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simulation results, respectively. Section S6 provides the details of the real-data case study 2: neuroblastoma

gene expression data. Algorithms for rBLPR, pBLPR and cv(lasso+ols) are provided in Section S7.

S1 Proof of Theorems

S1.1 Proof of Theorem 1

We will follow the proof of the sign-consistency of the lasso in Zhao & Yu

(2006) with modifications when necessary. Before proving Theorem 1, we first

state the following Proposition 1 which is similar to the Proposition 1 in Zhao &

Yu (2006).

Proposition 1. Assume Condition 5 holds with a constant η > 0, then

pr
(

(β̂lasso)S =s β
0
S, (β̂lasso)Sc = 0

)
≥ pr(An ∩Bn) (S1.1)

for

An =
{
|C−111 WS| < n

1
2

(
|β0
S| − λ1|C−111 sign(β0

S)| − |C−111 C12β
0
Sc|
)}

,

Bn =
{
|C21C

−1
11 WS −WSc | ≤ n

1
2λ1η − |n

1
2 (C21C

−1
11 C12 − C22)β

0
Sc |
}
,

where

WS = n−
1
2XT

S ε, WSc = n−
1
2XT

Scε.

Setting β0
Sc = 0, then Proposition 1 gives back to the same proposition in

Zhao & Yu (2006).
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Proof. By Karush-Kuhn-Tucker condition for convex optimization, we obtain

the following Lemma S1 without giving the proof.

Lemma S1. β̂lasso is the lasso estimator defined in (2.2) if and only if

1

2n

d ‖Y −Xβ‖22
dβj

|βj=(β̂lasso)j
= −λ1 sign

(
(β̂lasso)j

)
for j, such that (β̂lasso)j 6= 0,

1

2n

∣∣∣∣∣d ‖Y −Xβ‖22dβj
|βj=(β̂lasso)j

∣∣∣∣∣ ≤ λ1 for j, such that (β̂lasso)j = 0.

It is easy to obtain

1

2n

d ‖Y −Xβ‖22
dβ

= − 1

n
XT(Y −Xβ) = C(β − β0)− 1

n
XTε,

where C = XTX/n. Then by definition of the lasso (2.2) and Lemma S1, if

there exist β̂ = (β̂T
S , 0

T
Sc)

T, such that the following holds:

n
1
2C11(β̂ − β0)S − n

1
2C12β

0
Sc −XT

S ε/n
1
2 = −n

1
2λ1 sign(β0

S), (S1.2)

−n
1
2λ11 ≤ n

1
2C21(β̂ − β0)S −XT

Scε/n
1
2 − n

1
2C22β

0
Sc ≤ n

1
2λ11, (S1.3)

|(β̂ − β0)S| < |β0
S|, (S1.4)

then, β̂ is the lasso solution, that is, β̂ = β̂lasso and, hence, (β̂lasso)Sc = β̂Sc = 0

and sign((β̂lasso)S) = sign(β̂S) = sign(β0
S). Let W = XTε/n

1
2 , then, WS =

XT
S ε/n

1
2 and WSc = XT

Scε/n
1
2 .
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Substitute (β̂ − β0)S and bound the absolute values, the existence of such β̂

is implied by

|C−111 WS| < n
1
2

(
|β0
S| − λ1|C−111 sign(β0

S)| − |C−111 C12β
0
Sc |
)
, (S1.5)

|C21C
−1
11 WS−WSc | ≤ n

1
2λ1
(
1− |C21C

−1
11 sign(β0

S)|
)
−|n

1
2

(
C21C

−1
11 C12 − C22

)
β0
Sc |.

(S1.6)

{(S1.5)} coincides with An and {(S1.6)} ⊂ Bn. This implies Proposition 1.

To prove Theorem 1, we can follow the proof of Theorem 4 in Zhao & Yu

(2006), using our new Proposition 1.

First, by Proposition 1, we have

pr
(

(β̂lasso)S =s βS, (β̂lasso)Sc = 0
)
≥ pr(An ∩Bn).

On the other hand,

1− pr(An ∩Bn) ≤ pr(Acn) + pr(Bc
n)

≤
s∑
i=1

pr
(
|zi| ≥ n

1
2 (|β0

i | − λ1bi − hi)
)

+

p−s∑
i=1

pr
(
|ζi| ≥ n

1
2λ1ηi −mi

)
,

(S1.7)

where

z = (z1, . . . , zs)
T = C−111 WS,

ζ = (ζ1, . . . , ζp−s)
T = C21C

−1
11 WS −WSc ,
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b = (b1, . . . , bs) = |C−111 sign(β0
S))|,

h = (h1, . . . , hs) = |C−111 C12β
0
Sc |,

m = (m1, . . . ,mp−s) = |n
1
2

(
C21C

−1
11 C12 − C22

)
β0
Sc |.

Due to Condition 1, εi are independent and identically distributed subGaussian

random variables, with mean 0 and variance σ2. Therefore, zi’s and ζi’s are all

subGaussian random variables, with mean 0. By simple algebra, we have

E(zzT) = σ2C−111 ; E(ζζT) = σ2(C22 − C21C
−1
11 C12).

Therefore,

Ez2i = σ2(C−111 )ii ≤ σ2Λmax(C
−1
11 ) ≤ σ2/Λ,

where the last inequality is due to Condition 3. Moreover,

Eζ2i = σ2(C22 − C21C
−1
11 C12)ii ≤ σ2(C22)ii = σ2,

where the last equality is because of Condition 2. Therefore, zi’s and ζi’s are

subGaussian random variables, with mean 0 and finite variance. Hence, there

exits a constant c > 0, such that, for all t > 0,

pr(|zi| ≥ t) ≤ 2e−ct
2

; pr(|ζi| ≥ t) ≤ 2e−ct
2

.

For i = 1, . . . , s, using Cauchy-Schwarz inequality and Conditions 3, 4, and
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7, we have

n
1
2λ1|bi| ≤ n

1
2λ1Λmax(C

−1
11 )|| sign(β0

S)||2 ≤ s
1
2n

1
2λ1/Λ

= O(n
1
2n

c1+c4−1
2 ) = o(n

1
2n

c3−1
2 ),

where the last inequality holds because c4 < c3 − c1 (see Condition 7).

Condition 8 implies that n
1
2hi = O(1), for i = 1, . . . , s. Combining with

Condition 6, we have

n
1
2λ1|bi|+ n

1
2hi = o(1)n

1
2 |β0

i |, for i = 1, · · · , s.

Therefore,

s∑
i=1

pr
(
|zi| ≥ n

1
2 (|β0

i | − λ1bi − hi)
)
≤

s∑
i=1

pr
(
|zi| ≥ (1 + o(1))n

1
2 |β0

i |
)

≤
s∑
i=1

pr(|zi| ≥ n
c3
2 )

= o(e−n
c2 ).

(S1.8)

Due to Conditions 8 and 7, mi = o(nc4/2), and n
1
2λ1 = O(nc4/2). Then,

p−s∑
i=1

pr
(
|ζi| ≥ n

1
2λ1ηi −mi

)
≤

p−s∑
i=1

pr
(
|ζi| ≥ O(n

c4
2 )
)

= o(e−n
c2 ). (S1.9)

Theorem 1 follows immediately.
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S1.2 Proof of Theorem 2

Proof. We have to check that the residual bootstrap version of Conditions 1 –

7 hold, with conditional probability, given ε, going to one. For the residual

bootstrap sample, we have

Y ∗rboot = Xβ̂lasso+ols + ε∗.

Conditions 2, 3 and 7 depend only on X and λ1 which are the same for the

original sample (X, Y ) and bootstrap sample (X, Y ∗rboot), therefore, they hold

obviously. We next show, one by one, the bootstrap version of Conditions 1, 4 –

8 hold, with probability going to one. We need the following Lemma.

Lemma S2. Under Conditions 1 – 7, and for the constant M in Condition 6, we

have

pr
(
||β̂lasso+ols − β0||∞ ≤ 2Mn

c1−1
2

)
→ 1. (S1.10)

Lemma S2 bounds element-wise estimation error of the lasso+ols estimator,

the proof of which can be founded in the following subsection S1.4.

Now, we can show that residual bootstrap version of Conditions 1, 4 – 8

hold, with probability going to one. Under Conditions 1 – 7 and using Theorem

1, the lasso β̂lasso has sign-consistency, that is,

pr(Ŝ = S) = 1− o(e−nc2 )→ 1.

Replacing (β0, ε, Y ) with (β̂lasso+ols, ε
∗, Y ∗rboot).
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In what follows, we always condition on {Ŝ = S}. By Lemma S2, it is easy

to show that

pr
(

(β̂lasso+ols)S =s β
0
S

)
→ 1,

which guarantees that bootstrap version of Conditions 4 – 8 hold, with proba-

bility going to one. Therefore, we only need to show the bootstrap version of

Condition 1 holds, with probability going to 1, that is,

Condition S1. ε∗i are conditionally independent and identically distributed sub-

Gaussian random variables, with mean 0. That is, there exists constant C∗ > 0

and c∗ > 0, such that

pr (|ε∗i | ≥ t | ε) ≤ C∗e−c
∗t2 , ∀t ≥ 0, (S1.11)

holds in probability.

Lemma S3. Conditions 1 – 10 imply Condition S1.

The proof is similar to that in Liu & Yu (2013) with modifications ac-

counting for cliff-weak-sparsity. Let I· denote the indicator function. Note that

pr(|ε∗i | ≥ t | ε) = (
∑n

i=1 I|ε̂i−ε̃|≥t)/n, hence, S1.11 is equivalent to

sup
t≥0

{
1

n

n∑
i=1

ec
∗t2I|ε̂i−ε̃|≥t

}
≤ C∗. (S1.12)
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We know that

ε̂i − ε̃ = yi − xT

i β̂lasso+ols − (y − xTβ̂lasso+ols)

= xT

i β
0 + εi − xT

i β̂lasso+ols − (xTβ0 + ε− xTβ̂lasso+ols)

= xT

i (β0 − β̂lasso+ols) + εi − ε̄, (S1.13)

where xT
i is the ith row of X , ȳ =

∑n
i=1 yi/n, ε̄ =

∑n
i=1 εi/n, and x̄ =∑n

i=1 xi/n = 0. It is easy to see that supt≥0

{
(
∑n

i=1 e
c∗t2I|ε̂i−ε̃|≥t)/n

}
can be

bounded by

1

n

n∑
i=1

{
sup
t≥0

{
ec
∗t2I|xTi (β0−β̂lasso+ols)|≥t/3

}
+ sup

t≥0

{
ec
∗t2I|ε|≥t/3

}
+ sup

t≥0

{
ec
∗t2I|εi|≥t/3

}}
.

(S1.14)

We can bound the second and third terms exactly the same as those in Liu & Yu

(2013), that is, there exist a constant C∗1 > 0, such that for c∗ = 1/(36σ2),

pr

(
1

n

n∑
i=1

sup
t≥0

{
ec
∗t2I|ε|≥t/3

}
≤ C∗1

)
→ 1. (S1.15)

pr

(
1

n

n∑
i=1

sup
t≥0

{
ec
∗t2I|εi|≥t/3

}
≤ C∗1

)
→ 1. (S1.16)

Since the proof is exactly the same, we omit it here. Next, we bound the first

term, which is different from that in Liu & Yu (2013), because of the weaker

cliff-weak-sparsity assumption. For the constant D > 0 appearing in Condition
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10,

pr
(

max
1≤i≤n

|xT

i (β0 − β̂lasso+ols)| ≥ 2D

)
= pr

(
max
1≤i≤n

|xT

i (β0 − β̂lasso+ols)| ≥ 2D, Ŝ = S

)
+pr

(
max
1≤i≤n

|xT

i (β − β̂lasso+ols)| ≥ 2D, Ŝ 6= S

)
≤ pr

(
max
1≤i≤n

|xT

i,S(β0
S − (β̂lasso+ols)S) + xT

i,Scβ
0
Sc | ≥ 2D

)
+ pr(Ŝ 6= S)

≤ pr
(

max
1≤i≤n

|xT

i,S(β0
S − (β̂lasso+ols)S)| ≥ D

)
+ pr

(
max
1≤i≤n

|xT

i,Scβ
0
Sc| ≥ D

)
+pr(Ŝ 6= S)

= pr
(

max
1≤i≤n

|xT

i,S(β0
S − (β̂lasso+ols)S| ≥ D

)
+ pr(Ŝ 6= S), (S1.17)

where the last equality holds because of Condition 10. Using Cauchy-Schwarz

inequality and Lemma S2, we have

max
1≤i≤n

|xT

i,S(β0
S − (β̂lasso+ols)S)| ≤ max

1≤i≤n
||xi,S||2||β0

S − (β̂lasso+ols)S||2.

Conditional on {Ŝ = S}, the lasso+ols estimator has the following form:

(β̂lasso+ols)S = (XT

SXS)−1XT

SY = β0
S + C−111 C12β

0
Sc + (XT

SXS)−1XT

S ε;(S1.18)

(β̂lasso+ols)Sc = 0.

Therefore, together with Condition 8,

||β0
S − (β̂lasso+ols)S||2 ≤ ||C−111 C12β

0
Sc||2 + ||(XT

SXS)−1XT
S ε||2

= O
(
(s/n)1/2

)
+ ||(XT

SXS)−1XT
S ε||2. (S1.19)
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Hence, by Condition 10,

max
1≤i≤n

|xT

i,S(β0
S − (β̂lasso+ols)S)|

≤ o(n1/4(s/n)1/2) + max
1≤i≤n

||xi,S||2||(XT

SXS)−1XT

S ε||2

= o(1) + max
1≤i≤n

||xi,S||2||(XT

SXS)−1XT

S ε||2. (S1.20)

It is easy to show that

max
1≤i≤n

||xi,S||2||(XT

SXS)−1XT

S ε||2 = op(1), (S1.21)

therefore,

pr
(

max
1≤i≤n

||xi,S||2||(XT

SXS)−1XT

S ε||2 ≥ D

)
→ 0. (S1.22)

Hence,

pr
(

max
1≤i≤n

|xT

i (β0 − β̂lasso+ols)| ≥ 2D

)
→ 0. (S1.23)

Therefore,

pr

(
1

n

n∑
i=1

sup
t≥1

{
ec
∗t2I|xTi (β0−β̂lasso+ols)|≥t/3

}
≤ e36D

2c∗

)

≥ pr
(

max
1≤i≤n

|xT

i (β0 − β̂lasso+ols)| < 2D

)
→ 1. (S1.24)

The above inequality holds, because it is easy to show that{
1

n

n∑
i=1

sup
t≥1

{
ec
∗t2I|xTi (β0−β̂lasso+ols)|≥t/3

}
≤ e36D

2c∗

}

⊇
{

max
1≤i≤n

|xT

i (β0 − β̂lasso+ols)| < 2D

}
. (S1.25)
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It is clear that

1

n

n∑
i=1

sup
0≤t≤1

{
ec
∗t2I|xTi (β0−β̂lasso+ols)|≥t/3

}
≤ ec

∗
.

Therefore, with probability going to 1, we have

1

n

n∑
i=1

sup
t≥0

{
ec
∗t2I|xTi (β0−β̂lasso+ols)|≥t/3

}
= max

{
1

n

n∑
i=1

sup
0≤t≤1

{
ec
∗t2I|xTi (β0−β̂lasso+ols)|≥t/3

}
,

1

n

n∑
i=1

sup
t≥1

{
ec
∗t2I|xTi (β0−β̂lasso+ols)|≥t/3

}}
≤ max

{
ec
∗
, e36D

2c∗
}
. (S1.26)

Let C∗ = 2C∗1 +max
{
ec
∗
, e36D

2c∗
}

, and combine (S1.26), (S1.15), and (S1.16),

pr

(
sup
t≥0

{
1

n

n∑
i=1

ec
∗t2I|ε̂i−ε̃|≥t

}
≤ C∗

)
→ 1.

S1.3 Proof of Theorem 3

Proof. First, by Theorem 1 and Theorem 2, both the lasso, β̂lasso, and the residual

bootstrap lasso, β̂rBlasso, have model selection consistency. We can continue our

argument by conditioning on {Ŝ = S} and {Ŝ∗rBlasso = S}.

Second, we next show that

n
1
2uT(β̂LPR − β0) = n−

1
2uTC−1λ2 X

Tε+ op(1); (S1.27)
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n
1
2uT(β̂∗rBLPR − β̂lasso+ols) = n−

1
2uTC−1λ2 X

Tε∗ + op(1). (S1.28)

By definition, β̂LPR is the solution of the following equation:

− 1

n
XT(Y −Xβ̂LPR) + λ2

(
0T,
(
β̂LPR,Sc

)T)T

= 0.

Since Y = Xβ0 + ε, we have

1

n
XTX(β̂LPR − β0)− 1

n
XTε+ λ2

(
0T,
(
β̂LPR,Sc

)T)T

= 0.

Simple linear algebra gives

Cλ2(β̂LPR − β0) =
1

n
XTε− λ2

(
0T,
(
β0
Sc

)T)T

.

Therefore,

n
1
2uT(β̂LPR − β0) = n−

1
2uTC−1λ2 X

Tε− λ2n
1
2uTC−1λ2

(
0T,
(
β0
Sc

)T)T

= n−
1
2uTC−1λ2 X

Tε+ op(1), (S1.29)

where the second equality is due to Condition 11 and λ2 ∝ n−1 in Condition 7.

Similarly, note that Y ∗rboot = Xβ̂lasso+ols + ε∗, and with probability going to 1,

β̂lasso+ols,Sc = 0, we have

n
1
2uT(β̂∗rBLPR − β̂lasso+ols) = n−

1
2uTC−1λ2 X

Tε∗ + op(1). (S1.30)

Third, let U = n−1/2uTC−1λ2 X
Tε, and U∗ = n−1/2uTC−1λ2 X

Tε∗. We can

show that both U and (U∗ | ε) converge in distribution to N(0, σ2
1), where C =
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XTX/n and

σ2
1 = lim

n→∞

(
uTC−1λ2 C(C−1λ2 )Tu

)
σ2.

For simplicity, denote

σ2
2 =

(
uTC−1λ2 C(C−1λ2 )Tu

)
σ2.

We need to check Linderberg condition for the asymptotic normality. For deriv-

ing the asymptotic normality of U = n−1/2uTC−1λ2 X
Tε, denote

v = n−1/2X
(
C−1λ2

)T
u = (v1, . . . , vn)T,

where vk = n−1/2xT
k

(
C−1λ2

)T
u. It is easy to show that

n∑
k=1

E(vkεk)
2 =

(
n∑
k=1

v2k

)
σ2 =

(
uTC−1λ2 C(C−1λ2 )Tu

)
σ2 = σ2

2. (S1.31)

The Linderberg condition holds if for any δ > 0,

1

σ2
2

n∑
k=1

v2kE
{
ε2kI|vkεk|>δσ2

}
→ 0. (S1.32)

Since the errors εi are independent and identically distributed subGaussian ran-

dom variables, it is easy to see that,

1

σ2
2

n∑
k=1

v2kE
{
ε2kI|vkεk|>δσ2

}
≤ 1

σ2
max
1≤k≤n

E
{
ε2kI|vkεk|>δσ2

}
≤ 1

σ2
E

{
ε21I|ε1|> δ

max1≤k≤n |vk|/σ2

}
,

= o(1), (S1.33)
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where the last equality is because Condition 11. That is,

max
1≤k≤n

|vk|/σ2 = n−
1
2 max
1≤k≤n

∣∣uTC−1λ2 xk
∣∣ /{σ2uTC−1λ2 C(C−1λ2 )Tu

}1/2
= o(1).

Finally, we prove the asymptotic normality of U∗ = n−1/2uTC−1λ2 X
Tε∗,

given ε. By Lemma S3, ε∗i are conditionally (given ε) independent and identi-

cally distributed subGaussian random variables, with mean 0 and variance (σ∗)2.

Similar arguments lead to the same asymptotic normality of U∗, given ε, as those

for U , as long as σ∗ →p σ. The reminder of the proof is to show that σ∗ →p σ.

Note that

(σ∗)2 =
1

n− 1

n∑
i=1

(ε̂i − ε̃)2 =
1

n− 1

n∑
i=1

[
xT

i (β0 − β̂lasso+ols) + εi − ε
]2
.

By Strong Law of Large Number, we have

1

n− 1

n∑
i=1

(εi − ε)2 → σ2, almost surely. (S1.34)

Since

1

n− 1

n∑
i=1

[
xT

i (β0 − β̂lasso+ols)
]2

=
1

n− 1

n∑
i=1

[
xT

i,S(β0
S − (β̂lasso+ols)S) + xT

i,Scβ
0
Sc

]2
≤ 2

{
1

n− 1

n∑
i=1

[
xT

i,S(β0
S − (β̂lasso+ols)S)

]2
+

1

n− 1

n∑
i=1

(xT

i,Scβ
0
Sc)

2

}

≤ 2n

n− 1

{
max
1≤i≤n

[
xT

i,S(β0
S − (β̂lasso+ols)S)

]2
+
(
β0
Sc

)T
C22

(
β0
Sc

)}
= op(1), (S1.35)
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where the last equality holds because of (S1.20), (S1.21), and Condition 11.

Combining (S1.34) and (S1.35), we have

(σ∗)2 →p σ
2.

S1.4 Proof of Lemma S2

Proof. Under Conditions 1 – 7, and using Theorem 1, the lasso, β̂lasso, has model

selection consistency, that is,

pr(Ŝ = S) = 1− o(e−nc2 )→ 1.

Conditional on {Ŝ = S}, the lasso+ols estimator has the following form:

(β̂lasso+ols)S = (XT

SXS)−1XT

SY = β0
S + C−111 C12βSc + (XT

SXS)−1XT

S ε;

(β̂lasso+ols)Sc = 0.

Therefore,

||β̂lasso+ols−β0||∞ ≤ ||C−111 C12β
0
Sc ||∞+||(XT

SXS)−1XT

S ε||∞+||β0
Sc ||∞. (S1.36)

By Condition 8, we have ||C−111 C12β
0
Sc||∞ = o(n(c1−1)/2). Condition 6 gives

||β0
Sc ||∞ ≤ Mn−(1+c1)/2. Since (XT

SXS)−1XT
S ε are subGaussian random vari-

ables, with covariance matrix σ2C−111 /n, it is not hard to show that

pr
(
||(XT

SXS)−1XT

S ε||∞ ≤Mn
c1−1

2

)
→ 1.
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Therefore,

pr
(
||β̂lasso+ols − β0||∞ ≤ 2Mn

c1−1
2

)
→ 1.

S2 Examples related to Condition 8

We provide three examples of design matrices, which satisfy or do not satisfy

Condition 8.

Example 1. Orthogonal design. X is orthogonal such that XTX/n is an

identity matrix. In this case, C11 and C22 are identity matrices, and C12 is a zero

matrix. As ‖β0
Sc‖∞ = o

(
n−1/2

)
, we have

∥∥C−111 C12β
0
Sc

∥∥
∞ = 0,

∥∥∥n 1
2 (C21C

−1
11 C12 − C22)β

0
Sc

∥∥∥
∞

=
∥∥∥n 1

2β0
Sc

∥∥∥
∞

= O(1).

Thus, this example satisfies Condition 8.

Example 2. Exponential decay. In this example, X has the following
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pattern:

1

n
XTX =



1 ρ ρ2 · · · ρp−1

ρ 1 ρ · · · ρp−2

ρ2 ρ 1 · · · ρp−3

...
...

... . . . ...

ρp−1 ρp−2 ρp−3 · · · 1


.

In this case,

C11 =



1 ρ ρ2 · · · ρs−1

ρ 1 ρ · · · ρs−2

ρ2 ρ 1 · · · ρs−3

...
...

... . . . ...

ρs−1 ρs−2 ρs−3 · · · 1


.

Using mathematical induction, we can prove that

(1− ρ2)C−111 =



1 −ρ 0 · · · 0

−ρ 1 + ρ2 −ρ · · · 0

0 −ρ 1 + ρ2 · · · 0

...
...

... . . . ...

0 · · · −ρ 1 + ρ2 −ρ

0 0 · · · −ρ 1



,
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C12 =



ρs ρs+1 · · · ρp−1

ρs−1 ρs · · · ρp−2

...
... . . . ...

ρ ρ2 · · · ρp−s


.

Then,

C−111 C12 =



0 0 · · · 0

...
... . . . ...

0 0 · · · 0

ρ− ρ3 ρ2 − ρ4 · · · ρp−s − ρp−s+2


.

As ‖β0
Sc‖∞ = o

(
n−1/2

)
, we have

∥∥∥n 1
2C−111 C12β

0
Sc

∥∥∥
∞
≤ n

1
2 (ρ+ ρ2 − ρp−s+1 − ρp−s+2)

∥∥β0
Sc

∥∥
∞ = O(1),

∥∥∥n 1
2 (C21C

−1
11 C12 − C22)β

0
Sc

∥∥∥
∞
≤
∥∥∥n 1

2C21C
−1
11 C12β

0
Sc

∥∥∥
∞

+
∥∥∥n 1

2C22β
0
Sc

∥∥∥
∞
,

∥∥∥n 1
2C21C

−1
11 C12β

0
Sc

∥∥∥
∞
≤ n

1
2 (ρ2 + ρ3 − ρp−s+2 − ρp−s+3)

∥∥β0
Sc

∥∥
∞ = O(1),

∥∥∥n 1
2C22β

0
Sc

∥∥∥
∞
<

n
1
2

1− ρ
∥∥β0

Sc

∥∥
∞ = O(1).

Thus, this example satisfies Condition 8.
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Example 3. Equal correlation. The design matrix X satisfies

1

n
XTX =



1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

ρ ρ 1 · · · ρ

...
...

... . . . ...

ρ ρ ρ · · · 1


.

In this case,

C11 =



1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

ρ ρ 1 · · · ρ

...
...

... . . . ...

ρ ρ ρ · · · 1


, C12 =



ρ ρ · · · ρ

ρ ρ · · · ρ

ρ ρ · · · ρ

...
... . . . ...

ρ ρ · · · ρ


.

It is easy to show that 1 = (1, 1, · · · , 1)T is an eigenvector of C11, hence, it is

also an eigenvector of C−111 . Let SumSc be the sum of elements in β0
Sc . Then,

∥∥C−111 C12β
0
Sc

∥∥ =
ρ

1 + ρ(s− 1)
|SumSc | .

As we do not assume a bound for SumSc , this example does not always satisfy

Condition 8.

S3 Examples related to Condition 11

When the correlation between covariates satisfies cor(Xi, Xj) = ρ|i−j|, with
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ρ < 1/5, Condition 11 holds.

In this case, p ≤ n, and

(β0
Sc)

TC22(β
0
Sc) =

∑
s<i≤p
s<j≤p

(C22)ijβ
0
i β

0
j =

∑
s<i≤p
s<j≤p

ρ|i−j|β0
i β

0
j = o(1).

Lemma S4. For any p× 1 vector u, v, and p× p symmetric matrix A, we have

µp(A) ≤ uTAv
uT v

≤ µ1(A), where µp(A) and µ1(A) are the smallest and largest

eigenvalues of A, respectively.

From the above lemma,

µp(C
−1
λ2

) ≤
uTC−1

λ2
xk

uT xk
≤ µ1(C

−1
λ2

).

Assume that ρ < 1
5
, by Gershgorin circle theorem, there exists a δ > 0, such that

3 > µ1(Cλ2) ≥ µ2(Cλ2) ≥ . . . µp(Cλ2) > δ > 0.

Then we have

1
δ
> µ1(C

−1
λ2

) ≥ µ2(C
−1
λ2

) ≥ . . . µp(C
−1
λ2

) > 1
3
.

Thus,

|
uTC−1

λ2
xk

uT xk
| ≤ 1

δ
, max1≤k≤n |uTC−1λ2 xk| ≤

1
δ

max1≤k≤n |uTxk|.

Therefore, Condition 11 is guaranteed by assuming

max
1≤k≤n

|uTxk| = o(
√
n), uT

Scβ
0
Sc = o(

√
n).
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S4 Simulation Details

This section is organized as follows. Subsection S4.1 introduces the simulation

setups. Subsection S4.2 studies the impact of the partial ridge tuning parameter

λ2 on the coverage probabilities and the mean interval lengths of the confidence

intervals constructed by the rBLPR and pBLPR methods. In Subsection S4.3,

we compare the performance of the rBLPR and pBLPR methods with that of

the bootstrap lasso+ols method. Subsection S4.4 presents the comparison results

of rBLPR, pBLPR, LDPE, JM, and BLDPE. We investigate the robustness of

the rBLPR and pBLPR methods by varying signal-to-noise ratios in Subsection

S4.5. In Subsection S4.6, we present the comparison results of different methods

under a misspecified model.

We use R package “glmnet” to compute the lasso solution path and select the

tuning parameter, λ1, by 5-fold Cross Validation cv(lasso+ols); see Algorithm S3

for details. The number of replications in the bootstrap is 1000, that is, B =

1000.

S4.1 Simulation setups

We consider two generative models for data simulation.

(1) Linear regression model. The simulated data are drawn from the linear
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model:

yi = xT

i β
0 + εi, εi ∼ N(0, σ2), i = 1, . . . , n. (S4.1)

We fix n = 200 and p = 500. We generate the design matrix X in three scenar-

ios, using the R package “mvtnorm”. In Scenarios 1 and 2, we choose σ such that

the Signal-to-Noise-Ratio equals ten, that is, SNR = ||Xβ0||22/(nσ2) = 10. We

also examine other values of n, p and σ, but they are not reported here because

the conclusions are similar.

Scenario 1 (Normal): Predictor vectors xi, for i = 1, . . . , n, are generated

independently from a multivariate normal distribution N(0,Σ) with covariance

matrix Σ. We consider three types of Σ, following the setup in (Dezeure et al.,

2014).

Toeplitz : Σij = ρ|i−j|, with ρ = 0.5, 0.9,

Exponential decay : (Σ−1)ij = ρ|i−j|, with ρ = 0.5, 0.9,

Equal correlation : Σij = ρ, with ρ = 0.5, 0.9.

Scenario 2 (t2): Predictor vectors xi, for i = 1, . . . , n, are generated in-

dependently from a multivariate t distribution, with two degrees of freedom,

t2(0,Σ), where Σ is a Toeplitz-type matrix: Σij = ρ|i−j|, with ρ = 0.5, 0.9.

Scenario 3 (fMRI data): A 200 × 500 design matrix X is generated by

random sampling, without replacement, from the real 1750×2000 design matrix
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in the fMRI data (see Section 5 for more details on this data). Every column of

X is normalized to have zero mean and unit variance, and we choose σ, such

that SNR = 1, 5 or 10.

We also consider two cases to generate β0.

Case 1 (hard sparsity): β0 has 10 nonzero elements whose indices are ran-

domly sampled, without replacement, from {1, . . . , p}, and whose values are

generated from U [1/3, 1], a uniform distribution on the interval [1/3, 1]. The

remaining 490 elements are set to be zero.

Case 2 (weak sparsity): The setup is similar to that in (Zhang & Zhang,

2014). β0 has 10 large elements whose indices are randomly sampled, without

replacement, from {1, . . . , p}, and whose values are generated from a normal

distribution, N(1, 0.001). The remaining 490 elements decay at a rate of 1/(j +

3)2, that is, β0
j = 1/(j + 3)2.

The values of xi and β0 are generated once and then kept fixed. The average

absolute correlations among the covariates with large coefficients are 0.08, 0.06,

and 0.47 for the normal design with a Toeplitz type covariance matrix, normal

design with an Exponential decay type covariance matrix, and t2 design with

a Toeplitz type covariance matrix, respectively. After X = (xT
1 , . . . , x

T
n)T and

β0 are generated, we simulate Y = (y1, . . . , yn)T from the linear model (S4.1)

by generating independent error terms for 1000 replications. Then we construct
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confidence intervals for each regression coefficient, and compute their coverage

probabilities and mean interval lengths.

(2) Misspecified linear model. The simulation is based on a real data set:

fMRI (see Section 5 for more details). Let X and Y f (distinguished from the

simulated response Y below) denote the design matrix (with n = 1750 obser-

vations and p = 2000 predictors) and the actual response (of the ninth voxel) in

the fMRI data set. The original design matrix in the fMRI data set has 10921

predictors, but we first removed the predictors with variances no more than 1e−4

and selected p = 2000 predictors that have the largest absolute correlations with

the response. We compute the lasso+ols estimator βflasso+ols (selecting the tuning

parameter λ1 by 5-fold cross validation on lasso+ols):

βflasso = arg min
β

{
1

2n
||Y f −Xβ||22 + λ1||β||1

}
,

βflasso+ols = arg min
β:βj=0, j /∈S

1

2n
||Y f −Xβ||22,

where S = {j : (βflasso)j 6= 0} is the set of relevant predictors. We re-ordered the

predictors by sorting the values of βflasso+ols in a decreasing order, such that the

first four predictors corresponds to the largest 4 nonzero elements of βflasso+ols.

Then we generate the simulated response Y = (y1, . . . , yn)T from the following

model:

yi = E(yi|xi) + εi, εi ∼ N(0, σ2), (S4.2)
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E(yi|xi) = xT

i β
f
lasso+ols +

4∑
j=1

αjx
2
ij +

∑
1≤j<k≤4

αjkxijxik,

where αj , for j = 1, .., 4, and αjk, for 1 ≤ j 6= k ≤ 4, are independently gener-

ated from a uniform distribution, U(0, 0.1). The values of αj and αjk are gener-

ated once and then kept fixed. We set σ such that SNR =
∑n

i=1E(yi|xi)2/(nσ2) =

0.5, 1 or 5. Since the quadratic and interaction terms are not included in the de-

sign matrixX = (xT
1 , . . . , x

T
n)T, a linear model between Y andX , yi = xT

i β
0+εi,

is misspecified. In this misspecified linear model, the parameter vector β0 we

are interested in is the projection coefficient of E(Y | X) onto the subspace

spanned by the relevant predictors:

β0
S = (XT

SXS)−1XT

SE(Y | X); β0
Sc = 0.

Again, in order to compute the coverage probabilities and mean confidence inter-

val lengths, we generate Y by simulating independent error terms εi’s in equation

(S4.2) for 1000 times. The confidence level is set to 95%.

S4.2 Selection of the partial ridge tuning parameter λ2

We first study the effects of the partial ridge tuning parameter λ2 on the perfor-

mance of the bootstrap LPR methods (rBLPR and pBLPR). Figure S1 com-

pares the coverage probabilities and mean confidence interval lengths produced

by different values of λ2, based on the following simulation setup: the predictors
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are generated from a Normal distribution as in Scenario 1, with a Toeplitz type

covariance matrix corresponding to ρ = 0.5, and β0 is hard sparse. We also com-

pare the results for other simulation setups, but the conclusions are essential the

same and are not reported here. In order to give a better view, in the following

figures without further emphasizing, we sort the elements of β0 in a decreasing

order (in absolute value) and only plot the results for the largest 25 elements of

β0. We can see that both the coverage probabilities and mean confidence interval

lengths are very stable with respect to a large range of λ2 values. Our simula-

tion experiments show that fixing λ2 at 1/n works quite well for a wide range of

noise levels. For the sake of simplicity, we take λ2 = 1/n in this study, but ac-

knowledging that further research is needed to find a more systematic approach

for selecting λ2.

S4.3 Comparison of bootstrap lasso+ols and bootstrap LPR methods

We now compare the performance of the rBLPR and pBLPR methods with

that of the bootstrap lasso+ols method. Figure S2 shows the comparison results

in terms of coverage probabilities and mean confidence interval lengths for the

Normal distributed design matrix in Scenario 1 with a Toeplitz type covariance

matrix corresponding to ρ = 0.5 or 0.9, and for β0 with hard or weak sparsity.

For other design matrices, the conclusions are similar. We see that the rBLPR
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and pBLPR have similar performance, while the latter performs slightly better,

therefore, we only present the results for pBLPR in the following contents. In

the hard sparsity cases, all the methods work very well. In the weak sparsity

cases, however, the bootstrap lasso+ols method gives very poor coverage prob-

abilities (less than 50% for 95% confidence intervals) for the small, but nonzero

elements of β0. This is because these elements are seldom selected by the lasso

and, therefore, a large proportion of their bootstrap lasso+ols estimates are zero,

producing noncoverage confidence intervals, such as [0, 0]. The pBLPR method

dramatically improve the performance of the bootstrap lasso+ols method. It

produces promising coverage probabilities, at the price of slightly increasing

the confidence interval lengths. However, for medium-size components of β0,

pBLPR has problems covering true values even when design matrices are gen-

erated from a normal distribution (The coverage probability for one particular

such component is only 63%). This is because the lasso cannot identify these

medium-size components with high probability.

S4.4 Comparison of bootstrap LPR and de-sparsified methods

Figures S3, S4, and S5 show the comparison results of pBLPR, LDPE, JM, and

BLDPE, under a Normal design matrix with a Toeplitz type covariance matrix,

with an Equi.corr type covariance matrix, and a t2 distributed design matrix with
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a Toeplitz type covariance matrix, respectively. From Figure S3, we see that the

pBLPR gives promising results. Overall, it has good performance for large and

small components of β0, and in some cases it outperforms LDPE and JM, by

producing confidence intervals with, on average, 50% shorter lengths (see the

comparison results in Tables S1, S2, S3, and S4, which show the mean coverage

probabilities and the mean lengths of the confidence intervals for large coeffi-

cients and small including zero coefficients, respectively). When the predictors

have high correlations (see the results for ρ = 0.9), pBLPR gives confidence in-

tervals with higher coverage probabilities for large coefficients, and for small and

zero coefficients, it gives shorter confidence interval lengths with good coverage

probabilities. Following the evaluation scheme in (Dezeure et al., 2014), we also

show more details of the comparison results in Figures S8 – S11, which display

the 1, 000 confidence intervals and their empirical coverage of the true coeffi-

cients (blue line), for five methods: pBLPR, rBLPR, LDPE, JM, and BLDPE.

The black and red colors in these figures are used to indicate whether confidence

intervals cover the truth or not. The first 10 coefficients are the 10 largest (in

absolute values) nonzero coefficients. For each method, the 15 zero (Figures S8

and S9) or small, but nonzero (Figures S10 and S11) coefficients shown are those

with the worst empirical coverage probabilities. The numbers above confidence

intervals are the empirical coverage probabilities in percentages. These figures
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clearly show the advantegeous performance of the pBLPR in constructing con-

fidence intervals for a broad range of coefficients.

Under a Normal design matrix with an Equi.corr type covariance matrix (see

Figure S4), the JM does not work well when ρ = 0.9, because it dramatically

overestimates the noise variance. Our method also has unsatisfactory perfor-

mance in terms of coverage probabilities for large coefficients, because the lasso

cannot correctly select the large predictors due to the strong collinearity among

the predictors. Under a t2 design matrix, Figure S5 shows that no methods per-

form well, leaving large space for improvement. For other covariance structures,

the comparison results are shown in Figures S6 and S7.

The bootstrap version LDPE method (BLDPE) does improve the perfor-

mance of LDPE. It has the best coverage probabilities among the considered

methods, but its confidence interval lengths are close to or slightly shorter than

the better one of LDPE and JM and, hence, larger than the pBLPR method.

The selection frequency of each coefficient in the 1000 simulation runs is

shown in Figure S16 and S17. Although some important coefficients are missed

by the lasso, their empirical coverage probabilities are still good. This maybe

because the bootstrap runs help to correct the selection and the LPR estimator is

no longer sparse due to the partial ridge penalty.

The comparison results for rBLPR can be found in Figures S18 to S22.
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In addition, we also compare the bias, standard deviation (SD) and root-

mean square error (RMSE) of the de-sparsified estimators and the LPR estima-

tor, in order to see to what extent these methods reduce the lasso bias. Fig-

ure S12 shows the results. We found that, compared with LDPE and JM, the

LPR estimator has smaller biases (99% and 72% smaller, on average, than that

of LDPE and JM, respectively) for almost all coefficients, but the LPR estima-

tor has larger SDs (30% and 62% larger, on average, than that of LDPE and JM,

respectively) for large coefficients. Overall, LPR has 60% smaller RMSE than

LDPE, but 42% larger RMSE than JM. Another interesting finding is that al-

though de-sparsified estimators can dramatically decrease the biases of the lasso

by more than 40% for large β∗j ’s, they can increase the biases more than twice

for small, or zero β∗j ’s.

S4.5 Robustness to signal-to-noise ratios

Figure S13 shows the comparison results under varying signal-to-noise ratios

(SNRs). We can see that the coverage performance of the de-sparsified methods

is more robust to SNR changes. On the other hand, the pBLPR method works

well when SNR is high (say, larger than 5), but it may have low coverage prob-

abilities for nonzero coefficients when SNR is low. This is reasonable because

the lasso cannot identify nonzero coefficients with high probability when SNR is
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low. The pBLPR method depends more on the model selection performance of

the lasso. However, it has much shorter (more than 20%, on average) confidence

interval lengths for zero coefficients even when SNR is low.

S4.6 Comparison of different methods under the misspecified model

Figure S14 compares the performance of pBLPR, LDPE, JM, and BLDPE under

the misspecified linear model. The pBLPR performs slightly worse than the

other three methods in terms of coverage probabilities, but it produces more

than 50%, on average, shorter confidence intervals.

S5 Figures and Tables
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Figure S1: The effects of λ2 on coverage probabilities and mean confidence interval lengths. The

predictors are generated from a Normal distribution in Scenario 1 with a Toeplitz type covariance

matrix, and ρ = 0.5. The coefficient vector β0 is hard sparse.
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Figure S2: Comparison of coverage probabilities (the first row) and mean confidence inter-

val lengths (the second row) produced by four methods: rBLPR, pBLPR, residual bootstrap

lasso+OLS (denoted by rBLassoOLS) and paired bootstrap lasso+OLS (denoted by pBLas-

soOLS). The third row shows the coverage probabilities v.s. mean interval lengths. The design

matrix is generated from a Normal distribution with a Toeplitz type covariance matrix.
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Figure S3: Comparison of coverage probabilities (the first row) and mean interval lengths (the

second row) produced by pBLPR, LDPE, JM, and BLDPE. The third row shows the coverage

probabilities v.s. mean interval lengths. The design matrix is generated from a Normal distribu-

tion with a Toeplitz type covariance matrix.
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Figure S4: See caption of Figure S3 with the only difference being that the covariance matrix is

an Equi.corr type.
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Figure S5: See caption of Figure S3 with the only difference being the type of design matrix.

In this plot, the design matrix is generated from t2 distribution with a Toeplitz type covariance

matrix.
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Figure S6: See caption of Figure S3 with the only difference being that the covariance matrix is

Exp.decay type.
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Figure S7: See caption of Figure S3 with the only difference being that the design matrix is

generated from the fMRI data.
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Figure S8: 1, 000 confidence intervals and their empirical coverage of the true coefficients (blue

line). Black confidence intervals cover the truth, whereas red confidence intervals do not. The

first 10 coefficients are the largest 10 (non-zero). The remaining 15 coefficients shown are those

with the worst coverage for that method. The numbers above the intervals are the empirical

coverage probabilities in percentages. This plot is for hard sparsity and a Normal design matrix

with a Toeplitz type covariance matrix, and ρ = 0.5.
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Figure S9: See caption of Figure S8 with the only difference being ρ = 0.9.

Figure S10: See caption of Figure S8 with the only difference being weak sparsity.
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Figure S11: See caption of Figure S8 with the only differences being weak sparsity and ρ = 0.9.
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Figure S12: Comparison of bias, standard deviation and root-mean squared error. The design

matrix is generated from the Normal distribution with a Toeplitz type covariance matrix.



46LIST OF FIGURES

 pBLPR 
 LDPE 
 JM 
BLDPE

Figure S13: Comparison of coverage probabilities (first row) and mean interval lengths (second

row) produced by pBLPR, LDPE, JM, and BLDPE, when SNR changes. The third row shows

the coverage probabilities v.s. mean interval lengths. The design matrix is generated from a

Normal distribution with a Toeplitz type covariance matrix, and ρ = 0.5.
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Figure S14: Comparison of coverage probabilities and mean interval lengths produced by

pBLPR, LDPE, JM, and BLDPE. The results is based on data simulated from the misspecified

linear model (S4.2).

Figure S15: Comparison of interval lengths produced by pBLPR, LDPE, JM, and BLDPE. The

plot is generated using the ninth voxel as the response in the fMRI data.
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Figure S16: The selection frequency of each coefficient in 1000 simulation runs by the lasso

(the 10 nonzero coefficients in hard sparsity case and the first 15 largest coefficients in absolute

values in weak sparsity case).
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Figure S17: The selection frequency of each coefficient in 1000 simulation runs by the lasso

(the 10 nonzero coefficients in hard sparsity case and the first 15 largest coefficients in absolute

values in weak sparsity case).



50LIST OF FIGURES

 rBLPR 
 LDPE 
 JM 
BLDPE

Figure S18: Comparison of coverage probabilities (the first row) and mean interval lengths (the

second row) produced by rBLPR, LDPE, JM, and BLDPE. The third row shows the coverage

probabilities v.s. mean interval lengths. The design matrix is generated from a Normal distribu-

tion with a Toeplitz type covariance matrix.
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Figure S19: See caption of Figure S18 with the only difference being that the covariance matrix

is an Equi.corr type.
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Figure S20: See caption of Figure S18 with the only difference being the type of design matrix.

In this plot, the design matrix is generated from t2 distribution with a Toeplitz type covariance

matrix.
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Figure S21: See caption of Figure S18 with the only difference being that the covariance matrix

is Exp.decay type.
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Figure S22: See caption of Figure S18 with the only difference being that the design matrix is

generated from the fMRI data.
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S6 Details of real-data case study 2: neuroblastoma gene ex-

pression data

S6.1 Overview

In this section, we apply our pBLPR and rBLPR methods, as well as three

de-sparsified lasso methods, LDPE, JM, and BLDPE, to a data set contain-

ing 43, 827 gene expression measurements from the Illumina RNA sequencing

of 498 neuroblastoma samples (Gene Expression Omnibus accession number

GSE62564, with the file name GSE62564 SEQC NB RNA-Seq log2RPM.txt.gz)

generated by the Sequencing Quality Control (SEQC) consortium (Wang et al.,

2014; Su et al., 2014; Munro et al., 2014; Su et al., 2014). Each neuroblastoma

sample was labeled as high-risk (HR) or non-HR, indicating whether the sam-

ple belonged to a HR patient based on clinical evidence. There were 176 HR

samples and 322 non-HR samples. We encode the sample labels as a binary

vector Z ∈ R498, with Zi = 1 if the ith sample is HR, and Zi = 0 otherwise.

For the jth gene, we calculate the Pearson correlation between its gene expres-

sion vector Xj ∈ R498 and Z, and we check the ten genes with the highest

correlations. Among these ten genes, we find a gene CAMTA1, which has been

reported as a gene related to medulloblastoma (Wu et al., 2012), a type of cancer

closely related to neuroblastoma, and included in the Candidate Cancer Gene
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Database (CCGD) (Abbott et al., 2015). We use the gene expression vector of

CAMTA1 as the response vector Y , and we consider the gene expression matrix

of the other 43, 826 genes as the design matrix of dimensions 498×43, 826. Our

goal is to find genes that have significant effects on predicting the expression of

CAMTA1 in a multiple linear model. Given our lack of knowledge on the com-

plex regulatory relationships between genes, the linear model is almost certainly

a misspecified model. However, this case study would serve as a reasonable

real-data example to demonstrate the ability of our pBLPR and rBLPR meth-

ods and three de-sparsified lasso methods (LDPE, JM and BLDPE) to identify

significant predictors in a misspecified linear model.

S6.2 Results

We apply five methods (pBLPR, rBLPR, LDPE, JM, and BLDPE) to the linear

model with the gene expression levels of CAMTA1 as the response Y and the

other 2000 genes which have the largest correlations with CAMTA1 as features.

We define the “significant genes” found by each method as those features whose

95% confidence intervals of their coefficients do not contain zero. Based on

this definition, the numbers of significant genes found by the five methods are

summarized in Table S5.

The results show that LDPE and its bootstrap version (BLDPE) find the
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most significant genes; pBLPR and rBLPR find 91 and 26 significant genes,

respectively; JM finds only one significant genes. We investigate the biological

functions of those significant genes by performing a Gene Ontology (GO) anal-

ysis using a bioinformatics online tool GOrilla (Eden et al., 2009). Specifically,

between one of our methods (pBLPR or rBLPR) and one of the de-sparsified

lasso methods (LDPE, JM, or BLDPE), we check the significant genes found by

one method but not the other, and we obtain the functions (i.e., Biological Pro-

cess GO terms) enriched in those genes by GOrilla. An interesting observation is

that the functions related to natural and regulated cell deaths (e.g., apoptosis and

autophagy), which are key processes used to prevent cancer, are only enriched in

the significant genes found by pBLPR or rBLPR, but not in those found by any

of the de-sparisied lasso methods. On the other hand, only general functions,

such as basic processes in cells, are enriched in the significant genes found by a

de-sparsified lasso method, but not by our methods. Table S6 provides a sum-

mary of the numbers of the enriched GO terms and the specific terms related

to apoptosis or autophagy. The detailed GO analysis results are provided in the

Supplementary File.

The results of this case study suggest that pBLPR and rBLPR find sig-

nificant features that are more reasonable and interpretable, based on domain

knowledge, implying that pBLPR and rBLPR are robust to model misspecifi-
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cation.
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Table S1: Mean coverage probabilities over large β0
j ’s (first 10 largest in absolute value).

Normal design, Toeplitz

β0 ρ rBLPR pBLPR rBlassoOLS pBlassoOLS rBlasso pBlasso LDPE JM

hard .5 .94 .94 .94 .91 .85 .30 .99 .94

hard .9 .90 .97 .90 .87 .83 .31 .92 .77

weak .5 .94 .94 .94 .90 .83 .27 .95 .90

weak .9 .89 .96 .87 .84 .82 .32 .88 .73

Normal design, Exponential decay

hard .5 .94 .93 .94 .89 .84 .26 .98 .94

hard .9 .94 .93 .94 .88 .83 .25 .99 .95

weak .5 .94 .93 .94 .88 .80 .20 .93 .86

weak .9 .94 .94 .94 .88 .80 .19 .91 .87

Normal design, Equal correlation

hard .5 .78 .87 .71 .60 .65 .40 .90 .98

hard .9 .46 .66 .20 .40 .19 .33 .90 1.00

weak .5 .79 .82 .67 .48 .59 .33 .84 .96

weak .9 .34 .57 .15 .34 .15 .28 .88 1.00

t2 design, Toeplitz

hard .5 .65 .53 .39 .45 .23 .03 .78 .10

hard .9 .80 .89 .64 .77 .46 .10 .73 .08

weak .5 .41 .53 .33 .47 .16 .09 .63 .35

weak .9 .74 .51 .20 .46 .13 .20 .64 .30

fMRI design

β0 SNR rBLPR pBLPR rBlassoOLS pBlassoOLS rBlasso pBlasso LDPE JM

hard 1 .68 .76 .36 .61 .26 .37 .95 .94

hard 5 .78 .90 .73 .75 .63 .45 .92 .91

hard 10 .86 .93 .84 .79 .73 .46 .92 .90

weak 1 .63 .75 .30 .59 .22 .36 .95 .97

weak 5 .83 .93 .73 .69 .60 .43 .91 .90

weak 10 .91 .96 .88 .75 .79 .44 .90 .90
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Table S2: Mean confidence interval lengths over large β0
j ’s (first 10 largest in absolute value).

Normal design, Toeplitz

β0 ρ rBLPR pBLPR rBlassoOLS pBlassoOLS rBlasso pBlasso LDPE JM

hard .5 .24 .27 .18 .27 .15 .20 .37 .23

hard .9 .57 .60 .36 .47 .30 .35 .59 .34

weak .5 .44 .61 .33 .65 .28 .39 .64 .39

weak .9 1.20 1.30 .81 1.04 .65 .76 1.02 .65

Normal design, Exponential decay

hard .5 .23 .26 .17 .27 .15 .20 .35 .21

hard .9 .24 .27 .18 .28 .15 .20 .37 .22

weak .5 .35 .60 .26 .67 .24 .34 .71 .34

weak .9 .37 .64 .26 .71 .24 .34 .73 .37

Normal design, Equal correlation

hard .5 .53 .61 .38 .51 .34 .44 .48 .75

hard .9 .94 .94 .33 .49 .32 .44 1.01 3.45

weak .5 .99 1.18 .72 .94 .62 .81 .86 1.55

weak .9 1.59 1.52 .49 .74 .5 .68 1.84 6.44

t2 design, Toeplitz

hard .5 .79 .61 .24 .42 .14 .27 .51 .46

hard .9 1.20 1.11 .45 .64 .23 .39 .62 .41

weak .5 1.25 1.03 .40 .76 .16 .47 .9 .87

weak .9 2.63 1.89 .54 .96 .22 .51 1.33 1.11

fMRI design

β0 SNR rBLPR pBLPR rBlassoOLS pBlassoOLS rBlasso pBlasso LDPE JM

hard 1 1.42 1.32 .57 .69 .38 .48 1.40 1.18

hard 5 .87 .89 .46 .63 .38 .48 .63 .60

hard 10 .66 .71 .37 .53 .32 .42 .44 .43

weak 1 2.79 2.50 .86 1.17 .61 .82 2.56 2.20

weak 5 1.89 1.89 .89 1.15 .72 .91 1.15 1.12

weak 10 1.45 1.53 .73 1.09 .63 .83 .81 .80
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Table S3: Mean coverage probabilities over small β0
j ’s (except for the first 10 largest in absolute

value).

Normal design, Toeplitz

β0 ρ rBLPR pBLPR rBlassoOLS pBlassoOLS rBlasso pBlasso LDPE JM

hard .5 .94 .97 1.00 1.00 .96 1.00 .98 .99

hard .9 .93 .99 1.00 1.00 .97 1.00 .96 1.00

weak .5 .94 .98 .01 .06 .36 .33 .98 .99

weak .9 .93 .99 .03 .15 .20 .35 .96 1.00

Normal design, Exponential decay

hard .5 .94 .97 1.00 1.00 .96 1.00 .98 .99

hard .9 .94 .97 1.00 1.00 .96 1.00 .96 1.00

weak .5 .94 .98 .00 .06 .42 .32 .98 .99

weak .9 .94 .98 .01 .05 .42 .31 .97 1.00

Normal design, Equal correlation

hard .5 .92 .98 .98 1.00 .98 1.00 .95 1.00

hard .9 .93 .98 .98 1.00 .98 1.00 .94 1.00

weak .5 .91 .99 .16 .37 .07 .46 .95 1.00

weak .9 .93 .97 .07 .25 .04 .35 .94 1.00

t2 design, Toeplitz

hard .5 .97 .95 .99 1.00 .99 1.00 .93 1.00

hard .9 .94 .98 .99 1.00 .98 1.00 .91 1.00

weak .5 .97 .95 .05 .06 .07 .10 .92 1.00

weak .9 .96 .97 .04 .09 .05 .13 .9 1.00

fMRI design

β0 SNR rBLPR pBLPR rBlassoOLS pBlassoOLS rBlasso pBlasso LDPE JM

hard 1 .93 .98 .99 1.00 .97 1.00 .96 .99

hard 5 .93 .98 .99 1.00 .97 1.00 .96 .99

hard 10 .93 .98 .99 1.00 .98 1.00 .96 .99

weak 1 .93 .98 .05 .22 .05 .35 .96 .99

weak 5 .92 .99 .08 .27 .07 .42 .96 1.00

weak 10 .92 .99 .07 .26 .07 .44 .96 1.00
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Table S4: Mean confidence interval lengths over small β0
j ’s (except for the first 10 largest in

absolute value).

Normal design, Toeplitz

β0 ρ rBLPR pBLPR rBlassoOLS pBlassoOLS rBlasso pBlasso LDPE JM

hard .5 .09 .05 .00 .01 .01 .02 .38 .23

hard .9 .20 .12 .02 .03 .03 .03 .61 .35

weak .5 .16 .10 .00 .02 .03 .04 .66 .40

weak .9 .39 .24 .04 .06 .05 .06 1.04 .66

Normal design, Exponential decay

hard .5 .09 .05 .00 .01 .01 .02 .36 .22

hard .9 .09 .05 .00 .01 .01 .02 .38 .23

weak .5 .14 .09 .00 .02 .02 .04 .72 .35

weak .9 .14 .09 .00 .02 .02 .04 .74 .37

Normal design, Equal correlation

hard .5 .27 .17 .07 .05 .06 .05 .49 .76

hard .9 .75 .46 .13 .10 .12 .09 1.03 3.45

weak .5 .49 .34 .15 .12 .12 .10 .87 1.56

weak .9 1.36 .83 .22 .18 .23 .17 1.86 6.44

t2 design, Toeplitz

hard .5 .53 .24 .02 .03 .01 .02 .54 .51

hard .9 .56 .31 .04 .05 .02 .03 .60 .43

weak .5 .88 .39 .03 .05 .02 .03 .90 .90

weak .9 1.86 .83 .06 .08 .02 .04 1.33 1.12

fMRI design

β0 SNR rBLPR pBLPR rBlassoOLS pBlassoOLS rBlasso pBlasso LDPE JM

hard 1 .83 .5 .08 .09 .08 .08 1.40 1.17

hard 5 .37 .23 .04 .05 .05 .05 .63 .58

hard 10 .26 .16 .03 .03 .04 .04 .44 .42

weak 1 1.63 1.01 .19 .18 .15 .15 2.54 2.21

weak 5 .75 .50 .12 .12 .10 .10 1.13 1.13

weak 10 .52 .36 .07 .09 .08 .08 .80 .81
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Method pBLPR rBLPR LDPE JM BLDPE

# significant genes 91 26 501 1 135

Table S5: Numbers of significant genes found by the 95% confidence intervals constructed by

five methods.

A\B LDPE JM BLDPE

pBLPR 4/19 6/15 4/11

rBLPR 2/14 5/18 2/11

B\A LDPE JM BLDPE

pBLPR 0/67 0/0 0/18

rBLPR 0/78 0/0 0/18

Table S6: The numbers of Biological Process GO terms enriched in the significant genes found

by method A, but not by method B. The numerators are the numbers of GO terms related to

apoptosis or autophagy, and the denominators are the total numbers of GO terms enriched in

the significant genes. For example, 4/19 in the left table indicates that there are 19 GO terms

enriched in the significant genes found by pBLPR, but not by LDPE, and among these 19 terms,

4 terms are related to apoptosis or autophagy.
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S7 Algorithms

Algorithm S1 Residual Bootstrap LPR (rBLPR) procedure for confidence

interval construction

Input: Data (X, Y ); Confidence level 1− α; Number of replications B.

Output: Confidence interval [lj, uj] of β0
j , for j = 1, . . . , p.

1: Compute the Lasso+OLS estimator β̂Lasso+OLS, given data (X, Y );

2: Compute residual vector ε̂ = (ε̂1, . . . , ε̂n)T = Y −Xβ̂Lasso+OLS;

3: Re-sample from the empirical distribution of the centered residual {ε̂i −

¯̂ε, i = 1, . . . , n}, where ¯̂ε = 1
n

n∑
i=1

ε̂i, to form ε∗ = (ε∗1, . . . , ε
∗
n)T ;

4: Generate residual Bootstrap response Y ∗rboot = Xβ̂Lasso+OLS + ε∗;

5: Compute the residual Bootstrap LPR, β̂∗rBLPR, based on (X, Y ∗rboot) as in equa-

tions (2.6) and (2.7);

6: Repeat steps 3-5 for B times, and obtain β̂∗(1)rBLPR, . . . , β̂
∗(B)
rBLPR;

7: For each j = 1, . . . , p, compute the α/2 and 1−α/2 quantiles of
{

(β̂
∗(b)
rBLPR)j

}B
b=1

,

and denote them as aj and bj , respectively; let lj = (β̂LPR)j +(β̂Lasso+OLS)j−

bj and uj = (β̂LPR)j + (β̂Lasso+OLS)j − aj;

8: return 1− α confidence interval [lj, uj], for j = 1, . . . , p.
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Algorithm S2 Paired Bootstrap LPR (pBLPR) procedure for confidence

interval construction

Input: Data (X, Y ); Confidence level 1− α; Number of replications B.

Output: Confidence interval [lj, uj] of β0
j , for j = 1, . . . , p.

1: Generate a Bootstrap sample (X∗pboot, Y
∗

pboot) = {(x∗i , y∗i ), i = 1, . . . , n} from

the empirical distribution of {(xi, yi), i = 1, . . . , n};

2: Based on (X∗pboot, Y
∗

pboot), compute the paired Bootstrap Lasso estimator,

β̂∗pBLasso, as in equation (2.8) and its selected predictor set, Ŝ∗pBLasso; and then

compute the paired Bootstrap LPR estimator, β̂∗pBLPR, as in equation (2.9);

3: Repeat steps 1-2 for B times and obtain β̂∗(1)pBLPR, . . . , β̂
∗(B)
pBLPR;

4: For each j = 1, . . . , p, compute the α/2 and 1−α/2 quantiles of
{

(β̂
∗(b)
pBLPR)j

}B
b=1

,

and denote them as lj and uj , respectively;

5: return 1− α confidence interval [lj, uj], for j = 1, . . . , p.
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Algorithm S3 K-fold cross validation based on lasso+ols: cv(lasso+ols)

Input: Design matrix X , response Y , a sequence of tuning parameter values

λ1, . . . , λJ , and number of folds K.

Output: The optimal tuning parameter selected by cv(lasso+ols): λoptimal.

1: Randomly divide the data z = (X, Y ) intoK roughly equal folds {zk, k = 1, . . . , K} ;

2: For each k = 1, . . . , K, denote Ŝ(k)(λ0) = ∅ and β̂(k)
lasso+ols(λ0) = 0.

• Fit the model with parameters λj, j = 1, . . . , J to the otherK−1 folds,

z−k = z \ zk, of the data, giving the lasso solution path β̂(k)(λj), j =

1, . . . , J , and compute the sets of selected covariates on the path

Ŝ(k)(λj) =
{
l : β̂

(k)
l (λj) 6= 0

}
, for j = 1, . . . , J ;

• For each j = 1, . . . , J , compute the lasso+ols estimator:

β̂
(k)
lasso+ols(λj) =


argmin

β: βj=0, j /∈Ŝ(k)(λj)

 1

2|z−k|
∑
i∈z−k

(yi − xTi β)2
 , if Ŝ(k)(λj) 6= Ŝ(k)(λj−1),

β̂
(k)
lasso+ols(λj−1), otherwise;

• Compute the prediction error PE(k) on the kth fold of the data:

PE(k)(λj) =
1

|zk|
∑
i∈zk

(
yi − xTi β̂

(k)
lasso+ols(λj)

)2
;

3: Compute cross validated error CV E(λj), j = 1, . . . , J :

CV E(λj) =
1

K

K∑
k=1

PE(k)(λj);



S7. ALGORITHMS67

4: Compute the optimal λ selected by cv(lasso+ols):

λoptimal = arg min
λj : j=1,...,J

CV E(λj);

5: return λoptimal.
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