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Abstract: Linear mixed models with large imbalanced crossed random effects struc-

tures pose severe computational problems for maximum likelihood estimation and

for Bayesian analysis. The costs can grow as fast as N3/2 when there are N ob-

servations. Such problems arise in any setting where the underlying factors satisfy

a many-to-many rather than a nested relationship. The former are common in

electronic commerce applications, where N can be quite large. Methods that do

not account for the correlation structure can greatly underestimate the uncertainty.

Thus, we propose a method of moments approach that takes account of the cor-

relation structure and that can be computed at a cost of O(N). The method of

moments can be parallelized easily, because it is based on sums and it does not

require parametric distributional assumptions, tuning parameters, or convergence

diagnostics. For the regression coefficients, we give conditions for consistency and

asymptotic normality, as well as a consistent variance estimate. We also provide the

conditions necessary for a consistent estimation of the variance components, as well

as consistent estimates of a mildly conservative upper bound on the variance of the

variance component estimates. All of these computations require a total process-

ing time of O(N). We illustrate the algorithm using data from Stitch Fix, where

the crossed random effects correspond to clients and items. Here, a naive analysis

can overestimate the effective sample size by hundreds and, thus yield unreliable

conclusions about the parameters.

Key words and phrases: Crossed random effects, linear mixed models, scalable

inference.

1. Introduction

The field of statistics is confronting two important challenges at present. The

first is the increasing prevalence of ever larger data sets, sometimes described as

‘big data’; see, for instance, Provost and Fawcett (2013) and Varian (2014).

The second is the reproducibility crisis, in which published findings cannot be

replicated. This problem was presented clearly by Ioannidis (2005) among others,

and has led to the American Statistical Association releasing a statement on p-

values (Wasserstein and Lazar (2016)).
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We might naively hope that the first problem would somehow remove the

second problem, owing to the decrease in uncertainty. However, this may not

be true in reality, where difficulties remain when data are not independent. We

consider one such situation, in which a crossed random effects structure exists

in the data. This structure introduces a dense tangle of correlations that can

sharply reduce the effective sample size of the data at hand. If, as we suspect,

most data scientists treat these large data sets as independent and identically

distributed (i.i.d.) samples, then they will greatly underestimate the uncertainty

in their fitted models. The usual methods for solving this problem, whether by

maximum likelihood or restricted maximum likelihood (REML), or Bayes, have

a cost that grows superlinearly in the sample size and thus cannot be run on the

largest data sets. We present and study a method of moments approach with a

cost that scales linearly in the problem size, among other advantages.

The sort of data that motivates us arise in e-commerce applications, and

include factors such as cookies, customer IDs, query strings, IP addresses, prod-

uct IDs (e.g., SKUs), URLs, and so on. The most direct way to handle them

is to treat them as categorical variables that simply happen to have a large

number of levels, including many that have not yet appeared in the data. We

think that a random effects model is more appropriate (McCulloch, Searle and

Neuhaus (2008)). For instance, internet cookies are cleared regularly, and hence

any specific cookie is likely to disappear relatively quickly. It is therefore more

appropriate to consider the specific cookies in a data set as a sample from some

distribution, that is, as a random effect. Similarly there is turnover in popular

products and queries, which motivates treating them as random effects too.

While the largest crossed random effect data sets we know of occur in e-

commerce and social media (for example, the Netflix data set (Bennett and

Lanning (2007))), we expect the problem to arise in other settings where data

set sizes are growing. The crossed random effects structure is fundamental. Any

setting with a many-to-many mapping of factor levels involves crossed effects

that one might want to model as random. In agriculture and genomics, there are

gene-by-environment or gene-by-patient crosses. In education, neither schools

nor neighborhoods are perfectly nested within the other (Raudenbush (1993)),

and in multiyear data sets there is a many-to-many relationship between teachers

and students.

When our chosen model involves only one of these random effect entities then

a hierarchical model, based on Bayes or empirical Bayes, can be quite effective

(Yu and Meng (2011); Gelman et al. (2012)). Things change considerably when
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we want to use two or more crossed random effects. In this study, we consider

the following model,

Model 1. Two-factor linear mixed effects:

Yij = xTijβ + ai + bj + eij , xij ∈ Rp, i, j ∈ N where,

ai
i.i.d.∼ (0, σ2A), bj

i.i.d.∼ (0, σ2B), eij
i.i.d.∼ (0, σ2E) (independently) and,

E(a4i ) <∞, E(b4j ) <∞, E(e4ij) <∞.

(1.1)

For instance, customer i might assign a score Yij to product j. Then xij
contains features about the customer or product or some joint properties of both,

β is of interest to the company choosing a product to recommend, bj measures

some general appeal of the product not captured by the features in xij , ai captures

the variation in which customers are harder or easier to please, and eij is an error

term. This is a mixed effects model because it contains both random effects ai,

bj and fixed effects xij .

Model 1 describes any ij pair, but the given data set will only contain some

finite number N of them. If the available data are laid out as rows i and columns j

with R distinct rows and C distinct columns, then the cost of fitting a generalized

least squares regression model for β scales as O((R + C)3) because it solves a

p × p system of equations with p > R + C. See Searle, Casella and McCulloch

(1992), Raudenbush (1993) and Bates (2014). Now because RC > N we have

max(R,C) >
√
N and (R+ C)3 > N3/2.

Gao and Owen (2017) consider an intercept-only version of Model 1 where

xTijβ is simply a constant µ ∈ R for all i and j. They find that Markov chain

Monte Carlo (MCMC) method does not solve the inference problem under the

assumption that the random effects are normally distributed. All of the MCMC

methods considered either failed to mix, or converged to the wrong answer, even

at modest sample sizes. For the specific case of a Gibbs sampler and Gaussian

ai, bj , and eij , using methods from Roberts and Sahu (1997) they prove that

it will take O(N1/2) iterations costing O(N) each to converge, for a total cost

of O(N3/2). Fox (2013) presents a very general equivalence between the conver-

gence rate of an iterative equation solver and the convergence rate of an associ-

ated MCMC scheme. Therefore these identical rates may be a sign of a deeper

connection. Consensus Bayes (Scott et al. (2016)) splits the data into shards, one

per processor. However the data given to each shard has to be independents and

here data sets corresponding to a subset of rows will have correlations owing to

their commonly sampled columns (and vice versa). As an alternative to MCMC,
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variational Bayesian methods can be used to approximate the posterior distri-

bution of the parameters by minimizing the divergence of a chosen parametric

density from the posterior (Blei, Kucukelbir and McAuliffe (2017)). However, it

is not straightforward to choose the parametric density and little is known about

the theoretical properties of such methods.

Likelihood-based approaches are commonly used to analyze Model 1 under

a Gaussian model for the random effects. For example, see Jiang (2007). Max-

imum likelihood (ML) maximizes the log-likelihood of the data with respect to

the parameters (Demidenko (2013); Hartley and Rao (1967)), while REML miti-

gates the bias of the ML estimates by estimating the variance components using

ML on some residuals that do not depend on β. See (McCulloch, Searle and

Neuhaus (2008, Chap. 6.9)). Various optimization algorithms have been applied

to compute ML and REML estimates, including gradient-free algorithms such

as BOBYQA (Powell (2009)) and Expectation-Maximization (Dempster, Laird

and Rubin (1977)) and gradient-based algorithms such as Gauss-Newton (Bates

(2014)). The asymptotic variances of these estimates are readily obtained from

the Fisher information matrix. The main disadvantage of likelihood-based ap-

proaches is that even computing the value of the likelihood at given values of the

parameters requires O(N3/2) time (Bates (2014)).

Thus, we find that existing Bayes and likelihood methods are not effective for

this problem. Here we present an approach based on the method of moments.

We seek estimates β̂, σ̂2A, σ̂2B and σ̂2E along with variance estimates for these

quantities. We have three criteria:

1) the total computational cost must be O(N) time and O(R+ C) space,

2) the variance estimates should be reliable or conservative, and

3) we prefer β̂ to be statistically efficient.

We regard the first criterion as a constraint that must be met. For the second

criterion, a mild over-estimate of Var(β̂) is acceptable in order to keep the costs

in O(N). The third criterion is to be met as well as we can, subject to constraints

given by the first two. Computational efficiency is more important than statistical

efficiency in this context. For very large N , requiring O(N3/2) computation is

highly unrealistic.

With an apt choice of the estimating equations, the method of moments

meets our O(N) time and O(R+C) space criteria, and we show that it can also

yield reliable variance estimates. Further advantages of the method of moments

are that it does not require parametric distributional assumptions (e.g., Gaus-

sianity), there are no tuning parameters to choose, and most importantly for
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large N , it is very well suited to parallel computation. The method of moments

is not without drawbacks. Sometimes it yields parameter estimates that are out

of bounds, such as negative variance estimates, which are often set to zero Searle,

Casella and McCulloch (1992). The method of moments has been highly suc-

cessful in the case of nested random effects. In Wu, Stute and Zhu (2012), the

authors propose estimators with linear computational complexity for not only for

the regression coefficients and the variance components, but also for the higher

moments of the random effects. See also Wu and Zhu (2010) and Perry (2017).

The remainder of the paper proceeds as follows. Section 2 introduces most

of the notation for Model 1, especially the pattern of missingness in the data, and

presents some of the asymptotic assumptions. Section 3 presents our algorithm

and shows that it takesO(N) time andO(R+C) space. We compute a generalized

least squares (GLS) estimate for a model with either row or column variance

components, but not both. We choose based on an efficiency criterion. Then we

estimate Var(β̂) accounting for all three error terms including the one left out

of the GLS estimate. Section 4 illustrates our algorithm using ratings data from

Stitch Fix. There Yij is a rating, from a 10-point scale, by customer i on item

j, with features xij . Compared to ordinary least squares (OLS) estimates, the

random effects model leads to standard errors on coefficients βj that can be more

than 10 times higher. This may be interpreted as an effective sample size which is

less than 1% of the nominal sample size. Section 5 gives conditions under which β̂

and the variance components are consistent. There is also a central limit theorem

(CLT) for β̂. Section 6 compares our method of moments estimator to a state-

of-the-art GLMM code (Bates (2016)) written in Julia (Bezanson et al. (2017)).

That algorithm takes O(N3/2) cost per iteration, with a number of iterations

that, in our simulations, depends on N . For problems where the GLMM code

gives an answer we find it more statistically efficient for β and σ2E but not for σ2A
or σ2B. Lastly, Section 7 discusses some future work and related literature.

Our method of moments approach is similar to Henderson’s classical methods

Henderson (1953) for Gaussian data, as presented in Searle, Casella and McCul-

loch (1992). For an intercept-only model, Gao and Owen (2017) uses U -statistics

to find a counterpart to the Henderson I estimator that can be computed in O(N)

time and O(R + C) space. We also obtain a variance estimator for the variance

components, without assuming a Gaussian distribution. The variance estimator

can be computed in O(N) time. It targets a mildly conservative upper bound

on the variance as the variance itself, like the one for Henderson’s estimates,

takes more than O(N) computation. In this study we incorporate fixed effects
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along with the random effects, just as Henderson II does in generalizing Hen-

derson I, by transforming the original model to one with only random effects.

Like Henderson II, our algorithm alternates between estimating the regression

coefficients and the variance components. However, our estimators are different,

having linear computational complexity instead of superlinear. Henderson III

uses estimating equations that are based on the residual sum of squares when

treating subsets of the random effects as fixed effects and fitting OLS models. In

addition, Henderson III allows for interactions between fixed and random effects.

We believe such interactions are very reasonable in our motivating applications,

but incorporating them is beyond the scope of this study.

Our analysis is for a fixed dimension p. This is reasonable for our motivating

data from Stitch Fix, where p � N . It remains to develop methods for cases

where p→∞ with N .

Another issue that we do not address is the selection bias in the available ob-

servations. Sometimes ratings are biased towards the high end because customers

seek products that they expect to like and companies endeavor to recommend

such products. In other data sets, such as restaurant reviews, customers may be

more likely to make a rating when they are either very unhappy or very happy.

For such data, the ratings will be biased towards both extremes and away from

the middle. Accounting for selection bias requires assumptions or information

from outside the given data. Propensity weighting (Imbens and Rubin (2015,

Chap. 13)) may fit within our framework. This too is left for future research.

2. Notation and Asymptotic Conditions

Here, we give a fuller presentation of our notation. Equation (1.1) describes

the distribution of observed and future data. We call the first index of Yij the

‘row’ and the second the ‘column’. We use integers i, i′, r, r′ to index rows and

j, j′, s, s′ for columns, but the actual indices may be URLs, customer IDs, or

query strings. The index sets are countably infinite to always leave room for

unseen levels in the future.

The variable Zij takes the value one if (xij , Yij) is observed and zero oth-

erwise. We assume that there is at most one observation in position (i, j). For

customer rating data, we suppose that if i has rated j multiple times, then only

the most recent rating is retained. We believe that in most other settings, only

a negligible fraction of ij pairs will have been duplicated.

The sample size is N =
∑

ij Zij < ∞. The number of observations in row i
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is Ni• =
∑

j Zij and the number in column j is N•j =
∑

i Zij . The number of

distinct rows is R =
∑

i 1Ni•>0 and there are C =
∑

j 1N•j>0 distinct columns.

In the following, summing over rows i means summing over just the R rows i

with Ni• > 0, and sums over columns are defined similarly. This convention

corresponds to what happens when one makes a pass through the whole data

set.

Let Z be the matrix containing Zij . Then (ZZT)ii′ =
∑

j ZijZi′j is the

number of columns for which we have data in both rows i and i′. Similarly,

(ZTZ)jj′ is the number of rows in which both columns j and j′ are observed. Note

that (ZZT)ii′ 6 Ni• and (ZTZ)jj′ 6 N•j . We will use the following identities:∑
ir

(ZZT)ir =
∑
j

N2
•j , and

∑
js

(ZTZ)js =
∑
i

N2
i•.

This notation allows for an arbitrary pattern of observations. We mention

three special cases. A balanced crossed design has Zij = 1i6R1j6C . If maxiNi• =

1 but maxj N•j > 1 then the data have a hierarchical structure with rows nested

in columns. If maxiNi• = maxj N•j = 1, then the observed Yij have i.i.d. errors.

Some of these patterns cause problems for parameter estimation. For example,

if the errors are i.i.d., then the variance components are not identifiable. Our

assumptions rule these out in order to focus on large genuinely crossed data sets.

The following vectors are useful in our subsequent analyses. Let v1,i be the

length-N vector with ones in entries
∑i−1

r=1Nr• + 1 to
∑i

r=1Nr• and zeros else-

where. Similarly, let v2,j be the length-N vector with ones in entries
∑j−1

s=1N•s+1

to
∑j

s=1N•s and zeros elsewhere.

Next, we describe our asymptotic assumptions. First

εR = max
i

Ni•

N
→ 0, and εC = max

j

N•j
N
→ 0, (2.1)

such that no single row or column dominates. The average row size can be

measured by N/R or by
∑

iN
2
i•/N ; the latter is E(Ni•) when choosing one of

the N data points (i, j, xij , Yij) at random (uniformly). Similar formulae hold for

the average column size. These average row and column sizes are o(N), because

1

N2

∑
i

N2
i• 6 εR → 0, and

1

N2

∑
j

N2
•j 6 εC → 0.

We often expect the average row and column sizes to diverge, while growing more
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slowly than N :

min

(
N

R
,
N

C

)
→∞, and

min

 1

N

∑
i

N2
i•,

1

N

∑
j

N2
•j

→∞.
We do not however impose these conditions.

Even for large average row and columns sizes, there can still be numerous

new or rare entities with Ni• = 1 or N•j = 1. Our analysis can include such

small rows and columns without requiring that they be deleted. When there are

covariates xij we need to rule out degenerate settings where the sample variance

of xij does not grow with N or where it is dominated by a handful of observations.

We add some such conditions when we prove some CLTs in Section 5.2.

The finite fourth moments E(a4i ), E(b4j ) and E(e4ij) are conveniently de-

scribed through finite kurtoses κA, κB and κE , respectively. Some of the vari-

ance expressions in Gao and Owen (2017) are dominated by terms proportional

to κ + 2 for one of these kurtoses. Following Gao and Owen (2017) we assume

that min(κA, κB, κE) > −2. This lower bound rules out some symmetric binary

distributions for ai, bj and eij . However, these cases seem unrealistic for our

motivating applications.

The randomness in Yij comes from ai, bj and eij . In some places we combine

them into ηij ≡ ai + bj + eij .

We use the method of moment estimators σ̂2A, σ̂2B and σ̂2E for σ2A, σ2B and

σ2E , respectively, from Gao and Owen (2017), who provide exact finite sample

formulae for the variances of their estimators. They also give asymptotic variance

expressions, while letting εR, εC , R/N and C/N approach zero. The Stitch Fix

data that we consider in Section 4 does not have a very small value for R/N .

Here we develop nonasymptotic magnitude bounds for the bias and variance that

do not require R/N and C/N to be close to zero. They need only be bounded

away from one.

Theorem 1. Suppose that max(R/N,C/N) 6 θ for some θ < 1 and let ε =

max(εR, εC). Then the moment-based estimators from Gao and Owen (2017)

satisfy

E(σ̂2A) = (σ2A + Υ)(1 +O(ε)),

E(σ̂2B) = (σ2B + Υ)(1 +O(ε)), and
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E(σ2E) = (σ2E + Υ)(1 +O(ε)),

where

Υ ≡ σ2A
∑

iN
2
i•

N2
+ σ2B

∑
j N

2
•j

N2
+
σ2E
N

= O(ε).

Furthermore

max
(

Var(σ̂2A),Var(σ̂2B),Var(σ̂2E)
)

= O

(∑
iN

2
i•

N2
+

∑
j N

2
•j

N2

)
= O(ε).

Proof. See Section S1 in the Supplementary Material.

Theorem 1 has the same variance rate for all variance components. In our

computed examples Var(σ̂2E)� min(Var(σ̂2A),Var(σ̂2B)) because

N � max(R,C), a condition not imposed in Theorem 1. The bias and variance

are both O(ε). Therefore, a (conservative) effective sample size is O(1/ε). The

quantity Υ appearing in Theorem 1 is Var(Ȳ••) where Ȳ•• = (1/N)
∑

ij ZijYij .

The variances of the estimated variance components contain similar quantities

to Υ although kurtoses and other quantities appear in their implied constants.

3. An Alternating Algorithm

Our estimation procedure for Model 1 is given in Algorithm 1. We alternate

twice between finding β̂ and finding the variance component estimates σ̂2A, σ̂2B,

and σ̂2E . One can continue iterating if desired, but our theory shows that two

iterations suffice. In our experience, additional iterations did not change the

estimates much. Further details of these steps, including the way we choose

generalized least squares (GLS) estimator for step 3, are given in the next two

subsections.

The data are a collection of (i, j, xij , Yij) tuples. A pass over the data pro-

ceeds via iteration over all tuples in the data set. Such a pass may generate

O(R+ C) intermediate values, which are retained for future computations.

3.1. Algorithm 1

Step 1

The first step of Algorithm 1 is to compute the OLS estimate of β. Let

X ∈ RN×p have rows xij in some order and let Y ∈ RN be elements Yij in the
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Algorithm 1 Alternating Algorithm

Estimate β via ordinary least squares (OLS): β̂ = β̂OLS.
Let σ̂2

A, σ̂2
B , and σ̂2

E be the method of moments estimates from (Gao and Owen (2017))

defined on the data (i, j, η̂ij), where η̂ij = Yij − xTij β̂OLS.

Compute a more efficient β̂ using σ̂2
A, σ̂2

B , and σ̂2
E . If σ̂2

A maxiNi• > σ̂2
B maxj N•j ,

estimate β via GLS accounting for row correlations: β̂ = β̂RLS. Otherwise, estimate it
via GLS accounting for column correlations: β̂ = β̂CLS.
Repeat step 2 using η̂ij = Yij − xTij β̂ with β̂ from step 3.

Compute an estimate V̂ar(β̂) for β̂ from step 3 using σ̂2
A, σ̂2

B and σ̂2
E from step 4.

same order. Then,

β̂OLS = (XTX)−1XTY =

(∑
ij

Zijxijx
T
ij

)−1∑
ij

ZijxijYij . (3.1)

In one pass over the data, we can compute XTX and XTY and solve for

β̂. Solving the normal equations this way is easy to parallelize but typically

incurs a larger roundoff error than the usual alternative based on computing

the SVD of X. The numerical conditioning of the SVD computation essentially

doubles the number of floating point bits available in comparison to solving the

normal equations. One can compensate by solving normal equations in extended

precision. It costs O(p3) to compute β̂OLS and so the cost of step 1 is O(Np2+p3).

The space cost is O(p2).

Step 2

Step 2 uses the algorithm from Gao and Owen (2017) to compute the variance

component estimates σ̂2A, σ̂2B and σ̂2E in O(N) time and O(R + C) space; see

Section 3.2. This takes O(Np) time to recompute η̂ij .

Step 3

GLS estimators: First we define and compare GLS estimators of β accounting for

row correlations, column correlations, or both. These estimators are most easily

presented through a reordering of the data. Our algorithm does not have to sort

the data which would be a major inconvenience in our motivating applications.

We work with one row ordering of the data, in which ij precedes i′j′ whenever

i < i′ and with one column ordering of the data. Let P be the N×N permutation

matrix corresponding to the transformation of the column ordering to the row

ordering. Let AR ∈ NN×N be the block diagonal matrix with i’th block 1Ni•1
T
Ni•



VERY LARGE LINEAR MIXED EFFECTS MODELS 1751

and let BC ∈ NN×N the block diagonal matrix with j’th block 1N•j1
T
N•j

.

If Y is given in the row ordering, then

Cov(Y ) = VR ≡ σ2EIN + σ2AAR + σ2BBR, for BR = PBCP
T. (3.2)

For Y in the column ordering,

Cov(Y ) = VC ≡ σ2EIN + σ2AAC + σ2BBC , for AC = PTARP. (3.3)

GLS algorithms based on (3.2) or (3.3) have computational complexity O(N3/2).

This is better than the O(N3) that we might have faced had VR or VC been

arbitrary dense matrices, rather than being comprised of the identity and some

low rank block diagonal matrices. However, it is still too slow for large scale

applications.

In a hierarchical model where only row correlations were present we could

take σ2B = 0 and define

β̂RLS = (XTV̂ −1A X)−1XTV̂ −1A Y, for V̂A = σ̂2EIN + σ̂2AAR, (3.4)

using sample estimates σ̂2A and σ̂2E of σ2A and σ2E , respectively. This GLS estimator

of β accounts for the intra-row correlations in the data. Similarly, the GLS

estimator of β accounting for the intra-column correlations is

β̂CLS = (XTV̂ −1B X)−1XTV̂ −1B Y, for V̂B = σ̂2EIN + σ̂2BBC . (3.5)

We show next that β̂RLS and β̂CLS can be computed in O(N) time.

GLS Computations in O(N) cost: From the Woodbury formula (Hager (1989))

and defining Za ∈ {0, 1}N×R as the matrix with ith column v1,i (from Section 2),

we have

XTV̂ −1A X

= XT(σ̂2EIN + σ̂2AZaZa
T)−1X

=
XTX

σ̂2E
−
σ̂2A
σ̂2E

XTZa diag

(
1

σ̂2E + σ̂2ANi•

)
ZT
aX

=
1

σ̂2E

∑
ij

Zijxijx
T
ij −

σ̂2A
σ̂2E

∑
i

1

σ̂2E + σ̂2ANi•

(∑
j

Zijxij

)(∑
j

Zijxij

)T

.
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Similarly, XTV̂ −1A Y is equal to

1

σ̂2E

∑
ij

ZijxijYij −
σ̂2A
σ̂2E

∑
i

1

σ̂2E + σ̂2ANi•

(∑
j

Zijxij

)(∑
j

ZijYij

)
.

One pass over the data allows us to compute
∑

ij Zijxijx
T
ij and

∑
ij ZijxijYij ,

as well as Ni•, and the row sums
∑

j Zijxij and
∑

j ZijYij for i = 1, . . . , R. The

cost is O(Np2) time and O(Rp) space. None of these quantities require that we

sort the data. Next, we compute XTV̂ −1A X and XTV̂ −1A Y in time O(Rp2). Then,

β̂RLS is computed in O(p3). Hence, β̂RLS can be found within O(Rp) space and

O(Np2 +p3) = O(Np2) time. Clearly β̂CLS costs O(Cp) space and O(Np2) time.

Efficiencies: We can compute either β̂RLS or β̂CLS in our computational budget.

We choose RLS if the variance component associated with the rows is dominant

and CLS otherwise. The choice could be made dependent on X but in many

applications one considers numerous different X matrices and we prefer to have

a single choice for all regressions. Accordingly, we find a lower bound on the

efficiency of RLS when X is a single nonzero vector x ∈ RN×1. We choose RLS if

that lower bound is higher than the corresponding bound for CLS, in this p = 1

setting.

The full GLS estimator is β̂GLS = (XTV −1R X)−1XTV −1R Y when the data

are ordered by rows and (XTV −1C X)−1XTV −1C Y when the data are ordered by

columns. For data ordered by rows, the efficiency of β̂RLS is

effRLS =
Var(β̂GLS)

Var(β̂RLS)
=

(xTV −1A x)2

(xTV −1A VRV
−1
A x)(xTV −1R x)

. (3.6)

For data ordered by columns, the corresponding efficiency of β̂CLS is

effCLS =
Var(β̂GLS)

Var(β̂CLS)
=

(xTV −1B x)2

(xTV −1B VCV
−1
B x)(xTV −1C x)

. (3.7)

The next two theorems establish lower bounds on these efficiencies.

Theorem 2. Let A be a positive-definite Hermitian matrix and u be a unit

vector. If the eigenvalues of A are bounded below by m > 0 and above by M <∞,

then

(uTAu)(uTA−1u) 6
(m+M)2

4mM
.

Equality may hold, for example when uTAu = (M +m)/2 and the only roots of
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A are m and M .

Proof. This is Kantorovich’s inequality (Marshall and Olkin (1990)).

From the two applications of Theorem 2 on (3.6) and (3.7) we prove the

following.

Theorem 3. For p = 1 and σ2E > 0, let effRLS and effCLS be defined as in (3.6)

and (3.7), respectively. Then,

effRLS >
4σ2E(σ2E + σ2B maxj N•j)

(2σ2E + σ2B maxj N•j)2
and

effCLS >
4σ2E(σ2E + σ2A maxiNi•)

(2σ2E + σ2A maxiNi•)2
.

Both inequalties are tight.

Proof. See Section S2.1 in the Supplementary Material.

After some algebra, we see that the worst case efficiency of β̂RLS is higher

than that of β̂CLS when σ2A maxiNi• > σ2B maxj N•j . We set β̂ to be β̂RLS when

σ̂2A maxiNi• > σ̂2B maxj N•j , and β̂CLS otherwise.

Optimizing a lower bound does not necessarily optimize the quantity of in-

terest, and so we expect that our choice here is not the only reasonable one.

The efficiency of β̂RLS depends only on the ratio σ̂2A/σ̂
2
E . We investigated GLS

estimators of β based on V̂A = σ̂2AAR + (σ̂2E + λσ̂2B)IN for λ chosen by the Kan-

torovich inequality. However, this did not appear to improve the accuracy over

our default choice in some simulations. In practice, one can also compute both

β̂RLS and β̂CLS and compare V̂ar(β̂RLS) and V̂ar(β̂CLS).

Steps 4 and 5

Step 4 is just like step 2 and it costs O(Np) time. Step 5 is described in

Section 5.3 where we derive Var(β̂RLS) and Var(β̂CLS).

3.2. Method of moments (Steps 2 and 4)

In this subsection, we discuss steps 2 and 4 of Algorithm 1 in more detail.

The errors Yij − xTijβ follow a two-factor crossed random effects model (Gao and

Owen (2017)). If β̂ is a good estimate of β, then the residuals η̂ij = Yij − xTij β̂
approximately follow a two-factor crossed random effects model with µ = 0 and

variance components σ2A, σ2B, and σ2E .

We estimate σ2A, σ2B, and σ2E , using the algorithm from Gao and Owen (2017)

with data (i, j, η̂ij). That algorithm gives unbiased estimates of the variance
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components in a two-factor crossed random effects model.

The algorithm of Gao and Owen (2017) applies the method of moments to

three statistics; a weighted sum of within-row sample variances, a weighted sum

of within-column sample variances, and a multiple of the full sample variance.

For Algorithm 1, these are:

Ua(β̂) =
∑
i

Si•, Si• =
∑
j

Zij(η̂ij − η̂i•)2,

Ub(β̂) =
∑
j

S•j , S•j =
∑
i

Zij(η̂ij − η̂•j)2, and

Ue(β̂) =
∑
ij

Zij(η̂ij − η̂••)2,

(3.8)

where subscripts replaced by • are averaged over. The variance component esti-

mates are obtained by solving the system

M

σ̂2Aσ̂2B
σ̂2E

 =

Ua(β̂)

Ub(β̂)

Ue(β̂)

 , M =

 0 N −R N −R
N − C 0 N − C

N2 −
∑

iN
2
i• N

2 −
∑

j N
2
•j N

2 −N

 . (3.9)

The matrix M is nonsingular under very weak conditions. It suffices to have

R > 2, C > 2, εR 6 1/2 and εC 6 1/2 (Gao and Owen (2017, Sec. 4.1)).

Gao and Owen (2017) compute the U -statistics in one pass over the data

taking O(N) time and O(R+C) space. Solving (3.9) takes constant time. Thus,

steps 2 and 4 each have computational complexity O(N) and space complexity

O(R+ C).

4. Stitch Fix Rating Data

Stitch Fix sells clothing, primarily women’s clothing. They mail their clients

a sample of clothing items. A client keeps and purchases some items and returns

the others. It is important to predict which items a client will like. In the context

of our model, client i might receive item j and then rate that item with a score

Yij .

Stitch Fix provided us with some of their client ratings data. These data

are fully anonymized and contain no personally identifying information. The

data provided by Stitch Fix is a sample of their data, and consequently does

not reflect their actual numbers of clients, items or their ratios, for example.

Nonetheless this is an interesting data set with which to illustrate a linear mixed
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effects model.

We received data on clients’ ratings of items they received, as well as the

following information about the clients and items. For client i and item j, the

response is a composite rating Yij on a scale from 1 to 10. There was a categorical

variable giving the item’s material, with 23 categories. We also received a binary

variable indicating whether the item style is considered to be ‘edgy’, and another

indicating whether the client likes edgy styles. Similarly, there was another pair

of binary variables indicating whether items were labeled ‘boho’ (Bohemian) and

whether the client likes boho items. Finally, there was a match score, which is

an estimate of the probability that the client keeps the item, predicted before it

is actually sent. The match score is a prediction from a baseline model and is

not representative of all algorithms used at Stitch Fix.

The observation pattern in the data is as follows. We received N = 5,000,000

ratings on C = 6,318 items by R = 762,752 clients. Thus C/N
.
= 0.00126 and

R/N
.
= 0.153. The latter ratio indicates that only a relatively small number of

ratings from each client are included in the data (their full shipment history is

not included in the sampled data). The data are not dominated by a single row

or column because εR
.
= 9× 10−6 and εC

.
= 0.0143. Similarly

N∑
iN

2
i•

.
= 0.103,

∑
iN

2
i•

N2

.
= 1.95× 10−6,

N∑
j N

2
•j

.
= 1.22× 10−4, and

∑
j N

2
•j

N2

.
= 0.00164.

Our two-factor linear mixed effects model for this data is given as follows.

Model 2. For client i and item j,

ratingij = β0 + β1matchij + β2I{client edgy}i + β3I{item edgy}j
+ β4I{client edgy}i ∗ I{item edgy}j + β5I{client boho}i
+ β6I{item boho}j + β7I{client boho}i ∗ I{item boho}j
+ β8materialij + ai + bj + eij .

Here materialij is a categorical variable that is implemented via indicator vari-

ables for each type of material. We chose ‘Polyester’, the most common material,

as the baseline.

In a regression analysis, Model 2 would be just one of many models one

might consider. There would be numerous ways to encode the variables, and
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Table 1. Stitch Fix Regression Results (omitting material type).

β̂OLS ŝeOLS(β̂OLS) ŝe(β̂OLS) β̂ ŝe(β̂)

Intercept 4.635∗ 0.005397 0.05808 5.110∗ 0.01250

Match 5.048∗ 0.01174 0.1464 3.529∗ 0.02153

I{client edgy} 0.001020 0.002443 0.004593 0.001860 0.003831

I{item edgy} −0.3358∗ 0.004253 0.03730 −0.3328∗ 0.01542

I{both edgy} 0.3925∗ 0.006229 0.01352 0.3864∗ 0.006432

I{client boho} 0.1386∗ 0.002264 0.004354 0.1334∗ 0.003622

I{item boho} −0.5499∗ 0.005981 0.03049 −0.6261∗ 0.01661

I{both boho} 0.3822∗ 0.007566 0.01057 0.3837∗ 0.007697

the coefficients in any one model would depend on which other variables were

included. The odds of settling on exactly this model are low. Our focus is on the

estimated standard errors due to variance components and so we will work with a

naive face-value interpretation of the coefficients βj in Model 2. If the emphasis

is on prediction, then one can use xTij β̂ perhaps adding shrunken row and/or

column means of the residuals. See Gao and Owen (2017) for a discussion of how

estimates of σ2A, σ2B, and σ2E can be used to shrink row and/or column means in

the intercept-only setting. Even in prediction, underestimating the uncertainty

in β̂ could be costly.

Suppose that one ignored client and item random effects and simply ran OLS.

Table 1 shows the results for all coefficients except the material type indicator

variables. Section S4 of the Supplementary Material has the complete table. The

next column has ŝeOLS(β̂OLS), the standard error that OLS produces for the OLS

coefficient estimate. Then ŝeMom(β̂OLS) reports a moment-based standard error

for β̂OLS using the estimated variance components. The next two columns are the

method of moments estimator β̂Mom and its own standard error ŝeMom(β̂Mom),

respectively, based on the variance components.

Figure 1 shows a graphical presentation of these results. The leftmost panel

shows that ignoring the random effects greatly underestimates the uncertainty in

the regression coefficients. Furthermore, this underestimation can be tenfold or

even hundredfold when interpreted via effective sample sizes. Even if N is ‘big

data’, N/100 might not be. The right panel shows that properly accounting for

uncertainty makes many material indicator variables change from significant to

nonsignificant based on a threshold of |t| > 2. In other words, the difference in

effective sample size could have left the user of this model with stronger conclu-
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Figure 1. The left panel shows how OLS underestimates the variance. The horizontal
axis is ŝeOLS(β̂OLS). The vertical axis is [ŝeMom(β̂OLS)/ŝeOLS(β̂OLS)]2, which we interpret
as the extent to which OLS overestimates the effective sample size. The right panel plots
absolute t statistics, |β̂Mom|/ŝe(βMom) versus |β̂OLS|/ŝe(βOLS). There are reference lines
at |t| = 2 and at 45 degrees. The Match variable is plotted as a solid circle. The edgy
variables include a + and the boho variables include a ×. Material types have open
circles.

sions and different decisions to those the or she would otherwise have had. It is

likely that industry uses more elaborate models than our simple regression, but

a lower than anticipated effective sample size will remain an issue.

The estimated variance components are σ̂2A = 1.133, σ̂2B = 0.1463, and

σ̂2E = 4.474. Their standard errors are approximately 0.0046, 0.00089, and 0.0050

respectively, which means that these components are well determined. The error

variance component is largest, and the client effect dominates the item effect by

almost a factor of eight.

The ‘Match’ variable is significantly and positively associated with rating,

indicating that the baseline prediction provided by Stitch Fix is a useful predictor

in this data set. However the random effects model reduces its coefficient from

about 5 to about 3.5, a change that represents quite a large number of estimated

standard errors. We have seen that some clients tend to give higher ratings on

average than others. That is, client indicator variables take away some of the

explanatory power of the match variable.
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Shipping an edgy item to a client who does not like edgy styles is associated

with a rating decrease of about 0.33 points, but shipping such an item to a client

who does like edgy styles is associated with a small increase in the rating.

The boho indicator variable also has a negative overall estimated coefficient

β̂6 < 0. The modeled impact of a boho item sent to a boho client is β̂5+β̂6+β̂7 <

0, unlike the positive result we saw for sending an edgy item to an edgy client.

This suggests that it is more difficult to make matches for boho items. Perhaps

there is an interaction where ‘boho to boho’ has a positive impact for a sufficiently

high value of the match variable. For large data sets, such an interaction can be

conveniently handled by filtering the data to cases with Matchij > t, and then

refitting. We did so but did not find a threshold that yielded β̂5 + β̂6 + β̂7 > 0.

Of the materials, ‘Cotton’, ‘Faux Fur’, ‘Leather’, ‘Modal’, ‘Pleather’, ‘PU’,

‘PVC’, ‘Silk’, ‘Spandex’, and ‘Tencel’ are significantly different from the baseline,

‘Polyester’ in our crossed random effects model. ‘PU’ and ‘PVC’ are associated

with an increase in rating of at least half a point. Those materials are often used

to make shoes and specialty clothing, which may be related to their association

with high ratings.

The computations in this section were performed in Python; the code is

available at https://github.com/kxgao/scalable-crossed-mixed-effects.

5. Asymptotic Behavior

Here we give sufficient conditions to ensure that the parameter estimates β̂,

σ̂2A, σ̂2B, and σ̂2E obtained from Algorithm 1 are consistent. We also give a CLT for

β̂. We use the sample size growth conditions from Section 2 and some additional

conditions on xij . Our results are conditional on the observed predictors xij for

which Zij = 1.

As in ordinary i.i.d. error regression problems, our CLT requires the informa-

tion in the observed xij to grow quickly in every projection while also imposing

a limit on the largest xij . For each i with Ni• > 0, let x̄i• be the average of those

xij with Zij = 1 and similarly define column averages x̄•j .

For a symmetric positive semi-definite matrix V , let I(V ) be the smallest

eigenvalue of V . We will need lower bounds on I(V ) for various V to rule out

singular or nearly singular designs. Some of those V involve centered variables.

In most applications xij will include an intercept term, and so we assume that

the first component of every xij is equal to one. That term raises some technical

difficulties as centering that component always yields zero. Thus, we will treat

https://github.com/kxgao/scalable-crossed-mixed-effects
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this term specially in some of our proofs. For a symmetric matrix V ∈ Rp×p, we

let

I0(V ) = I((Vij)26i,j6p)

be the smallest eigenvalue of the lower (p− 1)× (p− 1) submatrix of V .

In our motivating applications, it is reasonable to assume that ‖xij‖ are

uniformly bounded. We let

MN ≡ max
ij

Zij‖xij‖2 (5.1)

quantify the largest xij in the data so far. Some of our results would still hold

if we were to let MN grow slowly with N . To focus on the essential ideas, we

simply take MN 6M∞ <∞ for all N .

5.1. Consistency

First, we give conditions under which β̂OLS from step 1 is consistent.

Theorem 4. Let max(εR, εC) → 0 and I(XTX) > cN for some c > 0, as

N →∞. Then E(‖β̂OLS−β‖2) = O((εR + εC)/I(XTX/N))→ 0 and β̂OLS
p→ β.

Proof. See Section S3.1 in the Supplementary Material.

Second, we show that the variance component estimates computed in step 2

are consistent. Recall that we compute the U -statistics (3.8) on data (i, j, η̂ij =

Yij − xTij β̂) and use them to obtain estimates σ̂2A, σ̂2B, and σ̂2E via (3.9).

Theorem 5. Suppose that as N → ∞ with max(εR, εC) → 0, max(R,C)/N 6
θ ∈ (0, 1), β̂

p→ β, and that MN is bounded. Then σ̂2A
p→ σ2A, σ̂2B

p→ σ2B, and

σ̂2E
p→ σ2E.

Proof. See Section S3.2 in the Supplementary Material.

From Theorem 4, the estimate of β obtained in step 1 of Algorithm 1 is con-

sistent. Therefore, from Theorem 5, the variance component estimates obtained

in step 2 are consistent, given the combined assumptions of those two theorems.

The proof of Theorem 4 shows that the estimated variance components differ by

O(‖β̂−β‖2 + ε‖β̂−β‖) from what we would get replacing β̂ by an oracle value β

and computing variance components of Yij − xTijβ. Such an estimate would have

mean squared error O(ε) by Theorem 1. As a result the mean squared error for

all parameters of interest is O(ε).

Our third result shows that the estimate of β obtained in step 3 is consistent.

We do so by showing that the estimators β̂RLS and β̂CLS are consistent when
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constructed using consistent variance component estimates. We give the version

for β̂RLS.

Theorem 6. Let β̂RLS be computed with σ̂2A
p→ σ2A and σ̂2E

p→ σ2E as N → ∞,

where σ2E > 0. If max(εR, εC)→ 0 and,

I0

∑
ij

Zij(xij − x̄i•)(xij − x̄i•)T

N

 > c > 0 (5.2)

and

1

R2

∑
ir

(ZZT)irN
−1
i• N

−1
r• → 0, (5.3)

then β̂RLS
p→ β.

Proof. See Section S3.3 in the Supplementary Material.

The most complicated part of the proof of Theorem 6 involves handling

the contribution of bj to β̂RLS. In a row-weighted GLS it is quite standard to

have random errors ai and eij but here we must also contend with errors bj
that do not appear in the model for which β̂RLS is the MLE. Condition (5.3)

is used to control the variance contribution of the column random effects to

the intercept in β̂RLS. For balanced data it reduces to 1/C → 0 and so it has

an effective number of columns interpretation. Recalling that (ZZT)ir is the

number of columns sampled in both rows i and r, we have (ZZT)ir 6 Nr• and so

a sufficient condition for (5.3) is that (1/R)
∑

iN
−1
i• → 0. For sparsely observed

data we expect (ZZT)ir � max(Ni•, Nr•) to be typical, in which case, these

bounds are conservative.

Any realistic setting will have σ2E > 0, which we need for β̂RLS to be well

defined, and so that condition in Theorem 6 is not restrictive.

It remains to show that the variance component estimates from step 4 are

consistent. We can just apply Theorem 5 again. Therefore the final estimates re-

turned by Algorithm 1 are consistent given only weak conditions on the behavior

of Zij and xij .

5.2. Asymptotic normality of β̂RLS

Here we show that the estimator β̂RLS constructed using consistent estimates

of σ2A, σ2B, and σ2E is asymptotically Gaussian. The same result applies to β̂CLS

after transposing the conditions. We need stronger conditions than we needed
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for consistency.

These conditions are expressed in terms of some weighted means of the pre-

dictors. First, let

x̃•j =
1

N•j

∑
i

Zij
σ2A

σ2A + σ2E/Ni•
x̄i•. (5.4)

This is a ‘second-order’ average of x for column j: it is the average over rows i

that intersect j, of averages x̄i• shrunken towards zero. For a balanced design

with Zij = 1i6R1j6C we would have x̃•j = x̄••σ
2
A/(σ

2
A + σ2E/C), in which case,

the second-order means would all be very close to x̄•• for large C. Apart from

the shrinkage, we can think of x̃•j as a local version of x̄•• appropriate to column

j. Next let

k =
∑
j

N2
•j(x̄•j − x̃•j)∑

j N
2
•j

∈ Rp. (5.5)

This is a weighted sum of adjusted column means, weighted by the squared

column size. The intercept component of this k will not be used.

Theorem 7. Let β̂RLS be computed with σ̂2A
p→ σ2A, σ̂2B

p→ σ2B, and σ̂2E
p→ σ2E > 0

as N →∞. Suppose also that

I
(∑

i

x̄i•x̄
T
i•

)
, I0

(∑
ij

Zij(xij − x̄i•)(xij − x̄i•)T
)
, and

I0
(∑

j N
2
•j(x̄•j − x̃•j − k)(x̄•j − x̃•j − k)T

)
maxj N2

•j

all tend to infinity, where x̃•j is given by (5.4) and k is given by (5.5). Next

for cj =
∑

i Zijσ
2
E/(σ

2
E + σ2ANi•) and cij = σ2E/(σ

2
E + σ2ANi•) assume that both

maxj c
2
j/
∑

j c
2
j and maxij c

2
ij/
∑

ij c
2
ij converge to zero. Then β̂RLS is asymptoti-

cally distributed as

N (β, (XTV −1A X)−1XTV −1A VRV
−1
A X(XTV −1A X)−1). (5.6)

Proof. See Section S3.4 in the Supplementary Material.

The statement that β̂RLS has asymptotic distribution N (β, V ) is shorthand

for V −1/2(β̂ − β)
p→ N (0, Ip).

Theorem 7 imposes three information criteria. First, the R rows i with
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Ni• > 0 must have sample average x̄i• vectors with information tending to in-

finity. It would be reasonable to expect that information to be proportional to

R and also reasonable to require R → ∞ for a CLT. Next, the sum of within

row sums of squares and cross-products of row-centered xij must have growing

information, apart from the intercept term. Finally, thinking of x̄•j − x̃•j as the

locally centered mean for column j, those quantities centered on the vector k

must have a weighted sum of squares that is not dominated by any single column

when weights proportional to N2
•j are applied.

The conditions on cj and cij are used to show that the CLT will apply to

the intercept in the regression. The condition on maxj c
2
j/
∑

j c
2
j will fail if for

example column j = 1 has half of the N observations, all in rows of size Ni• = 1.

In the case of an R× C grid maxj c
2
j/
∑

j c
2
j = 1/C and so we can interpret this

condition as requiring a large enough effective number
∑

j c
2
j/maxj c

2
j of columns

in the data.

The condition on maxij c
2
ij/
∑

ij c
2
ij will fail if for example the data contain a

fullR×C grid of values plus a single observation with i = R+1 and j = C+1. The

problem is that in a row based regression, a single small row can have outsized

leverage. This can be controlled by excluding relatively small rows. This pruning

of rows is only used to apply the CLT to the intercept term. It is not needed for

other components of β nor is it needed for consistency. We do not know if it is

necessary for the CLT.

5.3. Computing Var(β̂RLS)

Here we show how to compute the estimate of the asymptotic variance of

β̂RLS from Theorem 7. First,

(XTV −1A X)−1XTV −1A VRV
−1
A X(XTV −1A X)−1

= (XTV −1A X)−1XTV −1A (VA + σ2BBR)V −1A X(XTV −1A X)−1

= (XTV −1A X)−1 + (XTV −1A X)−1XTV −1A σ2BBRV
−1
A X(XTV −1A X)−1

= (XTV −1A X)−1 + (XTV −1A X)−1Var(XTV −1A b)(XTV −1A X)−1, (5.7)

where b is the length-N vector of column random effects for each observation.

That is bj appears N•j times in b.

Using the Woodbury formula we find that Var(XTV −1A b) is equal to

σ2B
σ4E

∑
j

(
X•j−σ2A

∑
i

Zij
Xi•

σ2E+σ2ANi•

)(
X•j−σ2A

∑
i

Zij
Xi•

σ2E+σ2ANi•

)T

. (5.8)
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Recall that Xi• and X•j are row and column totals, not means.

In practice, we substitute consistent estimates σ̂2A, σ̂2B, and σ̂2E in for σ2A,

σ2B, and σ2E , respectively, in (5.7) and (5.8). We already have (XTV̂ −1A X)−1 as

well as Ni• and Xi• for i = 1, . . . , R available from computing β̂RLS. In a new

pass over the data, we compute X•j and
∑

i ZijXi• for j = 1, . . . , C, incurring

O(Np) computational and O(Cp) storage costs. Then, (5.8) can be found in

O(Cp2) time; a final step finds (5.7) in O(p3) time. Overall, estimating the

variance of β̂RLS requires O(Np + Cp2 + p3) additional computation time and

O(Cp) additional space.

6. Comparisons with the MLE

Here we compare Algorithm 1 to maximum likelihood for a linear mixed

effects model, considering both computational efficiency and statistical efficiency.

We use a state-of-the-art code for linear mixed models called MixedModels (Bates

(2016)). This is written in Julia (Bezanson et al. (2017)) and is much faster than

other linear mixed model code we have tried.

Our examples use R = C = 2
√
N for various N . We create an R × C

matrix of Zij and randomly choose exactly RC/4 components to be one. We

have an intercept and p other x’s with xij,t
i.i.d.∼ N (0, 1), for 2 6 t 6 p + 1. We

use all p ∈ {1, 5, 10, 20}. We take σ2A = 2, σ2B = 1/2, σ2E = 1 and all βj = 1.

Our simulated random effects and our noise are all Gaussian because we are

comparing to code that computes a Gaussian MLE.

6.1. Computational cost

The Julia package MixedModels uses a derivative-free optimization method

from the BOBYQA package (Powell (2009)). At each iteration it evaluates the

log-likelihood at a set of points, fits a quadratic function to those points and

minimizes the quadratic. The number of likelihood evaluations per iteration is

fixed, but we are unable to model the number of iterations required. We consider

the cost per likelihood evaluation next.

The log-likelihood is

(Y −Xβ)T(σ2AAR + σ2BBR + σ2EIN )−1(Y −Xβ)

+ ln |σ2AAR + σ2BBR + σ2EIN |.

In an analysis using the Woodbury formula we find that the log-likelihood can

be computed in O(R3 +
∑

iN
2
i•) time. Because 1 6 R 6 N we can write R = Nα
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Figure 2. For p = 5, the cost per iteration of the MLE. The dashed curve is the average
of 10 replicates. The solid reference line is parallel to N3/2.

for some 0 6 α 6 1. Then

R3 +
∑
i

N2
i• = R3 +R

(
1

R

∑
i

Ni•

)2

> R3 +N2R−1 = N3α +N2−α.

Now N3α + N2−α > max(N3α, N2−α) and α = 1/2 minimizes max(3α, 2 − α).

Therefore R3 +
∑

iN
2
i• > N3/2.

This is the same estimate that we would obtain by considering the cost of

solving a system of R+ C equations in R+ C unknowns. There are faster ways

to solve the equations in special cases (e.g., for nested models), and there is the

possibility that sparsity patterns in the data can be exploited for speed, as is done

in MixedModels (Bates et al. (2015)). However, we are interested in arbitrarily

complicated sampling plans where these special cases cannot be assumed.

Figure 2 shows the computed cost per iteration for 10 replicates at each of

11 different sample sizes R2/4 given by R = 10, 20, 40, . . . , 29 × 10, with p = 5.

The cost per iteration is flat for small N presumably due to some overhead. It

grows slowly until about N = 104 and then it appears to increase parallel to a

reference line with slope 3/2.
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Figure 3. Computational cost for MLE and moments versus sample size N . There are
reference lines parallel to N3/2 and N1.

Figure 3 shows total cost versus N in a setting with p = 5 averaged over

100 data sets. The cost curve for the MLE computation looks different to that

in Figure 2. It does not start out flat for small N . We found that the number

of iterations required to find the MLE generally rose over the range 64 6 N 6
6, 400 and then declined gently thereafter, making it more difficult to discern the

O(N3/2) rate. Because the number of iterations cannot be below one, we can be

sure that the MLE cost is at least a multiple of N3/2.

From the analysis and empirical results, we find that a cost per iteration of

O(N3/2) is a realistic lower bound for the MLE code. The method of moments

cost is O(N) theoretically and appears to be proportional to N empirically.

Our computations were performed using data generated in memory. In com-

mercial applications, there could be a much larger time cost proportional to N

related to reading the data from external storage. However, the N3/2 cost com-

ponent would be considerably larger at commercial scale, where N is much larger

than in our examples. For the method of moments it is straightforward to read

and use the data in parallel even for large N .

A second computational issue arises with the linear mixed effects MLE.

The code crashes on large enough data sets because the algorithm requires
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O((R + C)2) memory. For p = 5 we were unable to take the next step past

N = 5, 1202/4
.
= 6.5 × 106. The program runs out of memory on our cluster

where we had one virtual machine with 4Gb memory. For p = 1, it crashes for N

near 18 million observations. The method of moments in Algorithm 1 has linear

cost both theoretically and empirically and can be implemented in O(R + C)

memory. The difference is minor for our CPU time simulations that also keep

all N observations in memory, but it will be critical in large commercial appli-

cations. Commercial computing resources are much greater than ours but their

data are vastly greater than our sample.

6.2. Statistical efficiency

For statistical efficiency we considered p = 1, 5, 10 and 20. Sample sizes

N = 100 × 4j for j = 0, 1, . . . , 8 were replicated 100 times each. A few larger

values of N were replicated 10 times each, though the MLE code would not run

on all of the largest sample sizes we tried. The pattern in the results was the

same for all of those p. We display results for p = 5 in Figure 4. The MSEs for

β decay proportionally to 1/N . The reference curves for variance components

in Figure 4 are what we would expect from i.i.d. sampling of ai, bj and eij ,

respectively: 2σ4A/R, 2σ4B/C and 2σ4E/N where R = C = 2
√
N .

The parameter of greatest interest will ordinarily be β. The MLE has greater

accuracy for β, as it must by the Gauss-Markov theorem. In this instance the

MLE has about half the MSE that the method of moments does. For the variance

components, the method of moments attains essentially the same MSE as the

MLE does for σ2A and σ2B. The MLE has greater efficiency for σ2E . In ordinary

use we would want to know ratios of variance components and the uncertainty

in such ratios is dominated by that in σ2A and σ2B, where the two methods have

comparable accuracy.

In this example, we saw a modest loss in statistical efficiency of β̂ and σ̂2E
and comparable accuracy for σ̂2A and σ̂2B. These comparisons were run on data

simulated from the Gaussian model that the MLE assumes. The method of

moments does not require that assumption. Likelihood based variance estimates

for variance components, such as V̂ar(σ̂2A), can fail to be even asymptotically

correct when the Gaussian model does not hold.
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Figure 4. Mean squared errors for β, σ2
A, σ2

B and σ2
E versus N . Reference lines for β

and σ2
E are parallel to N−1. Reference lines for σ2

A and σ2
B are parallel to N−1/2.

7. Discussion

We have proposed an algorithm for the two-factor linear mixed effects model

with a crossed covariance structure that provides consistent and asymptotically

normal parameter estimates. It alternates twice between estimating the regres-

sion coefficients and estimating the variance components via the method of mo-

ments.

Unlike available methods based on Bayes’ theorem or maximum likelihood,

the moment estimates costO(N) time andO(R+C) space. The variance estimate

for β̂ is obtained by substituting consistent estimates of σ2A, σ2B, and σ2E into exact

finite sample formulae for that variance matrix. The variance estimates for σ̂2A,

σ̂2B, and σ̂2E are obtained by such a substitution in mildly conservative formulae

from Gao and Owen (2017). Here the usual root-n consistency from i.i.d. settings

is replaced by a 1/
√
ε-consistency for ε = max(εR, εC). Interpreting 1/

√
ε as an

effective sample size might be somewhat conservative because in theorems such

as Theorem 1 the value of ε appears in upper bounds.

We exchange higher MSEs for an algorithm with cost only linear in the
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number of observations. We do not know how bad the efficiency loss might be in

general, but we expect that when the pure error term σ2E is meaningfully large,

the loss will not be extreme. Also, if one of σ2A and σ2B very much dominates the

other one, we can get a GLS estimate that accounts for the dominant source of

correlation.

Gao (2017) proves a martingale central limit theorem for the variance compo-

nent estimates σ̂2A, σ̂2B, and σ̂2E . We do not anticipate those variance components

to be uncorrelated with β̂ because the random variables ai, bj , and eij might not

have symmetric distributions.

This study is a second step in developing big-data versions of mixed model

procedures such as the Henderson estimators. One follow-up step is to incorpo-

rate interactions between fixed and random steps, as the Henderson III model

allows. Another is to incorporate interactions among latent variables. At present

both kinds of interactions would serve to inflate σ2E . A third step is to adapt

to binary responses, for instance by replacing the identity link in Model 1, with

a logit or probit link. This third step is of value because many responses in e-

commerce are categorical, e.g., for Stitch Fix, whether the client keeps the item

of clothing.

The computation for GLMMs is daunting, especially for large ones. Referring

to penalized quasi-likelihood, (McCulloch, Searle and Neuhaus (2008, p.341))

write

In the “derivation” of the PQL equations quite a few approxima-

tions of undetermined accuracy are bandied about and the develop-

ment has an air of ad hocery. How well do these methods work in

practice? Unfortunately, not very.

The latest version of the lme4 R package Bates (2014) does not include their

previous mcmcsamp method because it was deemed to be unreliable. Jiang Jiang

(1998) proposes a general method of simulated moments estimator for generalized

linear mixed models by deriving sufficient statistics, but they have superlinear

computational complexity at equation (16) in our context. Even the theory of

GLMMs is difficult. The consistency of the maximum likelihood estimate of µ

in a balanced data set for a binary response Yij with logit(Pr(Yij = 1 | ai, bj) =

µ+ ai + bj was only established in Jiang (2013).

Finally, Papaspiliopoulos, Roberts and Zanella (2018) has recently shown

that for sparse observation patterns, the convergence time of a collapsed Gibbs

sampler for an intercept-only version of Model 1, alternating between sampling
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µ and the ai’s and µ and the bj ’s, would not grow with the size of the data

set. This suggests that a reparameterization could enable MCMC to have good

performance on our model as well. That paper does however require a strong

balance assumption in which all rows are equally commonly represented in the

data and similarly for the columns. That assumption is very unrealistic for e-

commerce.

Supplementary Material

The proofs of our results are provided in the an online Supplementary Ma-

terial, at: http://statweb.stanford.edu/~owen/reports/vllmemsupp.pdf.
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