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S1 Proofs for Section 2

First, we repeat the exact variance formulas for U statistics used in [2]. For

77”' = Q; + bj + €ij, let

1 _
Us = Ua(B) = 5 D N 2y Zig (g — i),

ij5’

U, = ZNlZZ (ni; —nwj)?,  and (S1.1)

g’

Ue Z 771] ni’j’)Z-

Zﬂ]

The model from [2] applied those U-statistics to Y;; instead of 7;;. In our
notation, their Y;; is p + 7;;. Because the intercept p cancels, these U-

statistics defined via 7;; are equivalent to those defined via Yj;.

Theorem 1. Let Y;; follow the random effects model (1.1)) with the obser-

vation pattern Z;; as described in Section @ Then the U-statistics defined

at (S1.1)) have variances

Var(Uy) = o (rp +2) Z(ZZT)ir(l - N HA =N
+205 Y NN NZZ)ul(Z27 )i — 1) + dopop(N — R)

ir

+op(ke+2) ) Nu(l— N +205 ) (1- N,

(S1.2)
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and
Var(Up) = 0% (k4 +2) Y (27 2);s(1 = N;")(1 = N1

oj
js
+204 Y NN NZT2); (27 Z) s — 1] + 40%0%(N = C)
js
+oplhe+2) Y Ny(1—= NG +20%> (1- N,
] J

J

3

(S1.3)
and
Var(U) = 204 [(£2)" - £ + 208 [ () - )
+ o4 (ka+2) (N2 ZNZQ - QNZNi + ZNf>
+ohlp+2) (N2 YO NG 2N YO NG+ Y N
j j j (S1.4)

+205N(N — 1) + og(kg + 2)N(N — 1)
+ 40%0% <N3 — 2N Z Z;ijNi.N,j + Z N12N2]>
ij ij

+do%o? <N3 Ny Nf.) +doto? <N3 -NY Ni)
( J

Proof. This is a portion of |2, Theorem 4.1]. The remainder of that theorem

gives the covariances among the three U-statistics.

S1.1 Proof of Theorem [

Proof. Letting € = max(eg, €¢), we have
N 0 1-R/N 1-R/N
M = N 1—-C/N 0 1—-C/N | (1+0())

N? 1 1 1

]
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and so if max(R,C)/N < 0 for some 6 < 1, then

__N_ 0 1 N1

N—-R
M7t=1 0o - N (1+0(e)).
NN N2

It follows that

7= (35~ ) (1+00)
op = (% - N(i"c)u +0(¢€)), and (S1.5)

U, Uy U.

S )

Gao and Owen [2, Lemma 4.1] show that E(U,) = (6% + 0%)(N — R),

E(U;) = (04 + 0%)(N — C), and
E(U,) = 0% <N2 -y Nﬁ) + o <N2 -3 N?j> +o%(N?— N), so
( J

E(U.)
N2

=04 +op+o5—7", where

N2
T = (U%Z]’W“ + =

+J]23 N2 N

2 N 0’%) — 0(e).

By substitution in (S1.5) we find that all of the variance component biases
are T x (14 O(e)) = O(e).

Turning now to variances,

R Var (U, Var(U,
Var(63) :O< ]\54 )-i- ]\52 )>7

Var(U,) = Var(Uy)
i e ), and (S1.6)

Var(6%) = O(

. Var (U, Var(U, Var (U,
Var(s) = (VG o Tulh) o)y
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Some bounds for these variances are given by [2, Theorem 4.2]. That theo-
rem makes stronger assumptions, such as a small bound on R/N that we do
not want to make here, and so instead we work from the exact finite sample
formulas in [2, Theorem 4.1], given here in Theorem [Il We note here that
there is an error in [2, Section 9.8] where the coefficient of o%(kp + 2) in
Var(U,) is shown to be 3, NZ (14 O(6)) for the § defined there. From the
derivation there, it is clear that this coefficient is less than » i N?j, and so

the conclusion of that theorem is unaffected.

Using (ZZ");y < Nyo and 3, (Z27); = 32, N?

0j7

we find from ([S1.2))
that
Var(U,) < of(kp +2) Y (ZZ7)i + 205 Y NN ZZT )i + d0BosN

—|—J4E(/$E+2)ZNZ-. —1—20%21

< op(kp +4) Z NZ + (40]230?5 + op(kp + 2))N + 2Ro3,
J
—o(}Nz). (SL.7)
J

The same logic yields Var(Uy) = O(3_; N2). The second term in Var(U,),
which was lumped in with the first, might ordinarily be much smaller than
the first, and then a lead coefficient of 0% (kg + 2) would be more accurate
than o}(kp + 4).

For Var(U,) the nonnegative terms in (S1.4)) have magnitudes propor-
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tional to
(20e) (Sae) ww3one w30,
X S S
or smaller. These are all O(NQ(Zi NZ+Y, N?j)), and so
Var(U, <N2 (Z 2 | Z Ni)) (S1.8)
Combining (SL.7) and (SL.8) into (SL.6) ylelds

<ZN2 + Z59) 0+ 000,

Var(6%) =

and the same follows for 6% by symmetry. Precisely the same terms appear

in Var(6%) so it also has that rate. O

S2 Proofs for Section 3

S2.1 Proof of Theorem 3l

To compute a lower bound for effgyg, we first transform « into z =V, Vg,
Then, from (3.8)),

(272)?
2TV, VRV ) (2T VPV VL PR)

effprs =

Scaling z by a nonzero constant does not change effrys. Letting u = z/||z||,

we have

1/effprs = (wTVPVRV ) (wV 2V Vi) = (u” Au)(u’ A )
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for A = VA_l/QVRVA_UQ. We get an upper bound for 1/effryg from the Kan-
torovich inequality after getting upper and lower bounds on the eigenvalues

of

A=V P (Va+ 03Br)ViY2 = Iy + o3V 2BV V2.

/

The eigenvalues of A are the eigenvalues of o3V, ) rVy "2 plus one.

The matrix B¢o and by extension By is singular and positive semidefi-
nite, with nonzero eigenvalues NV,; for j = 1,...,C. Also, Vy is symmetric
and nonsingular with eigenvalues 0%, and 0% + 04N, for i = 1,..., R.
Then V, 2 i symmetric and nonsingular with eigenvalues 1/ \/% and
1/\/o% + 03N, fori=1,...,R.

Therefore, 0%V, Y 2BRVA_ 12 i singular and positive semidefinite. Its
smallest eigenvalue is zero, and its largest eigenvalue is bounded above by

2
~1/2 1/2 —1/2 o

o5V BaViall2 < oIV Bl Brll: = 25 max N,
This is where we needed the assumption that 0% > 0.

The smallest eigenvalue of A is 1 and the largest eigenvalue is at most

1 + 0% max; N,;/0%. By the Kantorovich inequality (Theorem ,

1/effprs = (u"Vy 2VRVy V) (u V2V Vi )

(2+opmax; N,;/0p)®> (203 + o max; N,;)?
S 4(1+o3max; N,;/o%)  4oi(0Z + o max; N,;)’
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Taking reciprocals gives the desired result. The result for effcpg follows by
symmetry. The inequalities are tight because Kantorovich’s inequality is

tight.

S3 Proofs for Section 5

Several of the proofs for Section [5| utilize the following lemma, which is

~

not given in the main paper for brevity’s sake. This lemma rewrites U, (f3),

Ub(B), and UE(B) in a useful form.

Lemma 1.

~

@ (Z N Zij Zij (w35 — wigr) (wij — l’z’j')T> (B-5)
+(B-B)TY N, 12] Zigr(ij — i) (b — bjr)
+(B=p)" %N 'ZijZiy (i — wig) (eig — €q),
Us(8) = Us(6) + (ZN ! Zij Zij (i — wog) (@i — xi’jf) (5= 75)
+(B-1) ZN 1JZM Zyi(xi; — xir;)(a; — ay)
+(B=B)" % N;'ZiiZij(wij — wirg) ey — ewj),  and

U.(B) = Ue(B) + (Z 1(ij — o) (@i — xi’j’)T> (8= B)

iji’y!

5 5 Z xz] iUi/j')(@i—ai/)

iji’y’
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+ (B =BV ZigZoy (i — wiey) (b; — by)

iji’y’!

5 5 Z l’z] xi’j’)(eij_ei’j/)a

iji’ !

where for n;; = a; + b; + €5,

Uo = ZN Y Zi; Ziy (nig — mir)*,

ijj’

ZNlZZ (ni; —nwj)?,  and

g’

Ue — Z Zl]ZZ/j/<nl] — Th‘/j/)2,

iji'j

Proof. Straightforward algebra. n

Note that the 7;; exactly follow a two-factor crossed random effects
model. Thus, Lemma [l shows that we can leverage results about U,, Uy,

and U, from [2] to analyze U,(5), Uy(8), and U.(5).

S3.1 Proof of Theorem {4

Let the data be ordered by row and write Y = X + 7, where n has mean
zero and variance 03 Ag + 0% B + 0%1y. Then fors = S+ (XTX) ' X Ty,
Clearly E(XTX)"'1XTp) = 0. Now let w € R? be any unit vector. Then

using matrices Ar and By from Section |3.1],

Var(w"(XTX) X Ty)

= w (XTX) ' XT (0% AR + 05Br + 02 I) X (XTX)™!
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2 2 2 TvTy\-1lyvT Ty -1
§(0E+0Am?XNi,+aBm?XN,j)w (X' X)X ' X(X'X) " w

1 1 -1
= N(g?E + 0% max Ni, + 0%, max N.j)wT<NXTX> w

o XTX
< ( +endh+eooh) [ 2(557)

— 0.

The first inequality follows from the facts that the maximum eigenvalue
of 021y is 0%, the maximum eigenvalue of 0% Ag is 0% max; N;,, and the
maximum eigenvalue of 04 By is 0% max; N,;. The conclusion now follows

because max(1/N, e, ec) — 0.

S3.2 Proof of Theorem [5l

In light of Theorem [1] it suffices to show that (U,(8) — U,(8))/(N — R),
(U(B) — Uy(B))/(N = C), and (U.(8) — U.(8))/N? all converge to zero in
probability. Because max(R,C)/N < 6 € (0,1) we can replace denomina-

tors N — R and N — C' by N. Using the expansion in Lemma [I]

Ua(B) = Ua(5)

N
1 ~
= ( ZN V2 Zij (w3 — g0 (i — xij/)T> (8—=5)
) A
Ao 1
+ (8- /3)Tﬁ Y N ZiZig (i — wi) (b — by)

i’
NS >
Vv

A2
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~ 1 _
+ (8- /3)TN D N Zi Zig (g — wi) (i — eqyr)

i’

[\

-~

A3
We consider Terms A1 through A3 in turn.

A1: The middle factor in Term A1l is no larger than

(AMN/N) > i Nia 'Z:;Zy = 4My = O(1). Therefore term Al is O(||3 —

~

BI%).

A2: The coefficient of 3 — 8 has mean zero and second moment

1 I
E(W Z Z NiolNr.lzijZij’erer’ (ffij - Iij/)(%s - Irs')T

ijj’ rss’

(bj — bjr)(bs — bs’))

1
= m Z Z N;INEIZijZij’erer’ (Iij - xz‘j’)(xrs - xrs’)T

ijj’ rss’

E((bj - bj')(bs - bs’))

2
- % Z Z Niley:lzijZij’erer’(xij - xij’)(xrs - xTS’)T

ijj’ rss’
(Ljms = Ljmy = Lymy + 1)
4
_ O-B Z ZN lN 1Zz]ZZj’ZTjZTs’(ij — Q}U/>(erj — xrs’)T~
ijg’ rs’

No component in this matrix is larger than

16MNUB Z Z NN IZZ'jZij’ZT'jZTS/

Z]j rs!

16MN0'B ZZZUZT] 16MNO'B ZNQ _

r
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and so Term A2 is O(]|5 — f||e).

A3: As in A2 we find that the coefficient of B — 3 has mean zero and
second moment

402
= Z N N2 Zip Zig (i — wip) (i — wisr)T

ijj’ s

in which no component is larger than

16O'EMN 2 160’%MN 160’%MN

ijg’ s ij
Therefore Term A3 is O(||8 — B||/N).
Combining these results (Ua(83) — Ua(8))/N = O(|I8 = Bll(e+ (15— BI).
The same argument applies to (Uy(3) —Uy(8))/N. Now we turn to (U,(3) —

U.(B))/N?. Using the expansion in Lemmal[l]

~

- (% Z ZijZyj (@i — iy ) (@5 — fEij’)T) (8=4)

igi' g’
N - >y
E1l
+(B=T 3 Z (i; — z)(a; — ay)
iji'j’
-~ g
E2
+(68-8)" Z (@ij — wiy) (b — by)
iji’ 5’
~~ 7
E3
6 ﬁ N2 Z l'” xi/j/)(eij — €i/]~/) .
iji’ 5’
-




S3. PROOFS FOR SECTION 5 13

El: By arguments like the one for A1, we find that E1 is also O(||3 — 5[?).

E2: Similarly to A2, the coefficient of B — [ has mean zero and second

moment

1
E(7 D 2 Zisiy ZosZuns (w35 = Ty) @rs = w0) (0 = as) (@ — ) )

igi’j' rsr's’

4UA Z Z Zij1 Lig Lyt (CCZ‘J' — xi’j’)(xis _ xr’s/)T

igi’y’ sr's!

with components no larger than

W—NJA Z Z ATVAWAR

igi’g" sr’s!
16 M yo? 16 M o2
== ML LD o

Therefore Term E2 is O,(||5 — S]|e).
E3: Term E3 is also O,(||3 — 8]|€). by the argument used for Term E3.

E4: Following arguments similar to the preceding ones, the coefficient of

[ — B has mean zero and second moment

40' 160‘2 MN
E Z Z 32 (@ij = Ty ) (X35 — Tprg) T = O(%)

igi'y’ rls’!

and so Term E4 is O(||3 — 5||/N). Combining these results we have consis-
tency for the variance components. The error in replacing 8 by B changes

the variance component estimates by O(||3 — 8(/|3 — 8| + €)).
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S3.3 Proof of Theorem

Suppose that the data are ordered by rows. Then we may write Y = X 5+,

where 1 has mean zero and variance Vi = 041y + 03ARr + 05 Bgr. Now
BRLS — B + (XT‘A/A_1X)_1XTVA_177

where Vy = 62 Ap+62%Iy. The matrix X is not random and both 6% 5 02
and 6% 5 0% so it suffices to show that ¢ = (X TV 'X)'XTV ' 5 0.
Write n = a 4+ b + e where these are the random effects in the row order.

We can easily handle the effect of a + ¢, via

Var(XTV, ' X)XV N a+e) = (XTV X)) XTVIAX(XTV X))

=(XTVX)

The largest eigenvalue of V4 is O(N;,) and so this quantity is O(eg) — 0.
We will need a sharper analysis of (XTV;*X)~! to control the contri-
bution of the column random effects b to the row-weighted GLS estimate
BRLS. Furthermore their contribution to the intercept term in § motivates
centering the x;;. For a nonrandom invertible matrix K € RP*P, we may
replace X by X* = XK and 3 by f* = K~13. Now BRLS = KBELS and so
Var(frs) = K Var(8i.¢)KT. Our matrix K will be uniformly bounded as

N — oo and independent of 7. Then Var(85,¢) — 0 implies Var(3grs) — 0.
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The matrix we choose is

15

1 —ky - —k,
0 1 0
K =
o 0 --- 1
with values k; fort = 2,..., p given below. We have Ty = (1, 2450—ko, xi53—

k’g, <oy Lijp — kp>

We begin by noting that in the row ordering,

1
O-E 10

where there are R diagonal blocks of size N;, x N;, and ; = N;,0% /(0% +

N;.0%). Then
op XV X = XT (X — col(’yilNi.:T:iT.))
where col(+) € RV*P is a column of R blocks of sizes N;, X p. Continuing
opXTVIX =N " Zy(waly — vy T )
=XTX = W) Ziwy,,
i J
=XTX -~ Z NiyiTin Ty,

= Z Z’L] Tij — xzy + Z N /Yz Tia®

(93.9)
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The lower right (p — 1) x (p — 1) submatrix of the first term in (S3.9)) grows
proportionally to N. We will see that the upper left 1 x 1 submatrix of the
second term grows at least as fast as R. We choose our matrix K to zero
out all of the top row and leftmost column of X *TVA_ ' X* except the upper
left entry. To this end, define

b Yo lNi(L = %) Tiae D Tiay Ni.0%/(Nio% + o%)
OXiNL( =) 22 Niuog/(Niwoh + o)

Now from ([S3.9)),

t=2...,p.

Zi Ni(1 =) O;I—l

0p_1 v

o X TV X =

where V' is the lower right (p — 1) x (p — 1) submatrix of >_,; Z;;(2;; —

Z;.)(zi; — T;,) " plus a positive semidefinite matrix. Therefore

1 N (1 — T
(X*TVA—IX*)—l _ O'% /Zl Z'( ﬁyl) Op*]-

Continuing the derivation,
Var((X*TV LX) 7L Ty 1)
= (XY XTI BV LX) (T LX) Lo,
The eigenvalues of V U are all smaller than 1, so in the ordering of positive

semidefinite matrices,

X TV BrVX* < X' TBrX* =Y N2zl
J
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Now for a unit vector w € RP with w; = 0 we have |[(X*TV ' X*) || <
cN~1o% because the sample covariance of non-intercept x’s grows (at least)
proportionally to N. The z;; are bounded and so therefore the z7; are also

bounded. So now

Var(w" (X TV, X)X TV, ) = O(N ) T N2) — 0.
J

Next we consider w = (1,0,...,0). For this w,
o2 o2 1

XTVIX) e = = < —-
VX = s =)~ S Naob (o, + o) < Rl

The matrix B has C blocks of the form 1 N.jlﬁ.j permuted into the row
ordering. We may write Bg = Z,Z; where Z, € {0,1}*¢. The row of Z,

corresponding to observation ¢ has only one 1 in it, at position 5. Now

(I—=y)ly, 00 --- 0
1 — )1

VX = =)l 00 | crve
(1= 7)lng 0 0 - 0

and the j'th row of Z,V,'X* € RO is (32, Z;;(1 — v),0,...,0) € RP.
Then the only nonzero element of (X*TV ' BrV ' X*) is the upper left one

and it equals > .. Z;;Z,;(1 —~;)(1 — ). Therefore, for w = (1,0,...,0),

gr
Var(w  (X*TV X)X TV ) < > ZiZy(1 = 7)1 =)

1
R%*
A ijr
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. 1 Z(ZZT) 02E O'%v
© R204 4 "0 + N;,0% 0% + N,,0%

r
U?"E T 1a7—1
g R2O_8 Z(ZZ )i?”Ni. NT.
A ir
which vanishes by condition ([5.14). A general unit vector w can be written
as a linear combination of unit vectors with w; = 0 and w; = 1 and so

Var(wT (X*TV, 1 X*) 71 X*TV b)) — 0. Because K is bounded

Var(wT(XTV, ' X)"LXTV b)) — 0 as well. This completes the proof.

S3.4 Proof of Theorem

We will use the following central limit theorem for a triangular array of

weighted sums of IID random variables.

Theorem 2. For integers ¢ and n with 1 < i < n, let €,,; be a triangular
array of random wvariables that are IID within each row with mean p, and
variance o2 € (0,00). Let ¢,; be a triangular array of finite constants, not

all zero within each row. Define

1 n n

T, = B_n ;Cni(en,i — ln), where BEL = ai ;c?u
If max;cicn ./ S0 2 — 0 as n — oo, then T, < N(0, 1).

Proof. This is from Theorem 2.2 of [I]. O

Our use case is for u, = 0 and o, constant in n. That case was also

handled by [3, Theorem 1] who has a converse.
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From Section , Bris — B = (XTVIX)IXTV by, where 1;; = a; +

bj+e;;. We will make use of sums n;, = Zj Z;inij and X;, = Zj Zijx;; € RP

as well as corresponding column sums. The matrix (XTV,'X)™! is not
random. We will establish a central limit theorem for X7V 'n.

Consider wTXTV'n for a unit vector w € RP. By the Woodbury

formula,
TyvT 2
TXTy Ly = w X' oj w' X,
v AT 52 o2 o2 + g4 N,
E E E AtVie

— [Z aw' X;, + Z b; wTX,J + Z Zij€ijw x”]

O'A sz,

Ok
T
w Xi. bj T 2 w XZ‘.
=> :CMWWLE 5 (w X-j—UAE :ZijW
i O-E + O-A ie J O-E i O-E + O-A ie
Term R1 Ter:nrRZ
T
- g (w T — 0> _ WX )
ij A
o2 B+ UANZ.
-~ 7
Term R3

Terms R1, R2 and R3 are independent. We will show CLTs for each of

them individually.

R1: We use Theorem [2] with random variables a; and weights

ci = w' X, /(0% + 04 N;.). Now max; ¢? < M3 and

wTXi, 2 ’IUTZZ'Z', 2
zi:c? - Z:(U% + 0124]\[1-,> > ;(gé + O’i)
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2 2\-2 — T
> (05 +0%) I( E xzxz.) — 0.
i

Therefore Term R1 is asymptotically normally distributed.

R2: This term is a weighted sum of independent random variables b;/c%,
with weights ¢; = w' >, Z;j(zij — %), where v; = 0% /(0% + 0% /Ny.).
Therefore ¢; = N,;w'(Z,; — .;) for the second order averages Z,; given
by (5.15]).

As in the proof of Theorem [7] from Section we employ a bounded
invertible centering matrix K = ((1) I;kl >, not necessarily the same one as
there. We will show that K ), N,;b;(Z.; — Z.;) is asymptotically Gaussian
and then so is 37 N,;b;(Z.; — 7.;). Let ¢ = w'K 7. N,;(7.; — 7.;). Then

Y P =w"Y NIK(z,; - i.,) (3, - 3.,) K w.
J J

For 2 <t < plet

ko= N5(Taga = T / >N
J J

and define k* = (0, ka, ..., k,)T. Then 3 N2 K(Z.; — T — k*)(Toj — Tuj —
k*)TKT is block diagonal with an upper 1 x 1 block and a lower (p — 1) x
(p — 1) block.

First suppose that w = (wy,ws, ..., w,) is a unit vector with |w,| # 1.
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Then,

> 2 Nl T (3o N3 @y — 0y — ) @y — 2y~ )T
J J

which diverges faster than max; N?j by hypothesis. It remains to con-
sider w' = (£1,0,...,0). For this vector ¢ = ¢; = >, Z;(1 — ) =
> Zijop/ (0% + Ni,oh) and max; ¢j/ 3 ¢; — 0 by hypothesis. Therefore

Term R2 is asymptotically normally distributed.

R3: This term is a weighted sum of IID random variables e;;/0% with
weights ¢;; = Ziij(xij —:%;,). As in paragraph R2, we employ a bounded
invertible centering matrix. Then for a unit vector w # (£1,0,...,0)T

>’ 2 Il Zo(D Zislays — i) (@i — )"

ij ij
> [|w|%1Zo (Z Zij(wyy — 2i) (2 — fz‘-)T>
ij
which, by hypothesis, diverges to infinity, while max;; c}‘jQ = O(1). The case
w = (£1,0,...,0)T is handled by one of the assumptions in the theorem.
All three terms have asymptotic normal distributions with mean zero,
and they are independent. Therefore, (XTV, ' X)X TV p is asymptoti-

cally Gaussian with mean zero and variance

(XTV, X)XV VRV IIX(XTV X)L
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Table 1: Meanings of the column headings in the regression output.

var Coefficient name
bhatols BOLS, the OLS regression coefficient

selhslhs SEOLS(BOLS), standard error from OLS formula

selhs SEMomcnts(BOLS)a standard error of OLS coefficients using moments
bhat BMomems, the method of moments coefficient
se SEMoments(/éMoments)a the method of moments standard error

S4 Regression coefficients from Stitch Fix example

This section has the regression output for the Stitch Fix regression example
for all regression variables. The column headings are explained in Table [I]
Here Cedgy refers to the client being edgy, Iedgy describes the item being
and Bedgy indicates that both are edgy, that is Bedgy=Cedgy xIedgy. Boho

is treated similarly. Here is the full table, verbatim.

var bhatols selhslhs selhs bhat se
Intercept 4.635000 0.005397 0.058080 5.110000 0.012500
Match 5.048000 0.011740 0.146400 3.529000 0.021530
Cedgy 0.001020 0.002443 0.004593 0.001860 0.003831
TIedgy -0.335800 0.004253 0.037300 -0.332800 0.015420
Bedgy 0.392500 0.006229 0.013520 0.386400 0.006432

Cboho 0.138600 0.002264 0.004354 0.133400 0.003622
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Iboho -0.549900 0.005981 0.030490 -0.626100 0.016610
Bboho 0.382200 0.007566 0.010570 0.383700 0.007697

Acrylic -0.064820 0.003778 0.038040 -0.016270 0.021490

Angora -0.012620 0.007848 0.096310 0.072710 0.058370

Bamboo -0.045930 0.062150 0.243700 0.054200 0.171600

Cashmere -0.195500 0.024840 0.159300 0.013540 0.117600

Cotton 0.175200 0.003172 0.047660 0.097430 0.018110
Cupro 0.597900 0.301600 0.485700 0.560300 0.485200

FauxFur 0.275900 0.020080 0.086310 0.364900 0.075240

Fur -0.202100 0.031210 0.156000 -0.034780 0.133100

Leather 0.267700 0.024820 0.086710 0.279800 0.073350
Linen -0.384400 0.056320 0.272900 0.006269 0.166000
Modal 0.002587 0.009775 0.205200 0.141700 0.064980
Nylon 0.033490 0.015520 0.100000 0.118600 0.064360

PatentLeather -0.235900 0.180000 0.423500 -0.247300 0.422200
Pleather 0.416300 0.008916 0.099050 0.334400 0.050230

PU 0.416000 0.008225 0.090190 0.495100 0.041960

PVC 0.657400 0.065450 0.389800 0.871300 0.388300

Rayon -0.011090 0.002951 0.046020 0.010290 0.014930

Silk -0.142200 0.013170 0.100400 -0.165600 0.054710
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Spandex 0.391600 0.017290 0.154900 0.363100 0.128400
Tencel 0.496600 0.009313 0.193500 0.154800 0.067180
Viscose 0.040660 0.006953 0.096200 -0.013890 0.035270

Wool -0.060210 0.006611 0.081410 -0.006051 0.037370
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