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Supplementary Material

In this supplement, we provide simulation results under more settings, and give the technical

proofs for Lemma 1-2, Theorem 1 and Corollary 1.

S1 Other Simulations

In this section, we let the random error €4, = (Ei1m, - - - ; E10m )" follow non-normal distributions
such as the exponential distribution, ¢-distribution, or mixture distribution in the following Case
3-5:

Case 3 : €im = exp(&m) — 1, where &, ~ N(0,0.25R), and the correlation matrix R is the
same as in Case 2.

Case 4 : €y ~ t3(0,0.25R), where the correlation R is the same as in Case 2.

Case 5 : €51 ~ N(0,0.25R) and g;2 ~ t3(0,0.04R), where the correlation R is the same as

in Case 2.



The simulation results based on 100 simulation runs are provided in the following Tables
§1-53, which show that the proposed method is robust against any parametric assumption and

performs the best compared to other methods.



S2 Proof of Lemma 1

Note that we can individually obtain Bz and El as

B: = (B W;B;i+\Di) 'Bi' Wiy, (S2.1)

b o= (155 1y, + X)L 57 (y; — BiBs), (S2.2)

where Wj = (2; + £ 1,,1% )~ Then we have

Ao TNy
fi = Bi(B{/W;Bi+ \Di) 'B' Wiy; (52.3)
= Bi(B,"W;B;) 'B;"Wif; — Bi(B;" W;B; + \;D;) '\, D;(B;" W;B;)
BiTWifi + Bi(BiTWiBi + AlDi)ilBiTWi(lnibi + 611).
When A; = 0 in (8Z3), it refers to a regression spline estimator. More precisely, the
regression spline estimator f°% = BiB:eg is the minimizer of
(v — BiB;™) " Wi(y; — BiF[™), (52.4)
thus E(fr°%) = By(B;Y W;B;) 'B;" Wif;. Furthermore, we denote 2 = B;3; as the best Lo
approximation to f;, where B; € RP. Thus, we obtain
16— &2, < [|EE®) = &7, + [|Bi(B:"W;iB; + A\ Di) '\ Di(B;"W;B;) ™!
Bi"Wifi||2 +||Bi(Bi" W;B; + \iD;) 7 'By Wi(1,,b; + &) ||2.
= 5L+ L+,
where the definitions of [}, 7 = 1,2, 3, should be apparent from the context. Under Assumption
A1-A3, when k — oo and k* = o(ng), then from Theorem 1 in Zhu, Fung, and Hd (200R), it is
straightforward to show that I; = O,(h*").

Furthermore, let F; = %BiTWiBi, H; = F; + %Di. From Zhu, Fung, and Hd (200R)

Lemma Al, we have ||F; '||[.c = O(R™'). Similarly to Lemma 6.2 in Cardofl (2000), it



_ . —2d _ _
follows that [|Dillec = O(h'7?%). Since 2= = o(1), then [[Hi 'l = [[Fi™" — (I, +
F; 7 '4D;)'Fy A DF; | = O(h™1). We can write I, = ||B;(B;” W;B;+A\D;) "'\ D;(B;" W;
B;) !By Wi(fi—f5+£)| 2. = || 2B;H;'DiFy LBy Wi(f—£)+2BiH; 'DiF; ' By Wiff /n|2 .

According to the proof of Theorem 1 in Chen and Wang (2011), we can show that

A
——1||BiHi71DiFi71BiTWifiS/TLi||oo = O()\lni_lh_d),
1

A 1
— 2 IBiH; Dy F T =BT Wi (£ — £9)]|oe = o(An; 'R,
n;

Z

Tl

Then I, = O,(5sh=2). Next, it can be shown that

2%

E[Bi(Bi" W;B; + M\ D;) !By Wi(1,b; + ;)7 [Bi(B;" W;B; + A\ Dy) !
Bi" W;(1,,0; + €]

< Anar(Wi(07 10,15+ 20))tr{B;" W;Bin; 'H; 'B;"Bin; 'H; '}

< Ao (Wi(07 130,15+ B9) Apaa (FiHi ™) Aaw (Bi” By)tr{n; "H; '}
=O(n;'h™Y).

The above inequalities are obtained from [Zhou, Shen, and Wolfd (1T998) Lemma 6.5. Since

Amae(Wi(021,,17 +339)) < C, and for any = € [0, 1], 0 < 7, (2) < 1, thus tr{B;"B;} < 1 and

ni—-n;

Amaz(Bi’ Bj) < 1. Then I3 = O,(n;*h™'). Consequently, we can show that for alli =1,--- ,n,

. L A2 k
IE — &[5, < O,k 2)+Op(—§k2d>+0p(;)
—2r )\2 2d k
< Gp(h™) +0p( 5 k )+ Op( ).
0
Then, it follows that
£ —f])3 = lz f—f)<o(k*2r)+0(A2k2d)+0(k)
N N — ng o



S3 Proof of Lemma 2

When the true group memberships Gy, - -+ , G are known, the oracle approximation for f con-

ditional on the oracle estimate of random effects b°" is denoted as for = BB""‘, where

Bl = agminQy(Be):b)

IQJ

T—
= arg gggl Z{ Blﬁ(g) - ]-nibi) Ei 1<yi - Bl/g(g) - ]-nibi) +

>\1,3€,)Di5(g) + Aobi'}.

Similarly to the proof of Lemma 1, we can show under Assumptions A1 — A5 and %;M =o(1)

that

A% ]C2d k

B =1 < O, + O k™) + Oyl

)-

S4 Proof of Theorem 1

By the triangular inequality, ||f — f]|3, = ||f — £ 4 for — £||%, < ||f — £or[|% + ||[fo — £] 3.
The proposed objective function is
1 1 1
H(B.b) = (Y ~BB-Zb)"S™(Y ~ BB~ Zb) + ;08 DaB + Jallblf3 +

> 0(18: — B, As)- (54.1)

i,j€EL

We can obtain the estimate of random effects b by minimizing (847), then
b= (Z"S7'Z + \1,) 'ZTEHY — BA).
Replacing b in (821) by b, we can obtain the profiled objective function

H.(8) = 5(Y ~BBW(Y ~BE)+ 06 Daf + 3 pll: — B4l 1)

ijeL
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where W = (2 + £ZZ")7, Wi = (55 + 10, 15,,) 7 @u(B) = 5 200 (¥ — BiBi) Wiy —

i —n,; D)
BiB;) + 230 MBIDiB; and Sy, (8) = X e p(18s — B, As). Denote
D} = 8’Qn(B8)/9808 = B"WB + A\ Dy, (S4.3)
M; = Cov(9Q.(8)/08)
= i Bi' Wi(0y 15,1, + 37)Wi' By, (S4.4)
=1

Let 75 = Apin (DS (MS)™1D2), and BB* = B3°" + () 2w, where ||u||y = d,.

Note that

()7 = Amae((DR) 7 (MR)(D3) ™)
< O\ {E[B(BTWB + \,Dg) 'B"WY — E(BA)|"[B(B"WB
+MDy)'B"WY — E(BB)]}
= CE(f - )T (f —f°)

< ON||f —f||% + C.N||f — 3%, (S4.5)

where the first inequality in (8473) can be derived from Lemma A.4 in Zhu and Qu (2OIR).
&
no

Thus, from Lemma 1, (75)71 < A;(£ + 2—zk2d + k7%) with A; sufficiently large.
0

If N is sufficiently large, we have

BBy — Biy)lIn = ) — oy llw
= |fg) — fie) — (fg) — ) + (Fey — ) llv
> ) — T llv — Ife) — £3)llv — e — £ lln

> dy.

It is easy to prove that there exists a constant ¢, such that || ~(°gT) — B(O;))Hn > cdy. From the

definition of p,(t, A3) = 0, when ¢ = 0 and p, (¢, A3) > 0, when ¢ # 0, and since the minimum
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distance dy satisfies cdy > 73, we have Sy, (B‘”’) = (. By Taylor’s expansion, we can obtain

that

Ln(u) = Hn(IB*) - Hn(BOT)
= Qn(ﬁ*) - Qn(/éor) + S)\:s(ﬁ*)
= () QLB+ () T OuB Y+ S, (87)

= () QB+ () T D+ 8, (87), (51.6)

where Qn(8°7) = ZQ(B)|g_por> @n(B°) = 5555Q(8)| 5_ger- Note that

[T

(D3)2(D3) "2 (M3)2(D3) 2 (D5)

N

(M)

N[
N[

(M3)7(D3)"

=

(D*)? Aaz ((DS) ™

IN

)(D3)
= (D)7 (M3)72(D5)2)'D3,

= (r3)7*D;, (S4.7)

and thus (75)72(M2)z < (75)7'DS. Consequently, if d,, is sufficiently large, then the second

term in L,(u) dominates the first term, which implies that, with probability tending to 1,

L,(u) >0 at ||u||x = d,. Hence we have

P{ inf Ly(u) >0} — 1,

||y =du
which entails that with probability tending to 1, there exists a local minimum of H,(83) which
. . = 2 .
lies in the ball B = {8 : [B(8 — B)|} = (73)7'd2 = Ay(£ + 2—%/@% + k7)) with A,
sufficiently large. And 8 = arg mﬁin H,(B), then |B(8—3°")|]2 = Op(n—k0 + ;\L—ide +k~?"). Thus
0

by combining the result from Lemma 2, we can complete the proof.



S5 Proof of Corollary 1

From Theorem 1, there exists a local minimizer f= B,é, where B € B. For any pair ¢, j such
that G(i) = G(j), we have [ —F% = [fi—fi+E—f+6 —F[% < 2max [fi—& I3+ —§]% <
Op(n% + 2—%]{:2‘1 + k7Y — O,(k™), as ng — oo. Thus f; and f; will be in the same group with
probability tending to 1. On the other side, for any pair 7, j such that G(i) # G(j), we have

1£; — £]|2, > min ||f; — £;]|% — 2 max ||f; — £]|% > d} — Oy(k™") as ng — oo, which indicates that
(2

f; and fJ will be in different groups with probability tending to 1. Hence, P(é =3g)— 1L
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Table S1: Case3: Comparison results from the proposed nonparametric pairwise-grouping with
three different working correlation structures (NPGr-IN, NPGr-AR(1), NPGr-Ex), Gaussian Mixtures

(bGM), K-means (bKmeans), SSClust, MixedEffects, and Kernel for balanced data.

Methods K Rand aRand Jaccard AMSE

NPGr-IN  3.02 0.9998 0.9995 0.9993 0.0420
NPGr-AR(1) 3.00 1.0000 1.0000 1.0000 0.0375
NPGr-Ex 3.00 1.0000 1.0000 1.0000 0.0380

bGM 3.17 0.9941 0.9846 0.9819 0.0463

AR(1)
bKmeans  3.00 0.9302 0.8606 0.8739 2.5818
SSClust  7.98 0.8301 0.5504 0.4799 0.3549

MixedEffects 4.68 0.9406 0.8555 0.8182 0.1199
Kernel 4.24 0.9481 0.8743 0.8412 0.4984
NPGr-IN  3.10 0.9990 0.9978 0.9970 0.0476

NPGr-AR(1) 3.00 1.0000 1.0000 1.0000 0.0369
NPGr-Ex 3.00 1.0000 1.0000 1.0000 0.0372
bGM  3.06 0.9986 0.9968 0.9957 0.0420

Ex

bKmeans 3.00 0.9360 0.8721 0.8842 2.3726

SSClust  7.69 0.8297 0.5483 0.4786 0.2954

MixedEffects 4.22 0.9524 0.8849 0.8544 0.0958

Kernel 4.37 0.9433 0.8621 0.8264 0.5371
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Table S2: Case4: Comparison results from the proposed nonparametric pairwise-grouping with

three different working correlation structures (NPGr-IN, NPGr-AR(1), NPGr-Ex), Gaussian Mixtures

(bGM), K-means (bKmeans), SSClust, MixedEffects, and Kernel for balanced data.

Methods K Rand aRand Jaccard AMSE
NPGr-IN  3.70 0.9925 0.9826 0.9770 0.1601
NPGr-AR(1) 3.02 0.9998 0.9995 0.9993 0.0635
NPGr-Ex  3.03 0.9996 0.9992 0.9989 0.0679
bGM 3.76 0.9788 0.9456 0.9351 0.1542

AR(1)
bKmeans 3.00 0.9217 0.8438 0.8576 2.9920
SSClust  6.42 0.8745 0.6782 0.6157 0.2549
MixedEffects 5.18 0.9309 0.8323 0.7889 0.7447
Kernel 5.29 0.9365 0.8454 0.8055 0.9188
NPGr-IN  3.71 0.9925 0.9826 0.9769 0.1529
NPGr-AR(1) 3.06 0.9993 0.9984 0.9979 0.0800
NPGr-Ex  3.03 0.9996 0.9992 0.9989 0.0651
bGM 3.57 0.9876 0.9685 0.9619 0.1383

Ex
bKmeans 3.00 0.9260 0.8522 0.8654 2.8116
SSClust ~ 6.74 0.8600 0.6377 0.5713 0.3023
MixedEffects 5.18 0.9258 0.8186 0.7730 0.6701
Kernel 5.08 0.9353 0.8423 0.8019 0.9801
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Table S3: Caseb: Comparison results from the proposed nonparametric pairwise-grouping with
three different working correlation structures (NPGr-IN, NPGr-AR(1), NPGr-Ex), Gaussian Mixtures

(bGM), K-means (bKmeans), SSClust, MixedEffects, and Kernel for balanced data.

Methods K Rand aRand Jaccard AMSE

NPGr-IN  3.00 1.0000 1.0000 1.0000 0.0329
NPGr-AR(1) 3.00 1.0000 1.0000 1.0000 0.0327
NPGr-Ex 3.00 1.0000 1.0000 1.0000 0.0328

bGM 3.17 0.9965 0.9916 0.9892 0.0545

AR(1)
bKmeans  3.00 0.9321 0.8639 0.8760 2.5680
SSClust  8.40 0.8170 0.5093 0.4397 0.2825

MixedEffects 4.68 0.9439 0.8632 0.8283 0.1128
Kernel  3.94 0.9593 0.9015 0.8753 0.4525
NPGr-IN  3.00 1.0000 1.0000 1.0000 0.0334

NPGr-AR(1) 3.00 1.0000 1.0000 1.0000 0.0333
NPGr-Ex 3.00 1.0000 1.0000 1.0000 0.0333
bGM  3.13 0.9977 0.9946 0.9930 0.0510

Ex

bKmeans 3.02 0.9284 0.8561 0.8682 2.6681

SSClust  8.26 0.8082 04837 0.4127 0.2573

MixedEffects 3.92 0.9769 0.9456 0.9294 0.0644

Kernel 4.01 0.9582 0.8992 0.8720 0.4672
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