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In this supplementary document, we provide the proofs of main results in the paper.

A Lemmas

We start with some lemmas that are useful in deriving the main results of the paper.

Lemma 1. Assume that ||e ||g.o < 00, where ¢ >2 and o > 0, > i w? =n. Let w = (wq, ..., wy),

6o =1 (resp. (logn)'+24 or n?/2717%4) if o > 1/2 = 1/q (resp. a« =0 or a < 1/2—1/q). Then for
allz >0, S, =1 wie,

q q K 2
20 S (52 )
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where K1, Ko, K3 are constants that depend only on q and .

Proof. See Wu and Wu (2016) Theorem 2. O

Lemma 2. Assume |||X.|oollga < 00, where ¢ > 2 and o > 0, and Uy, < 00, Y 0 w? =

n.
Let w = (wi,...,wy) and T,, = > i wix;. (i) If a > 1/2 —1/q, then for x 2 /nlogp¥s o +
[wlq(log p)*?[1x.|ollg.a

Kq7a

w|g(log )% | sl Kyon’
o + Ky o exp _n\I’ga . (A1)

(11) If 0 < e < 1/2 — 1/q, then for x 2 \/nlogp¥s  + n1/2_“_1/q|w]q(logp)3/2H\x.\oo||q7a,

Kyan®* e tfwlillog )N sl | g o (_Kq,aw2> )

P(|Tn‘oo > l’) < o TL\IJ%Q

where K, o is a constant that depends on q and o only.

Proof. The lemma can be shown following similar arguments as those in the proof of Zhang and
Wu (2017) Theorem 6.2. Details are omitted. O

Lemma 3. Let A and B denote two positive semi-definite, s-dimensional square matrices. If
maxi<jk<s ’Ayk — Bjk‘ < 6, then inf|<‘2:1 C/BC > ian\g:l C/AC — s0.
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Proof. See Lemma 3 of Medeiros and Mendes (2016). O

Lemma 4. For linear model Y = X+ e, assume that the matrix Xa)X(l) 1s invertible. Then for

any given A > 0, and any noise term e € R", there exists a Lasso estimator B(A) which satisfies
B(N) =s B, if and only if the following two conditions hold

L[t | 1
‘X<T2>X<1>(X5>X<1>) 1 [nX<T1>€—ASW"(/3<1>)} — o X(ye| <

where the vector inequality and equality are taken elementwise, (1) and B3y denote the first s and
last p — s entries of B respectively.

Proof. See Wainwright (2009). O

B A general theorem of estimation error for weak sparsity

Lemma 5. Define A = B B, where 3 satzsﬁes weakly sparsity condition (Assumption 1), i.e.,
\BJ]H < Ky for 0 < 6 < 1. Suppose ASA > /ﬁ]Ab, where Kk is a positive constant that does

not depend on A. Choose \ > 2ln~1t Yo Xi€iloo. Then we have for some constants C1, Cy,
) A 2—6
A3 < C1Ky () ; (B.1)
K

) A 1-6
1Al < oKy </~@> . (B.2)

This result is deterministic and non-asymptotic. The statistical performance of B relies on the
restricted eigenvalue condition properties of sample covariance X.

Proof. This result is just a simple application of the theoretical framework established in Negahban
et al. (2012), for the sake of brevity, we omitted the detailed proof here. O

C Proof of Theorem 1

Proof. Recall = (Gjk)i<jp<p = 1/n> 1" xzx;‘r =n1XTX, Y= (0jk)1<jk<p- Define the events
A = {E-Sw<a}= {l"fj!f}cx |65k — okl < a}, (C.1)
B = {n'|XTe| < A/2}. (C.2)

The first step is to control the probability P(A¢) and P(B¢). By Hoélder’s inequality, we have
for m > 0 that

0
> llajer — ajjefll- <
l=m
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(i (er = €)= + 1 (xe; — @i )eq |l-)
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T
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Since o = min(ax, ), the dependence adjusted norm satisfies

[zjellra < [z jllyvollellgae + [175llvax llellgo < 2)2jllyax e llga- (C.3)

Similarly, we have
1252k — ikl /2.0x 2 < 2025 vax 12 kllyax (C.4)

Hence,
pax |z jellra < 2M My, (C.5)
 Dax 1252 & = Tjklly 2,00 12 < 2M%- (C.6)
Employing a similar derivation, we can show that,

| llgfgp |2 jelllra < 2[l% foolly,ax Me (C.7)
I max fo ok = ol pan/s < 20 ol (©8)

Note that My < [||X |oollvax < Trax-

If 7 > 2, for A > \/logp/nM.Mx + n?/""*(log p)>/? Me|||X |oc|~,ax , adopting (C.5), (C.7) and

Lemma 2, we have,

1 (log p)7/2 | [x.|oo 7,05 MZ

P = (nA)7 S+ CyemCon¥/ (MM

Under our choice of A, if 7 > 2, P(B¢) = Cy(logp)™™ + Csp~ . Similarly, we can prove, if
na 2 v/nlogpMy + n*/7(1og p)*/2|[1x |oo||3 o » P(A®) = Ci(logp)™/% 4 Cap=s.

Denote w = +/logp/nM% + nQV/Vfl(logp):s/QH|x.|oo||%7ax. Then for some constant 7; > 0, we
have

P (\m e RP,A'SA > A'SA — mwm@) >1—Ci(logp) "2 — Cop~ . (C.9)
In other words, with high probability 1—P(.A¢), the Restricted Strong Convexity condition A’ SA >

K|AR — mw|AJ3 holds.
Denote A = 8 — . For a threshold § > 0, we choose

d=#{j € {12, . p}||31] = 5}.

Let S = {j:|Bj] > ¢} and S = {j : |Bj] < 6}. Applying Lemma 1 in Negahban et al. (2012), if
A>2n7 13" | 2iei]o0, it holds that,

|Agelt <3lAsli+4 ) |8]-
jese

We thus have

Al < [Ash + |Asel < 4[Ash +4 ) 18] < 4Vd|Agla +4 ) 18-

jese jeSse
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If follows that
) |5j| ’ 1-6
dIBil<6>] =) <K, (C.10)
jese jese

Thus
[Aly < 4Vd|Agly + 46" P K.

On the other hand, we have
d< 81’ < 6K,
jese

Suppose |Aly > ¢1v/Kg(A/k)~0/2 for some constant ¢; > 0. Then by (C.10) and (C.11), setting
§ = Nk,

Al < 4Vd|Agly + 460K,
4 K() |A|2+4<) Ko
K KR

A\ 02
< 4(1—1—01_1)\/Ke< > |Als.

R

IN

Recall Apin(X) > & > 0. If 32(1 + cl_l)megw)\*‘g < k179 we will have,
NA 1 ~
P (A’EA > 2;@|A|§> >1—Ci(logp) "2 — Cop~ 5.

An application of Lemma 5 shows that for constants ca,c3 > 0, if A > 2|n~! o Ti€iloo, with
probability at least 1 — Cy(logp) /2 — Cop~©5,

A A\ 1-6/2
> G2 K@ <,€> ’

R by 1-6
|A‘1 =~ CgKg( ) .

>
A

VAN

K
When |Aly < e1v/Kg(A/k)' 792 for some constant ¢; > 0. Then by (C.10) and (C.11), setting

d = A\/kK, we can still obtain

AL < 4Vd|Agly + 460K,

RELE 3\ 10
4/ Ky (R> |A|2+4< ) Ky

IN

K
< 41+ 1)Ky <> :
K

Therefore, with probability at least 1 — Cy(log p)~7/2 — Cop~©8 — Cy(log p)~7, we have bounds (18)
and (19). O



D Proof of Theorem 2

Proof. Applying Theorem 1 with § = 0, with probability at least 1 — C;(logp)~ /2 — Cop~©3 —
Cy(logp)~", we have

\/§>\/I€,
SA/K.

\5:—5|2
16— 61

S
S
Since s = Ky, sw S 1 implies that
n 2 Mys®logp+ s/ 0727 (log p)¥ =4/ ||x || 252/,
Recall the events
A = {£-Sx<a}= {IE!%XWM —ojk| < a},
B = {n! ‘XTG‘OO < \/2}.
Since 4 minimizes equation (2), we have
1 12 A 1 2
SV = XA+ MBl < 51 — XBB+ Ak (.1)
After some algebra, this reduces to
(B=B)S(B - B) + AlBl < 2¢"X (B — B)/n+ A8l (D-2)
On the event B, the above inequality implies that

0< (B~ B)S(B—8) < SNBs — Bl — GMBsel (D.3)

Then inequality (D.3) implies that

EAB B+ (B = B)S(B — B) < 27y — Bl < 2AVEIBs — Bl (D.4)

So (22) follow on the event AN B. O

E Proof of Theorem 3

Proof. Reall |S12 = 1/Ny and let |21 = 1/No. Without loss of generality, let J = support(3) =
{1,...,s}. Let X = (x1,...,x,)" and denote by X(1) and X(9) the first s and last p — s columns of
X. Denote W, = > wie; and Wi (1), z; (1), B1y and Wi (2), z; (2), B(2) the first s and last p — s
entries of W), x; and 3, respectively. Define b =sign(/(,)). Let

1 [
B = (=X} Xq)™! [nx(ﬁ)e—m},

T T -1 T “1vT e

n
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where X9y, = (714, vy i) T denote the k-th columns of X and s+ 1 < k < p. Denote the j-th
element of B as Bj.
By rearranging terms, it is easy to see that the events

B = {max|Bj| <L}, (E.1)
D = D E.2
{sﬁf%i%p' Kl <A}, (E.2)

are sufficient to guarantee that conditions in Lemma 4 hold. Then P(5 #, 8) < P(3°) + P(D°).
We first analyze the event D. Recall E(z;x| X (1), ) = [22121_111‘2'7(1)]]@ and zjx = Tix—E(zik| X(1), €)

for s+1 < k < p. Let wy = X(l)(X(:q)X(l))*l)\b, wo = [I—X(l)(X(:q)X(l))*lXa)]e/n and w = w1 +ws.

Denote Zp = (Z1g, .., 2nk) ", Uy = ZkTw and p = E(X(g),kw]X(l),e). Note that EZ, = 0 and

wlws = 0. Then by the irrepresentable condition,

D.l =
e 1Dk = ma T+ Uil
< U,
< 8+1}1§]§(§p”ﬂk|+| k]
< (I—mA+ max |Ugl.

s+1<k<p
From this inequality, we have

Url < A} C Di| < A}
{qug]ggpl kKl < nA} {Hr@;pl k| < A}

Define the events

A = {|i]11 — Y11|eo < a} = { max Ojk — Ujk| <a}, (E.3)
1<5,k<s

Ay = {n7'e? <20}, (E.4)

T = {wf<d). (E5)

By Lemma 3, on the event A; with a = Ni/(2s),

) N
No= inf (7S¢ > inf (T8¢ —sa= —.
ICl2=1 ICla=1 2

q 2
P >no | < 771”6'”(1’% +exp | — n02 =P
niod le-112,q.

Denote P; = P(A°) with a = N;/(2s). We know

By Lemma 1,

n

S (et —0)

i=1

_ A2s
wiwr = NH(X() X)) b <
and
eTe
Wy W2 < F



Thus, we have

2X\%s
P(TC) <P <w1 w1 > N) + P (w2w2 > 2nU) < P+ Ps.
nivy

By Lemma 2, if n\ = /0, log pW¥s oy (2) + n(— 1)/'751/2(10gp)3/2||\Z.]OOHWOCX,

P < +r{1ax |Uk| = nA |T) < Ci(log(p— )7+ Cy(p — )~ == Ps.

By the total probability rule, we have

P(DY) < P ( Jnax |Ug| > nA !7') +P(T°) < P+ P+ Ps.
Now we analyze the event B. Note that 15571000 < V5|51 2 = V/5/Na. Recall A < nNy L/ (44/5).

On the event A, nL—\|[X7'0];] > nL(1— Nl/(4N2)) > fL/2 forall 1 < j <s. Simple application
of the Cauchy inequality shows that

sup CTEHlW (1) Z ZazweZ

[Cl2=1 j=1 i=1
This yields
- 1
B = (IETWa) < 3nL}
=1

. 1
= {sup ("2'W,(1) < §nL}

[Cl2=1
s n 1
D) Z(Z xijei)Z < §TLLN2
7j=1 =1
n N
1
D {lrgjags ;mijei < )\} ﬂ {\211 — Yii1leo < 95 }

Thus,
P(B°) < P(IW,(1)|eo > A) + Pi.

By carrying out similar procedures as those in the proof of Theorem 1, we can control the
probability P; and P(|W;,(1)|cc > A). Then (31) follows. O

F Proof of Proposition 1

Proof. Let v; = Ey;y;—;. Set the candidate lags of this AR(2) model as d. Since 79 = 1, we have

Y11= <1 711) ;
71



and

V2 4!
Yoy = ..
Yd—1  Yd—2
Basic calculation shows that
L 2 - 2
_ 1— 1—
Z111 = <_ “711 1 vl) J
1—7% 1—7%
and
- o1
1— ¢y’
Moo= P1v-1+ P22,
for 2 <1 <d.

We first consider the case ¢1 > 0 and ¢2 > 0. Then the Strong Irrepresentable Condition

L V; Vj—171 Yin Vi1
o1 87} = - B !
|X01 11 Slgn(/@(l))|00 2;?25{71 1 — 7% 1— fy% 1— fy% + 1-— 7% <

For j = 2, it can be shown that

Vi V-1 M 4 V-1 <1

1—7f 1—=9f 1-9f 1-97

is equivalent to ¢1 + ¢2 < 1. Then 74 < 1 and 7; < 7;-1 for all j > 1. Thus, we have,
\Zngl_llsign(ﬂ(l)ﬂoo < 1 is equivalent to ¢1 + ¢ < 1.
Similarly, we can prove the cases ¢1 > 0, ¢ < 0 and ¢1 < 0,02 > 0 and ¢ < 0,0 < 0.
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