 6=j R(x, i) for all

j ∈ {1, . . . , k}. Then for finding optimal ITRs using the one-versus-rest approach

with a binary Fisher consistent loss function `(·), the corresponding method is not

Fisher consistent.

A4.2 Selection Consistency

In the statistical learning literature, selection consistency of regression methods has

been well established. See, for example, Zhao and Yu (2006), Zou (2006), Fan and Lv

(2010), and the references therein. In contrast, selection consistency of classification

methods has received much less attention. Recently, Zhang et al. (2014) studied

the selection consistency of SVMs for standard classification problems, and Song

et al. (2015) studied the selection consistency of ITRs for binary treatments. In the

literature of ITRs for multicategory treatments, to our knowledge, no work has been
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Dimension p = 10 p = 50
Method OWL-1 OWL-2 MOML MOML-l1 Optimal OWL-1 OWL-2 MOML MOML-l1 Optimal

Example 1
4.905 4.525 4.932 4.878 5.319 4.599 4.432 4.672 4.315 5.304

(0.062) (0.173) (0.083) (0.086) (0.159) (0.268) (0.375) (0.175) (0.238) (0.208)

Example 2
2.989 2.657 3.165 3.164 3.919 2.061 2.231 2.806 2.809 3.916

(0.241) (0.189) (0.086) (0.093) (0.016) (0.307) (0.390) (0.127) (0.129) (0.025)

Example 3
2.466 2.164 2.701 2.644 2.900 2.201 2.037 2.572 2.597 2.897

(0.095) (0.156) (0.054) (0.057) (0.008) (0.136) (0.272) (0.065) (0.061) (0.015)

Example 4
2.951 2.737 3.151 3.251 4.001 2.034 2.063 2.797 2.897 3.976

(0.277) (0.189) (0.090) (0.070) (0.004) (0.402) (0.421) (0.156) (0.086) (0.006)

Example 5
1.730 1.811 2.273 - 2.997 1.289 1.291 1.848 - 3.025

(0.213) (0.318) (0.103) - (0.111) (0.353) (0.377) (0.257) - (0.245)

Example 6
2.744 2.316 3.168 - 3.989 2.651 1.864 2.750 - 4.019

(0.171) (0.191) (0.117) - (0.038) (0.223) (0.224) (0.228) - (0.105)

Table S2: Value functions results of simulation studies: means and standard devia-
tions (in parenthesis) of the estimated value functions. OWL-1 and OWL-2 represent
the two extensions of outcome weighted learning (one-versus-rest and one-versus-one),
MOML and MOML-l1 represent the outcome weighted margin-based learning with l2
and l1 penalties respectively, and Optimal represents the optimal value function. In
each scenario, the model producing the best criterion is in bold.

done on the selection consistency for existing learning methods. In this section, we

focus on linear learning with the l1 penalty, and explore the selection consistency of

MOML. We show that if the number of observations n and the number of covariates p

grow simultaneously, in a way such that log(p)2/n→ 0, MOML can enjoy asymptotic

selection consistency under certain conditions.

To begin with, we need to introduce some further notations. Recall that f =

(f1, . . . , fk−1)
T for an ITR problem with k treatments. In linear learning, we let

fj(x) = xTβj + βj,0; j = 1, . . . , k − 1, where βj is the coefficient vector for the jth

classification function, and βj,0 is the corresponding intercept. Denote by βj,q; q ≥ 1,

the qth element of βj. For brevity, we let β·,q represent an indicator for the k − 1

parameters that correspond to the qth covariate, and define β·,q = 0 if βj,q = 0 for all

j ≥ 1, and β·,q = 1 if βj,q 6= 0 for some j ≥ 1.

Let f 0 be the underlying function that minimizes the expected loss of (2.9). In
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other words, for linear learning, let

f 0 = argmin
f

E
|R|

πA(X)
`R{〈W A,f(X)〉},

where the expectation is taken with respect to the underlying distribution P . For f 0,

let the corresponding parameters be β∗j and β∗j,0 for all j. Similar to β·,q, we define

β∗·,q = 0 if β∗j,q = 0 for all j ≥ 1, and β∗·,q = 1 if β∗j,q 6= 0 for some j ≥ 1. When the

learning signal is sparse, many β∗j,q’s are zero. In other words, the coefficient vectors

(β∗1, . . . ,β
∗
k−1) are parsimonious. Note that the qth covariate does not contain useful

information for finding the optimal ITRs if and only if β·,q = 0. Hence, we define

the set of important covariates to be X1 = {xq : β∗·,q = 1} and its complement to

be X0 = {xq : β∗·,q = 0}. In this paper, we focus on the case where the number of

important covariates is a fixed number, i.e., |X1| <∞. Note that β̂·,q and β∗·,q are the

estimated and underlying true indicators that whether the qth covariate is useful. By

this definition, selection consistency of the OML method means that as the sample

size n increases, the probability of β̂·,q = β∗·,q for all q tends to 1. As the dimension p

may become unbounded, we assume that the underlying distribution P is defined on

([0, 1]∞×{1, . . . , k}, σ∞([0, 1]∞)×2{1,...,k}) with σ∞([0, 1]∞) being the σ-field generated

by the open balls introduced by the uniform metric d(x,x′) = supj |xj − x′j|, where

xj is the jth element of x.

Next, we introduce some regularity conditions for selection consistency. The first

condition requires that the marginal distribution of the covariates is bounded in [0, 1]p,

where p is the number of covariates. One can verify that our theorem can be gener-

alized to the case where the covariates are bounded (not necessarily in [0, 1]p).

Condition 1 (C1). Every element in X ranges in [0, 1], and the corresponding
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distribution is absolutely continuous with respect to the Lebesgue measure.

We would like to point out that the second assumption in C1 can be removed if

the loss function ` has the second order derivative everywhere. See the discussions

after C3 for more details.

The next condition requires that the marginal distribution of the clinical rewards

for all patients and treatments does not have a heavy tail. Recall that if a random vari-

able U is sub-Gaussian with parameter s, then we have pr(|U | > u) ≤ 2 exp(−u2/s)

for large enough u.

Condition 2 (C2). The marginal distribution of (R |X = x, A = a) is sub-Gaussian

with a universal parameter s <∞ for any x and a.

C2 is very general, and many commonly seen distributions are sub-Gaussian.

For example, normal random variables are known to be sub-Gaussian, and random

variables with bounded ranges or small kurtosis are also sub-Gaussian. C2 excludes

the possibility that a patient’s reward is significantly different from its expectation,

which can lead to biased ITRs. We note that C2 is sufficient for selection consistency.

Hence, if for some x and a, the marginal distribution of the reward is not sub-

Gaussian, selection consistency may still be established. See the proof of Theorem S1

for more discussions.

The next condition requires that the loss function ` is differentiable and convex,

and its second order derivative function is bounded.

Condition 3 (C3). The loss function `(u) is differentiable, and has a second order

derivative almost everywhere with respect to the Lebesgue measure, where `′′(u) <∞.

C3 is valid for many commonly used loss functions, such as the logistic deviance

loss and the LUM loss family with c < ∞. The SVM hinge loss is not differentiable

and thus our theorem does not apply. Note that our focus is to prove selection
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consistency for general margin-based loss functions using mild conditions. To prove

selection consistency for SVMs, one may need finer analysis. For example, Zhang

et al. (2014) gave the conditions to establish selection consistency for binary SVMs.

Note that in C1, we require that the marginal distribution of the covariates is ab-

solutely continuous with respect to the Lebesgue measure. This condition, together

with C3, ensures that there is no probability mass at which the loss function is not

second order differentiable. If one uses a loss function that is second order differen-

tiable everywhere, such as the logistic loss, the corresponding requirement in C1 can

be dropped and the selection consistency is still valid.

We are ready to present our main theorem in this section.

Theorem S1. Suppose Conditions C1-C3 hold, and log(p)/(n1/2)→ 0 as n, p→∞.

If we choose λ = OP{log(p)1/2/(n1/4)}, we have that the corresponding solution f̂ to

(2.9) satisfies that, with probability tending to 1, β̂·,q = β∗·,q for all q = 1, . . . , p.

From Theorem S1, one can verify that the MOML method can select covariates

consistently for problems where p is of any polynomial form of n. This can help find

important covariates on which different treatments have significant effects. In the

next section, we show that the excess ` risk converges to zero at a fast rate, under

certain conditions.

A4.3 Convergence Rate of Excess Risks

In this section, we study the convergence rate of the excess ` risk for MOML using

linear learning. In particular, we first extend the notation of the excess ` risk from

standard binary margin-based classification to the ITRs framework using multicat-

egory classifiers, and show that the convergence rate of MOML can be fast under
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Conditions C1-C3.

Let e`(f ,f 0) = E{|R|`R(〈W A,f〉)/πA(X)} − E{|R|`R(〈W A,f 0〉)/πA(X)}. We

call e`(f ,f 0) the excess ` risk. One can verify that this definition is a natural gener-

alization of the excess ` risk used in Bartlett et al. (2006) for binary classifiers. For

MOML we have the following result.

Theorem S2. Suppose Conditions C1-C3 hold, and log(p)/(n1/2)→ 0 as n, p→∞.

If we choose λ = OP{log(p)1/2/(n1/4)}, then el(f̂ ,f 0) converges to 0 at the rate

OP{log(p)/(n1/2)}.

By Theorem S2, the excess ` risk of MOML converges to zero at a desirable

rate, under mild conditions. Consequently, the fitted f̂ can enjoy a good prediction

performance.

A5. Technical Proofs of theorems

Proof of Proposition 1: This proposition is a special case of Theorem 2. �

Large-margin Unified Loss Function: The Large-margin Unified Machines (LUM)

use loss functions

`(u) =

 1− u, u < c/(1 + c),

[a/{(1 + c)u− c+ a}]a/(1 + c), u ≥ c/(1 + c),

where c ≥ 0 and a > 0 are parameters of the LUM family. Note that a = 1, c = 1

corresponds to the distance discriminant analysis (Marron et al., 2007), and c → ∞

corresponds to the SVM hinge loss. �

Estimation of Class Conditional Probabilities in Standard Margin-based

Classification: For a classification problem with k classes, we let X be the covariate
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vector, and let Y be the corresponding label. It is common to assume that X and

Y follow an unknown joint distribution. Define the class conditional probabilities as

Pj(x) = pr(Y = j |X = x); j = 1, . . . , k, where the probability is taken with respect

to the joint distribution of (X, Y ). In other words, the vector of class conditional

probabilities is the marginal probability vector of a multinomial distribution that

depends on x.

For margin-based classifier, we can define the theoretical minimizer S(x) in an

analogous manner as in Section 2.2 of the original paper. For some loss functions,

one can prove that there exist functions gj(·), such that Pj(x) = gj{f ∗(x)}. Hence,

it is common to use f̂ to estimate f ∗, and the corresponding estimation for Pj is

P̂j(x) = gj{f̂(x)}. See Zhang et al. (2013) and Zhang and Liu (2014), among others,

for details on how to estimate Pj using f̂ . �

Proof of Theorem 1: The proof is contained in the proof of Theorem 3 and is

omitted. �

Proof of Theorem 2: Define R+
+1(x) =

´
(R | X = x, A = +1)I(R > 0)dP and

R−+1(x) =
´

(R | X = x, A = +1)I(R < 0)dP , as in the main paper. One can verify

that R+
+1(x) +R−+1(x) = R(x,+1). In the proof we drop the dependence of R+

+1 and

R−+1 on x when there is no confusion. Define R+
−1 and R−−1 in an analogous manner.

We have that, minimizing the conditional loss S(x) is equivalent to

min
f

(R+
+1 −R−−1)`(f) + (−R−+1 +R+

−1)`(−f). (A5.1)

Next, assume that treatment +1 is better, in the sense that R+
+1 +R−+1 > R+

−1 +R−−1.

It suffices to show that the minimizer of (A5.1), f ∗, is such that f ∗ > 0. Based on the

assumption of Theorem 2, one can conclude that f ∗ ≥ 0. Because if this is not true,
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then let f ∗∗ = −f ∗, and one can verify (through some calculation) that the objective

function value of f ∗ is larger than that of f ∗∗, which is a contradiction with respect

to the definition of f ∗. Therefore, we only need to prove that f ∗ 6= 0.

To this end, we only need to show that the objective function value when f ∗ = δ is

smaller than when f ∗ = 0, where δ is a small positive number. To verify this, observe

that

S(x) |f∗=0 −S(x) |f∗=δ = (R+
+1 −R−−1)`′(0)(−δ) + (−R−+1 +R+

−1)`
′(0)δ

= `′(0)δ(−R−+1 +R+
−1 −R+

+1 +R−−1) > 0.

Hence OML is Fisher consistent in the binary setting. �

Proof of Theorem 3: Define R+
+1, R

−
+1, R

+
−1, and R−−1 as in the proof of Theorem 2.

In (A5.1), take derivative with respect to f , and we have that

R+
+1 −R−−1

−R−+1 +R+
−1

=
`′(−f ∗)
`′(f ∗)

. (A5.2)

When R > 0, R−+1 = R−−1 = 0, and we have proved Theorem 1. When R can be

negative, R+
+1 +R−+1 > 0, and R+

−1 +R−−1 > 0, one can verify, after some calculation,

that

R+
+1 +R−+1

R+
−1 +R−−1

−
R+

+1 −R−−1
−R−+1 +R+

−1

 < 0, if R+
+1 +R−+1 > R+

−1 +R−−1

> 0, if R+
+1 +R−+1 < R+

−1 +R−−1.

This completes the proof.

Note that for the relationship between f ∗ and {R(x,+1), R(x,+1)}, we only

have (A5.2). Hence, one cannot directly estimate the rewards ratio without further
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assumption, such as R > 0. �

Proof of Theorem 4: First, we recall the definition of R+
j and R−j from the main

paper. For multicategory problems, one can verify that minimizing the conditional

expected loss S(x) is equivalent to

min
f

k∑
j=1

{R+
j `(〈f ,W j〉)−R−j `(−〈f ,W j〉)}. (A5.3)

Without loss of generality, assume that treatment 1 is the best, in the sense that

R+
1 + R−1 > R+

j + R−j for any 2 ≤ j ≤ k. By Assumption 1, we have that R−1 > R−j .

Next, we prove that f ∗ is such that 〈f ∗,W 1〉 > 〈f ∗,W j〉 for any j ≥ 2.

We prove by contradiction. Suppose 〈f ∗,W 1〉 > 〈f ∗,W j〉 is not true for one

specific j. Then we can find f ∗∗, such that 〈f ∗,W q〉 = 〈f ∗∗,W q〉 for q 6= 1, j,

〈f ∗,W 1〉 = 〈f ∗∗,W 1〉−δ, and 〈f ∗,W j〉 = 〈f ∗∗,W j〉+δ (see Lemma 1 in Zhang and

Liu, 2014), where δ > 0 is a small positive number. Denote by S(f ∗) the conditional

loss with respect to f ∗, and define S(f ∗∗) in an analogous manner. One can verify

that, after some calculation,

S(f ∗)− S(f ∗∗) = δ{[R+
1 |`′(〈f ∗,W 1〉)|+R−1 |`′(−〈f ∗,W 1〉)|]

− [R+
j |`′(〈f

∗,W j〉)|+R−j |`′(−〈f
∗,W j〉)|]}

By assumptions in Theorem 4, we have that ` is convex, and consequently |`′(u1)| ≤

|`′(u2)| if u2 ≤ u1. Hence, choose δ sufficiently small, and one can verify that, S(f ∗)−

S(f ∗∗) > 0 because R+
1 + R−1 > R+

j + R−j , 0 ≥ R−1 > R−j and δ > 0. Therefore, the

conditional loss for f ∗∗ is smaller than that of f ∗, which contradicts with the definition

of f ∗. This completes the proof of the first part.
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The proof of inconsistency for MOML-SVM uses similar techniques. In particular,

we show that even when R > 0, the MOML-SVM is not consistent. First, we can

show that if R(x, i) ≥ R(x, j) for i 6= j, then 〈f ∗,W i〉 ≥ 〈f ∗,W j〉. Next, one can

verify that if R(x, i) = mini=1,...,k R(x, i) and is unique, then 〈f ∗,W i〉 = −(k − 1),

and 〈f ∗,W j〉 = 1 for j 6= i. This is because if 〈f ∗,W j〉 < 1 for some j, one can

modify f ∗ such that 〈f ∗,W j〉 increases to 1, while 〈f ∗,W i〉 decreases by the same

amount. In this case, the expected loss decreases. On the other hand, if 〈f ∗,W j〉 > 1

for any j, then one can decrease 〈f ∗,W j〉 to 1 and increase 〈f ∗,W i〉, such that the

loss decreases. As a result, we have that the argmax of 〈f ∗,W i〉; i = 1, . . . , k is not

unique. Hence, the MOML with the hinge loss is not Fisher consistent. �

Proof of Theorem 5: Take partial derivative of S(x) with respect to each element

in f and set to zero, which can be written as

∂S

∂fj
=

k∑
i=1

R(x, i)`′(〈W i,f〉)W (j)
i = 0,

for j ∈ {1, . . . , k − 1}. Here W
(j)
i is the jth element of W i. One can verify that this

is equivalent to
∑k

i=1R(x, i)`′(〈W i,f〉)W i = 0(k−1). Notice that
∑k

i=1W i = 0(k−1)

and W i; i = 1, . . . , k − 1 are linearly independent, hence one can conclude that

R(x, i)`′(〈W i,f〉) = R(x, i)`′(〈W j,f〉) for i 6= j. This completes the proof. �

Proof of Proposition S1: Using the same technique as in the proof of Proposition

3.1 in Zhao et al. (2012), one can verify that if R(x, j) <
∑

i 6=j R(x, i), then the

theoretical minimizer is such that the recommended treatment is not j. Hence, the

one-versus-rest approach is not Fisher consistent for any binary loss function. �

Proof of Theorem S1: Because the loss functions considered are convex, one can
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verify that for any β∗j,q 6= 0, we have that

[
∂E[ |R|

πA(X)
`R{〈W A,f 0(X)〉}]
∂βj,q

]
|β=β∗, β·,0=β∗

·,0, βj,q=0 6= 0,

where |β=β∗, β·,0=β∗
·,0, βj,q=0 means the derivative is evaluated at the best β∗ and β∗·,0,

except that for βj,q it is at 0. Similarly, we have that for any β∗j,q = 0,

[
∂E[ |R|

πA(X)
`R{〈W A,f 0(X)〉}]
∂βj,q

]
|β=β∗, β·,0=β∗

·,0, βj,q=0= 0.

To prove selection consistency, we need to show that for the empirical loss func-

tion with the fitted f̂ , the corresponding partial derivative is not far away from its

expectation. Then, with the help of l1 penalties, we can select the variables correctly.

Before we present our proof for the main theorem, we give some lemmas to make

the flow clear. We first assume that the marginal distribution of the rewards has a

bounded range uniformly. We will consider the more general case of sub-Gaussian

distribution later.

Lemma S1. Suppose Conditions C1-C3 are valid. With the λ specified in Theo-

rem S1, we have that ‖β̂j‖1 � OP{n1/4 log(p)−1/2} and |β̂j,0| � OP{n1/4 log(p)−1/2}

for all j.

Proof of Lemma S1: With βj = 0 and βj,0 = 0 for all j, we have that

1

n

n∑
i=1

|ri|
πai(xi)

`ri{〈W ai ,f(xi)〉} → E{ |R|
πA(X)

`R(0)},

which is a constant. On the other hand, β̂j and β̂j,0 are the solution to the objective
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function in (2.9), hence

λ
k−1∑
j=1

‖β̂j‖1 ≤
1

n

n∑
i=1

|ri|
πai(xi)

`ri{〈W ai , f̂(xi)〉}+ λ
k−1∑
j=1

‖β̂j‖1 ≤ E{ |R|
πA(X)

`R(0)}

for n large enough. Consequently, we have ‖β̂j‖1 � OP{n1/4 log(p)−1/2}. For |β̂j,0|,

one can verify that maxj |β̂j,0| � maxj ‖β̂j‖1. Otherwise, the prediction would be all

the same for any new patient, which is not desirable. This completes the proof. �

Next, we prove that at the solution f̂ , the partial derivative of the loss with respect

to any β values can only deviate from its expectation by a small amount. Therefore,

with the help of l1 penalization, we can achieve selection consistency. The following

lemma controls the difference of the expected partial derivatives between f̂ and f 0.

Lemma S2. Suppose Conditions C1-C3 are valid. With the λ specified in Theo-

rem S1, we have that for any j = 1, . . . , k − 1 and q = 1, . . . , p,

∣∣∣∣∣
[
∂E[ |R|

πA(X)
`R{〈W A, f̂(X)〉}]
∂βj,q

−
∂E[ |R|

πA(X)
`R{〈W A,f 0(X)〉}]
∂βj,q

]
|β=β∗, β·,0=β∗

·,0, βj,q=0

∣∣∣∣∣
=OP

{
log(p)√

n

}1/2

.

Moreover, we have that the difference between the expected partial derivative and

its empirical value is also small for f̂ , as in the following lemma.

Lemma S3. Suppose Conditions C1-C3 are valid. With the λ specified in Theo-
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rem S1, we have that for any j = 1, . . . , k − 1 and q = 1, . . . , p,

∣∣∣∣∣∣
∂[ 1

n

∑n
i=1

|ri|
πai (xi)

`ri{〈W ai , f̂(xi)〉}]
∂βj,q

−
∂E[ |R|

πA(X)
`R{〈W A, f̂(X)〉}]
∂βj,q

 |β=β∗, β·,0=β∗
·,0, βj,q=0

∣∣∣∣∣∣
=OP

{
log(p)√

n

}1/2

. (A5.4)

Consequently, one can verify that the solution f̂ enjoys selection consistency.

Next, we give the proofs to the two important lemmas.

Proof of Lemma S2: The proof of this lemma consists of two parts. The first part

is to prove that the excess ` risk (defined in Section A4.3) converges at a rate at least

OP

{
log(p)√

n

}1/2

. The second part is to show that the convergence rate of ‖f̂ − f 0‖2

is dominated by that of the excess ` risk, which further leads to the bound on the

convergence rate of the derivatives.

To prove the first part, note that the optimization problem (2.9) can be written

in an equivalent form

min
f

1

n

n∑
i=1

|ri|
πai(xi)

`ri{〈W ai ,f(xi)〉}, subject to
k−1∑
j=1

(‖βj‖1 + |βj,0|) < s(λ), (A5.5)

where s(λ) is a tuning parameter. By Lemma S1, we have that s(λ) = OP{n1/4 log(p)−1/2}.

Next, we note that by similar arguments as in the proof of Theorem 4 in Zhang and Liu

(2014), one have that the excess ` risk E
{
|R|

πA(X)
`R(〈W A, f̂〉)

}
−E

{
|R|

πA(X)
`R(〈W A,f 0〉)

}
converges at the rate OP{s(λ)

√
log(p)
n
} � OP

{
log(p)√

n

}1/2

. Next, we show the relation-

ship between the convergence rate of ‖f̂ − f 0‖2 and the excess ` risk in Lemma S4

below. Note that the proof of Lemma S4 is analogous to that of Theorems 5 and 6
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in Zhang and Liu (2013) and is omitted here.

Lemma S4. Suppose that Conditions C1-C3 are valid. Moreover, consider a loss

function L{u(f , y)} that is second order differentiable with respect to u, where u(f , y)

is a function of the response y and the learning function f . Assume that u has second

order derivative with respect to each element in f , and the two second order derivatives

are both bounded. Then we have that, if the function f ∗ minimizes E(L),

|E[L{u(Y,f)}]− E[L{u(Y,f ∗)}]| = O{(‖f − f ∗‖2)2},

and if f ∗ is not the minimizer of E(L),

|E[L{u(Y,f)}]− E[L{u(Y,f ∗)}]| = O{(‖f − f ∗‖2)}.

By Lemma S4, we can see that the convergence rate of ‖f̂ − f 0‖2 is dominated

by that of the excess ` risk, which can further leads to that

∣∣∣∣∣
[
∂E[ |R|

πA(X)
`R{〈W A, f̂(X)〉}]
∂βj,q

−
∂E[ |R|

πA(X)
`R{〈W A,f 0(X)〉}]
∂βj,q

]
|β=β∗, β·,0=β∗

·,0, βj,q=0

∣∣∣∣∣
=OP

{
log(p)√

n

}1/2

.

This completes the proof of Lemma S2. �

Proof of Lemma S3: This proof consists of two parts. The first part is to use

the Rademacher complexity (Mohri et al., 2012) technique to show that with a high

probability, the difference between the first and second terms in (A5.4) is bounded by

the Rademacher complexity of the functional space considered in (A5.5). The second
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part is to show that the Rademacher complexity of the functional space converges at

the desired rate.

To begin with, we introduce the Rademacher complexity. Let σi; i = 1, . . . , n be

i.i.d. random variables, each taking the value 1 with probability 1/2, and −1 with

probability 1/2. Let the set of training observations (xi, ai, ri); i = 1, . . . , n, which

are observed from P , be denoted by S. Define the function class of (A5.5) to be

H =

{
f̂ : f̂ = argmin

f

1

n

n∑
i=1

|ri|
πai(xi)

`ri{〈W ai ,f(xi)〉}, subject to
k−1∑
j=1

(‖βj‖1 + |βj,0|) < s(λ)

}
.

Fix S, and we define the empirical Rademacher complexity of the function class H as

R̂n{H} = Eσ

 sup∑k−1
j=1 (‖βj‖1+|βj,0|)<s(λ)

1

n

n∑
i=1

σi

[
|ri|

πai(xi)
`ri{〈W ai ,f(xi)〉}

] ,

where Eσ represents the expectation with respect to σ = (σ1, . . . , σn). Next, define

the Rademacher complexity of H by

Rn{H} = ESR̂n{H},

where ES is the expectation with respect to the distribution of the sample S.

Next, we prove that, with the conditions C1-C3 valid and λ in Theorem S1, we
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have that with probability at least 1− δ (δ > 0 is a small positive number),

∣∣∣∣∣∣
∂[ 1

n

∑n
i=1

|ri|
πai (xi)

`ri{〈W ai , f̂(xi)〉}]
∂βj,q

−
∂E[ |R|

πA(X)
`R{〈W A, f̂(X)〉}]
∂βj,q

∣∣∣∣∣∣
≤ C1Rn{H}+ Tn(δ)

≤ C1R̂n{H}+ 3Tn(δ/2), (A5.6)

where Tn(δ) = C2{n−1 log(p) log(1/δ)}1/2, and C1, C2 are universal constants that are

independent of n and p.

The proof to this claim is standard in the Rademacher complexity literature. To

bound the first term of (A5.6) by C1Rn{H} + Tn(δ), one can use the McDiarmid

inequality (McDiarmid, 1989) and the symmetrization technique (Van der Vaart and

Wellner, 2000). To bound C1Rn{H} by C1R̂n{H} + 2Tn(δ/2), one can use the Mc-

Diarmid inequality again. See the proof of Lemma 3 in Zhang et al. (2015) for more

details.

Note that there are one major difference between the proof of (A5.6) and that of

Lemma 3 in Zhang et al. (2015). In particular, the maximum change in the first term

of (A5.6) should one replace a xi or ai can be bounded by C3 log(p)1/2/n5/4 (this is

a direct result from Lemma S1), where C3 is another universal constant, instead of

OP (n−1) as in Zhang et al. (2015). Because OP{log(p)1/2/n5/4} � OP (n−1), this does

not change the conclusion much. The rest of the proof is analogous, and we omit the

details here.

The next step is to bound the empirical Rademacher complexity ofH. To this end,

we note that R̂n{H} can be upper bounded by the following Rademacher complexity,
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up to a constant scalar

R̂∗n{H} = Eσ

 sup∑k−1
j=1 (‖βj‖1+|βj,0|)<s(λ)

1

n

n∑
i=1

σi{
k−1∑
j=1

(xTi βj + βj,0)}

 , (A5.7)

because R is bounded, each element in W j is bounded by 1, and we assume that `

is second order differentiable (see Lemma 4.2 in Mohri et al., 2012). Without loss of

generality, we can rewrite (A5.7) as follows

R̂∗n{H} = Eσ

{
sup

‖γ‖1<s(λ)

1

n

n∑
i=1

σiγ
Tx∗i

}
, (A5.8)

where γ can be regarded as a vector that contains all the elements in βj and βj,0

for j = 1, . . . , k − 1, and x∗i is defined accordingly. Next, using Theorem 10.10

in Mohri et al. (2012), we have that R̂∗n{H} � OP

{
log(p)√

n

}1/2

(note that s(λ) =

OP{n1/4 log(p)−1/2}).

Next, choose δ = 2p−1n−2, and one has that Tn(δ/2) � OP

{
log(p)√

n

}1/2

. Conse-

quently, with probability at least 2n−2, (A5.4) holds true for all the covariates. Using

the Borel–Cantelli Lemma, we have proved Lemma S3. �

Combining Lemmas S2 and S3, we have that

∣∣∣∣∣∣
∂[ 1

n

∑n
i=1

|ri|
πai (xi)

`ri{〈W ai , f̂(xi)〉}]
∂βj,q

−
∂E[ |R|

πA(X)
`R{〈W A,f 0(X)〉}]
∂βj,q

 |β=β∗, β·,0=β∗
·,0, βj,q=0

∣∣∣∣∣∣
=OP

{
log(p)√

n

}1/2

.

Hence, one can verify that at the solution f̂ , selection consistency is equivalent to

that λ → 0 at a rate no faster than OP

{
log(p)√

n

}1/2

. This completes the proof when

the rewards are bounded random variables.
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To finish the proof, we consider the general case where the distribution of the

rewards is sub-Gaussian. As a matter of fact, one can show that with a high proba-

bility, the actual rewards would be bounded in a range. Then we can prove that the

corresponding converge rate are the same, because the probability of sub-Gaussian

random variables being significantly away from its expectation converges to zero very

fast as the bound increases.

Without loss of generality, we assume that the reward for any patient and any

treatment follows a common sub-Gaussian distribution, with the corresponding c.d.f.

ΦR. The generalization of this assumption to the heteroscedastic case is straightfor-

ward, because what really matters is the tail probability pr(|R(X, A)| > t) for large

t. Next, define t∗ = Φ−1R {0.5+0.5(1−δ/2)1/n}, where δ is a small positive number. It

can be verified that with probability at least 1− δ/2, all the rewards ri; i = 1, . . . , n

deviate from its expectation within [−t∗, t∗]. Since ΦR is the c.d.f. of a sub-Gaussian

distribution with a fixed parameter, t∗ diverges at a rate slower than OP{log(n)}.

One can check that the RHS of the displays in Lemmas S2 and S3 can be bounded

similarly as in the corresponding proofs. This completes the proof.

Note that we assume sub-Gaussian distribution for the rewards to control the

probability of observing a reward that is significantly away from its expectation. If

one can verify that such a probability is small, for example, the joint distribution

P can guarantee that such a tail probability is negligible (in particular, the Radon-

Nikodym derivative of the covariates is small when the conditional reward for given

X has a heavy tail), Condition C2 can be removed. �

Proof of Theorem S2: The proof is similar to that of Theorem 4 in Zhang and

Liu (2014). Here, we point out the major differences. In particular, consider the

optimization problem (A5.5). Note that in the proof of Theorem S1, we argue that
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s(λ) � OP{n1/4 log(p)−1/2}, hence the excess ` risk converges at the rate at least

OP{log(p)1/2n−1/4}. In this proof, we are going to show that with similar results as

those in Lemmas S2 and S3, one can obtain that s(λ) = OP (1), and this can lead to

the fast convergence rate of the excess ` risk.

To begin with, note that we have

1

n

n∑
i=1

|ri|
πai(xi)

`ri{〈W ai , f̂(xi)〉}+ λ

k−1∑
j=1

‖β̂j‖1 ≤
1

n

n∑
i=1

|ri|
πai(xi)

`ri{〈W ai ,f 0(xi)〉}+ λ

k−1∑
j=1

‖β∗j‖1,

therefore,

λ
k−1∑
j=1

‖β̂j‖1 ≤λ
k−1∑
j=1

‖β∗j‖1 +

[
1

n

n∑
i=1

|ri|
πai(xi)

`ri{〈W ai ,f 0(xi)〉} −
n∑
i=1

|ri|
πai(xi)

`ri{〈W ai , f̂(xi)〉}

]
.

(A5.9)

Now decompose the second term on the RHS of (A5.9) into

1

n

n∑
i=1

|ri|
πai(xi)

`ri{〈W ai ,f 0(xi)〉} −
1

n

n∑
i=1

|ri|
πai(xi)

`ri{〈W ai , f̂(xi)〉}

=

[
1

n

n∑
i=1

|ri|
πai(xi)

`ri{〈W ai ,f 0(xi)〉} − E
R

πA(X)
`R{WA,f 0(X)}

]
(A5.10)

+

[
E

R

πA(X)
`R{WA,f 0(X)} − E R

πA(X)
`R{WA, f̂(X)}

]
(A5.11)

+

[
E

R

πA(X)
`R{WA, f̂(X)− 1

n

n∑
i=1

|ri|
πai(xi)

`ri{〈W ai , f̂(xi)〉}

]
. (A5.12)

By similar arguments as in Lemmas S2 and S3, one can verify that the summation of

(A5.11) and (A5.12) converges at a rate no slower than OP{log(p)1/2/(n1/4)}. Fur-

thermore, by Conditions C1-C3 and the law of large numbers, one has that (A5.10)

is of order oP{log(p)1/2/(n1/4)}. Thus, the second term on the RHS of (A5.9) is of
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order OP{log(p)1/2/(n1/4)}, and one can verify that s(λ) = OP (1).

Next, using similar techniques as in the proof of Theorem 4 in Zhang and Liu

(2014), we have that the convergence rate of the excess ` risk in this paper is of the

desired order. This completes the proof. �
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