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S1 Proofs and Lemmas

Proof of Theorem 1: By the polar transformation, we have

F0(r,θ) =

∫ r

0

∫
β≼θ

f0(z)z
d−1J(β)dβdz,

where J(β) =
∏d−2

j=1 | sin
d−j−1 βj| is formulated from the absolute value of

the Jacobi determinant of the polar transformation. Then,

F0(r,θ) = ad(θ)b(r)|Θ|
∫ ∞

0

ud−1f0(u)du

where

b(r) =

∫ r

0

ud−1f0(u)du/

∫ ∞

0

ud−1f0(u)du,

implying the necessity. To show sufficiency, let h(r,θ) be the Radon-

Nikodym derivative with respect to the Lebesgue measure on r ∈ [0,∞)

and θ ∈ Θ. By the uniqueness of the Radon-Nikodym derivative, there ex-

ists q(r), such that h(r,θ) = J(θ)q(r) almost surely. The absolute Jacobi

determinant of the inverse of the polar transformation is u−(d−1)J−1(θ),

indicating that the functions of θ can be cancelled out after the transfor-

mation is applied. Therefore, λ(s) does not depend on θ.

Proof of Theorem 2: Let E = {E1, · · · , Em} be a collection of disjoint

subsets of W . Using the method given by Theorem 1.3 of Ibragimov (1962)

which has also been used by Herrndorf (1984), we can partition E into two
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sets of small blocks, denoted by C = {C1, · · · , Ck1} and D = {D1, · · · ,Dk2}

with k1, k2 → ∞ as h → ∞ such that minC∈Cj ,C′∈Cj′ ,j ̸=j′ ρ(C,C
′) ≥ u and

N(E) = N(C)+N(D). By the method of Theorem 1.4 in Ibragimov (1962),

we can choose k1 such that the mixing coefficient between disjoint Ej and

Ej′ is bounded by h(1+u)/(2d) for any positive u when h is sufficiently large.

Then (e.g., by Lemma 2 of (Billingsley, 1995, P. 365)), we have∣∣∣∣∣Eeit∑m
j=1 Mη(Ej) −

k1∏
j=1

EeitMη(Cj)

∣∣∣∣∣ ≤ 4k1α(hu, hv)

where v = maxC∈Cj ,j=1,··· ,k1 ρ(C). Then, the right hand side of the above

goes to 0 as h → ∞. Since λ4 is uniformly bounded, we have the Lya-

pounov Condition (Billingsley, 1995, P. 362), implying that the asymptotic

normality holds. We draw the conclusion about the central limit theorem

of Mη(E) as η → ∞ for any E ⊆ W . Using the same method again,

we can show that (Mη(E1), · · · ,Mη(Em)) for any fixed m and disjoint

E1, · · · , Em ⊆ W are asymptotically independent. The next issue is to show

the tightness, which can also be derived by the standard way. In particular,

let E = {Ex = H−1(
∏d

j=1(0, xi] : x = (x1, · · · , xd), 0 ≤ xi ≤ 1} for any

CDF H on W . Let F (x) = E(Ex)/E(W ). Then, F is a valid d-dimensional

CDF onW . Let Fj be the jth marginal CDF of F . For any ϵ ∈ (0, 1), there

is an integer K such that d/ϵ2 ≤ K ≤ d/ϵ2 + 1. Let xjk = F−1
j [k/(K + 1)]

for k = 0, 1, · · · , K + 1. Then, ϵ2/(ϵ2 + d) ≤ Fj(xj(k+1)) − Fj(xjk) ≤ ϵ2/d.
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Let Xϵ = {x = (x1, · · · , xd) : xj = xjk for some k = 0, 1, · · · , K + 1}.

Then, #Xϵ = (K + 2)d ≤ [(d + 3)/ϵ2]d. For any gx ∈ G = {Ix : x ∈ W},

we can find x′,x′′ ∈ Xϵ such that x′ ≼ y ≼ x′′ but there is no x∗ ∈ Xϵ

satisfying x′i < x∗i < x′′i for some i = 1, · · · , d, where xi, x∗i , and x′′i are the

ith component of x, x∗, and x′′, respectively. Then, gx′ ≤ gx ≤ gx′′ and

∥gx′′ − gx′∥2F ≤
∑r

i=1[Fi(x
′′
i )− Fi(x

′
i)] ≤ ϵ2. Because∫ 1

0

log1/2(#Xϵ)dϵ ≤
∫ 1

0

{d[log(r + 3) + 2 log ϵ]}1/2dϵ <∞,

G is F -Donsker (van der Vaart, 1998, P. 270), implying the tightness. The

next conclusion about the existence of ν can be shown by the infinite di-

visiability of the limiting distribution given by the functional central limit

theorem. The third conclusion can be drawn by properties of the variance

structure of N given in Section 2.1.

We now turn our attention to the derivation of the asymptotic null

distribution and the asymptotic power function of Td. If H0 holds, then

E[N(AC∩BD)] = aDE[N(AC)], indicating that E[Nη(AC∩BD)]−aDE[Nη(AC)] =

0. Then, we have the following Lemmas.

Lemma 1. Let

ψη(C,D) = κ1/2η ξ−1

(
Nη(AC ∩BD)− aDNη(AC)

Nη

− ϕη(C,D)

)
, (S1.1)

for C ∈ B([0, 1]) and D ∈ B(Θ). If all of assumptions of Theorem 2 hold,
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then ψη(C1, D1)

ψη(C2, D2)

 N


 0

0

 ,

 σC1,D1,C1,D1 σC1,D1,C2,D2

σC2,D2,C1,D1 σC2,D2,C2,D2


 ,

where σCi,Di,Cj ,Dj
= limη→∞ σCi,Di,Cj ,Dj ,η (assuming it exists) with

σCi,Di,Cj ,Dj ,η

=π(ACi∩Cj
∩BDi∩Dj

)[π(ACi
∩BD′

i
) + (1− aDi

)π(AC′
i
)][π(ACj

∩BD′
j
) + (1− aDj

)π(AC′
j
)]

− π(ACi∩Cj
∩BDi∩D′

j
)[π(ACi

∩BD′
i
) + (1− aDi

)π(AC′
i
)][π(ACj

∩BDj
) + aDj

π(AC′
j
)]

− π(ACi∩C′
j
∩BDi

)[π(ACi
∩BD′

i
) + (1− aDi

)π(AC′
i
)][π(ACj

∩BDj
)− aDj

π(ACj
)]

− π(ACi∩Cj
∩BD′

i∩Dj
)[π(ACi

∩BDi
) + aDi

π(AC′
i
)][π(ACj

∩BD′
j
) + (1− aDj

)π(AC′
j
)]

+ π(ACi∩Cj
∩BD′

i∩D′
j
)[π(ACi

∩BDi
) + aDi

π(AC′
i
)][π(ACj

∩BDj
) + aDj

π(AC′
j
)]

+ π(ACi∩C′
j
∩BD′

i
)[π(ACi

∩BDi
) + aDi

π(AC′
i
)][π(ACj

∩BDj
)− aDj

π(ACj
)]

− π(AC′
i∩Cj

∩BDi∩Dj
)[π(ACi

∩BDi
)− aDi

π(ACi
)][π(ACj

∩BD′
j
) + (1− aDj

)π(AC′
j
)]

+ π(AC′
i∩Cj

∩BDi∩D′
j
)[π(ACi

∩BDi
)− aDi

π(ACi
)][π(ACj

∩BDj
) + aDj

π(AC′
j
)]

+ π(AC′
i∩C′

j
∩BDi

)[π(ACi
∩BDi

)− aDi
π(ACi

)][π(ACj
∩BDj

)− aDj
π(ACj

)]}

− π(AC′
i∩Cj

∩BD′
i∩Dj

)[π(ACi
∩BDi

)− aDi
π(ACi

)][π(ACj
∩BD′

j
) + (1− aDj

)π(AC′
j
)]

+ π(AC′
i∩Cj

∩BD′
i∩D′

j
)[π(ACi

∩BDi
)− aDi

π(ACi
)][π(ACj

∩BDj
) + aDj

π(AC′
j
)]

+ π(AC′
i∩C′

j
∩BD′

i
)[π(ACi

∩BDi
)− aDi

π(ACi
)][π(ACj

∩BDj
)− aDj

π(ACj
)],

for i, j = 1, 2.
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Proof of Lemma 1: Let Cc1
1 = C1 if c1 = 1 and Cc1

1 = C ′
1 if c1 = 2,

Dd1
1 = D1 if d1 = 1 and Dd1

1 = D′
1 if d1 = 2, Cc2

2 = C2 if c2 = 1 and

Cc2
2 = C ′

2 if c2 = 2, Dd2
2 = D2 if d2 = 1 and Dd2

2 = D′
2 if d2 = 2. Let

yη = (Y1η, · · · , Y16η)⊤ and ν = (ν1, · · · , ν16)⊤, where Yiη = Nη(AC
c1
1 ∩Cc2

2
∩

B
D

d1
1 ∩Dd2

2
)/κη and νi = π(AC

c1
1 ∩Cc2

2
∩B

D
d1
1 ∩Dd2

2
) with i = 8(c1 − 1) + 4(d1 −

1)+2(c2−1)+d2 and c1, c2, d1, d2 = 1, 2. Then,
∑16

i=1 νi = 1. From Theorem

2, we obtain E(yη) = ν and (κη/ξ)
1/2(yη −ν) N [0, diag(ν)], as η → ∞.

Let h(z) = (h1(z)), h2(z))
⊤, where h1(z) = (

∑4
i=1 zi−aD1

∑8
i=1 zi)/

∑16
i=1 zi,

h2(z) = [
∑4

i=1 z4(i−1)+1 − aD2

∑4
i=1(z4(i−1)+1 + z4(i−1)+2)]/

∑16
i=1 zi, and z =

(z1, · · · , z16)⊤. Let ḣ1(z) and ḣ2(z) be the gradient vectors of h1(z) and

h2(z), respectively. Let ḣij(z) is the jth component of ḣi(z) for i = 1, 2.

Then,

ḣ1j(z) =


z−2
+ {

∑4
k=1 z4+k + (1− aD1)

∑8
k=1 z8+k}, j = 1, 2, 3, 4,

−z−2
+ {

∑4
k=1 zk + aD1

∑8
k=1 z8+k}, j = 5, 6, 7, 8,

−z−2
+ {

∑4
k=1 zk − aD1

∑8
k=1 zk}, otherwise,

and

ḣ2j(z) =


z−2
+

∑3
k=0{z4k+2 + (1− aD2)(z4k+3 + z4k+4)}, j = 1, 5, 9, 13,

−z−2
+

∑3
k=0{z4k+1 + aD2(z4k+3 + z4k+4)}, j = 2, 6, 10, 14,

−z−2
+

∑3
k=0{z4k+1 − aD2(z4k+1 + z4k+2)}, otherwise,

where z+ =
∑16

i=1 zi. We get h1(yη) = [Nη(AC1 ∩ BD1) − aD1Nη(AC1)]/Nη
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and h2(yη) = [Nη(AC2∩D2) − aD2Nη(BC2)]/Nη. For the asymptotic mean,

we get ϕη(C1, D1) = h1(ν) = π(AC1 ∩ BD1)− aD1π(AC1) and ϕη(C2, D2) =

h2(ν) = π(AC2 ∩ BD2) − aD2π(AC2). We compute ḣ⊤1 (ν)diag(ν)ḣ1(ν),

ḣ⊤2 (ν)diag(ν)ḣ2(ν), and ḣ⊤1 (ν)diag(ν)ḣ2(ν). Combining those, we have

the expression of σCi,Di,Cj ,Dj
. We finally obtain the result by the Delta

theorem.

Lemma 2. Let

ψη,H0(C,D) = κ1/2η

(
Nη(AC ∩BD)− aDNη(AC)

ξNη

)
, (S1.2)

for C ∈ B([0, 1]) and D ∈ B(Θ). If all assumptions of Theorem 2 hold

and H0 also holds, then ψη,H0(C1, D1)

ψη,H0(C2, D2)

 N


 0

0

 ,

 σC1,D1,C1,D1;H0 σC1,D1,C2,D2;H0

σC2,D2,C1,D1;H0 σC2,D2,C2,D2;H0




for any C1, C2 ∈ B([0, 1]) and D1, D2 ∈ B(Θ), where σCi,Di,Cj ,Dj ;H0 is the

limit of π(Ci ∩ Cj)(aDi∩Dj
− aDi

aDj
) as η → ∞ for i, j = 1, 2.

Proof of Lemma 2: By π(AC∩BD) = aDπ(AC) for all C ∈ B([0, 1]) and

D ∈ B(Θ) under H0, we have ϕη(C,D) = 0, implying (S1.2). Considering

the same condition in the expression of σCi,Di,Cj ,Dj
, we obtain the expression

of σCi,Di,Cj ,Dj ;H0 .
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As ξ is an unknown parameter, it is important to have a way to estimate

it. According to Lemma 2, for any given C ∈ B(R+) and D ∈ B(Θ), if

η is large, then ξ−2V{Nη(AC ∩ BD)} ≈ E{Nη(AC ∩ BD)} = aDµη(AC),

implying Nη(AC ∩BD) approximately satisfies the conditions of the quasi-

Poisson model. Based on a partition {Θ1, · · · ,ΘK} of Θ, using a kind of

a Pearson-type statistic recommended by McCullagh (1983), we obtain a

moment estimator of ξ as

ξ̂2C =
1

K − 1

K∑
i=1

[Nη(AC ∩BΘi
)− N̂η(AC ∩BΘi

)]2

N̂η(AC ∩BΘi
)

,

where N̂η(AC ∩ BΘi
) = aΘi

Nη(AC) is the predicted value of Nη(AC ∩ BΘi
)

under N0. If we choose C = R+, then we obtain the case for the entire Rd.

We choose C = [0, 1] for a bounded Wη.

Lemma 3. Assume that all assumptions of Theorem 2 hold and H0 also

holds. If the partition {Θ1, · · · ,ΘK} is chosen in a way such that ηd mini≤K aΘi
→

∞ and maxi≤K aΘi
→ 0, then ξ̂2C

P→ ξ2 for any C ∈ B([0, 1]) with |C| > 0.

Proof of Lemma 3: As
∑K

i=1 aΘi
= 1 and maxi≤K aθi → 0, we con-

clude K → ∞. By Lemma 2, we obtain ψη,H0(C,Θi) N [0, aΘi
(1− aΘ1)].

Using ηd mini≤K aΘi
→ ∞, we obtain κaΘi

→ ∞ for all i ≤ K, imply-

ing that a
−1/2
Θi

ψη,H0(C,Θi)  N (0, 1 − aΘi
) for each individual i. Since

maxi≤K aΘi
→ 0, we further conclude that a

−1/2
Θi

ψη,H0(C,Θi) N (0, 1) for
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each individual i. Since E[Nη(AC ∩ BD)] = aDE[Nη(AC)] under H0, we

conclude that

Nη(AC ∩BΘi
)− N̂η(AC ∩BΘi

)

N̂
1/2
η (AC ∩BΘi

)
=

ξNη(AC)

{E[Nη(AC)]}1/2
a
−1/2
Θi

ψη,H0(C,Θi)

weakly converges to N(0, ξ2) for every i. By the properties of functional

central limit theorems, we conclude ξ̂2C
P→ ξ2 for any C ∈ B([0, 1]) with

|C| > 0.

Proof of Theorem 3: Let Cr̃ = [0, r̃] and Dθ = {β : β ≼ Θ,β ∈ Θ}

for any r > 0 and θ ∈ Θ. Denote r = b(r̃) and t′ = b(r̃′). We obtain

σ(Cr̃, Dθ, Cr̃′ , Dθ′) = b(r̃ ∧ r̃′)[ad(θ ∧ θ′) − ad(θ)ad(θ
′)] = (r ∧ r′)[ad(θ ∧

θ′) − ad(θ)ad(θ
′)], which is the covariance function of Gd(r,θ). Note that

Nη/κη
P→ 1 and ξ̂2

P→ ξ2. By Theorem 2, we get Td  ∥Gd∥∞.

Proof if Theorem 4: If H0 is violated, then we can find Cr and Dθ such

that ϕη(Cr, Dθ) ̸= 0. By Lemma 1, we get

κ1/2η

{
Nη(ACr ∩BDθ

)− aDNη(ACr)

ξNη

− ϕη(Cr, Dθ)

}
 N [0, σCr,Dθ ,Cr,Dθ

].

Since σCr,Dθ ,Cr,Dθ
is uniformly bounded and Nη/κη

P→ 1, we conclude

Nη(ACr ∩BDθ
)− aDNη(ACr)

ξN
(1+ϵ)/2
η

− κ(1−ϵ)/2
η ϕη(Cr, Dθ)

P→ 0,∀ ϵ > 0.

By {|κ(1−ϵ)/2
η ϕη(Cr, Dθ)| ≥ cN

1/2−ϵ
η } = {|ϕη(Cr, Dθ)| ≥ cκ

−ϵ/2
n (Nη/κη)

1/2−ϵ},

we conclude limη→∞ P (|κ(1−ϵ)/2
η ϕη(Cr, Dθ)| ≥ cN

1/2−ϵ
η ) = 1 for any c > 0.
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Thus,

P

{∣∣∣∣∣Nη(AACr
∩BDθ

)− aDNη(ACr)

ξN
(1+ϵ)/2
η

∣∣∣∣∣ ≥ cN1/2−ϵ
η

}
for any ϵ > 0. By the definition of Td and the relationship between Nη and

κη, we draw the conclusion of the theorem.

Proof of Theorem 5: Let E = {Ar ∩Bθ : r ∈ [0, 1],θ ∈ Θ} and

M̃η(Ar ∩Bθ) =
Nη(Arη ∩Bθ)− E[Nη(Arη ∩Bθ)]

ξκ
1/2
η

.

By Theorem 2 and Lemma 1, we have M̃η(·)
D→ Z(·), where Z(·) is a

mean zero Gaussian process on E with its covariance function given by

E[Z(Ar1 ∩ Bθ1)Z(Ar2 ∩ Bθ2)] = σAr1 ,Bθ1
,Ar2 ,Bθ2

. We express M̃η(Ar ∩ Bθ)

into

M̃η(Ar ∩Bθ)

=
Nη(Arη ∩Bθ)− ad(θ)E[Nη(Arη)]

ξκ
1/2
η

+
ad(θ)E[Nη(Arη)]− E[Nη(Arη ∩Bθ)]

ξκ
1/2
η

=
Nη(Arη ∩Bθ)− ad(θ)E[Nη(Arη)]

ξκ
1/2
η

− κ
1/2
η ϕη(Arη, Bθ)

ξ

=
Nη(Arη ∩Bθ)− ad(θ)Nη(Arη)

ξκ
1/2
η

+
ad(θ){Nη(Arη)− E[Nη(Arη)]

ξκ
1/2
η

− κ
1/2
η ϕη(Arη, Bθ)

ξ
.

As η → ∞, the second term goes to a mean zero Gaussian process. The

third term goes to a constant by the assumption. By the linkage between

the first term and Td,ξ, we conclude that limη→∞ P (c1 < Td,ξ ≤ c2) > 0 for

any 0 ≤ c1 < c2 < ∞. We draw the conclusion by the Radon-Nykodym

Theorem (Billingsley, 1995, P. 422) with consistent estimator of ξ.
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