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S1 Proofs and Lemmas

Proof of Theorem 1: By the polar transformation, we have

Fo(r,0) = /0 T [ B Baps

where J(3) = H;.l;f |sin®™~! 3;| is formulated from the absolute value of

the Jacobi determinant of the polar transformation. Then,

Fo(r,0) = aq(6)b(r)|0) /0 " o () du

where
b(r) = /7" u fo(u)du/ /00 u® fo(u)du,
0 0

implying the necessity. To show sufficiency, let h(r,0) be the Radon-
Nikodym derivative with respect to the Lebesgue measure on r € [0, 00)
and @ € ©. By the uniqueness of the Radon-Nikodym derivative, there ex-
ists q(r), such that h(r,0) = J(0)q(r) almost surely. The absolute Jacobi
determinant of the inverse of the polar transformation is u~(4=1.J=1(8),
indicating that the functions of 8 can be cancelled out after the transfor-
mation is applied. Therefore, A(s) does not depend on 6. ]

Proof of Theorem 2: Let € = {Ey,--- , E,,} be a collection of disjoint
subsets of W. Using the method given by Theorem 1.3 of [bragimov (1962)

which has also been used by Herrndorf (1984), we can partition £ into two



sets of small blocks, denoted by C = {Cy,--- ,Cx,} and D = {Dy,--- , Dy, }
with ki, ky — 00 as h — oo such that mincec; crec; j4 p(C,C") > u and
N(€) = N(C)+ N(D). By the method of Theorem 1.4 in [bragimov (1962),
we can choose k; such that the mixing coefficient between disjoint £; and
E; is bounded by h1+%/(2d) for any positive u when h is sufficiently large.

Then (e.g., by Lemma 2 of (Billingsley, 1995, P. 365)), we have

k1
Eet =1 Mn(Fy) _ H Ec™nC)| < 4k a(hu, hv)

i=1

where v = maxcec; j=1,- k, P(C). Then, the right hand side of the above
goes to 0 as h — oo. Since )4 is uniformly bounded, we have the Lya-
pounov Condition (Billingsley, 1995, P. 362), implying that the asymptotic
normality holds. We draw the conclusion about the central limit theorem
of M,(E) as n — oo for any £ C W. Using the same method again,
we can show that (M, (E1), -, M,(E,)) for any fixed m and disjoint
Ey, - E, CW are asymptotically independent. The next issue is to show
the tightness, which can also be derived by the standard way. In particular,
let £ ={E, = H’I(ngl(O,zi] cx = (x1,+,24),0 < 2; < 1} for any
CDF H on W. Let F(x) = E(Ex)/E(W). Then, F is a valid d-dimensional
CDF on W. Let F; be the jth marginal CDF of F'. For any € € (0, 1), there
is an integer K such that d/e* < K <d/e* + 1. Let aj, = F; '[k/(K +1)]

for k =0,1,--- , K + 1. Then, ¢¢/(e> +d) < Fj(zjx+1)) — Fj(zjr) < 2/d.



Let Xe = {x = (21,---,2q) : v; = xj), for some k = 0,1,--- , K + 1}.
Then, #X. = (K +2)% < [(d + 3)/e*]%. For any g, € G = {I, : x € W},
we can find x’,x” € X, such that x’ <y < x” but there is no x* € X,
satisfying o} < 2 < zf for some i = 1,--- | d, where z;, z}, and z/ are the
ith component of x, x*, and x”, respectively. Then, g < gy < gy and

lgxr — g |5 < ST0_ [Fi(2)) — Fi(x})] < €. Because

)

1 1
/ log'/?(#X . )de < / {d[log(r + 3) + 2log €] }/?de < o0,
0 0

G is F-Donsker (van der Vaart, 1998, P. 270), implying the tightness. The
next conclusion about the existence of v can be shown by the infinite di-
visiability of the limiting distribution given by the functional central limit
theorem. The third conclusion can be drawn by properties of the variance
structure of N given in Section 2.1. O

We now turn our attention to the derivation of the asymptotic null
distribution and the asymptotic power function of T,. If Hy holds, then
E[N(AcNBp)] = apE[N(A¢)], indicating that E[N,(AcNBp)]—apE[N,(Ac)] =

0. Then, we have the following Lemmas.

Lemma 1. Let

(AC N BD) - aDNn(Ac)

n

$,(C. D) = KM% (N” —s(C D)) . (L)

for C € %(]0,1]) and D € A(O). If all of assumptions of Theorem 2 hold,



then

Y, (Cy, Dy) 0 0Cy.D1,C1.D1 OCy,D1,Co.Do

~ N ) )

wn(C% DZ) 0 0C5,D2,01,D1  0C2,D2,02,D2

where o, p,.c;,p; = liMy 00 0¢, D;,c;,D; (asSUMing it exists) with

0¢C;,D;,Cy,D5,m

=7 (Ac,nc, N Bp,np,)[m(Ac; N Bpy) + (1 = ap,)m(Ac)][w(Ac, N Bpy) + (1 — ap,)m(Acy)]
— 7(Acine; N Bpynpy)[m(Ac, N Bp;) + (1 — ap,)7(Acy)][7(Ac; N Bp,) + ap,m(Acy)]
— W(Acimc; N Bp,)[r(Ac, N Bpr) + (1 — ap,)7(Ac:)][7(Ac; N Bp,) — ap,m(Ag;)]
— m(Ac,nc; N Boyap,)[m(Ac; N Bp,) + ap,m(Acy)][m(Ac, N Bpy) + (1 — ap,)m(Acy)]
+m(Acinc, N Boinpy) (A, N Bp,) + ap,(Ac)][7(Ac, N Bp,) + ap,m(Ac)]
+7m(Ac,nc; N Bpy)[w(Ac, N Bp,) + ap,m(Acy)|[m(Ac, N Bp,) — ap,m(Ac,)]
— 1(Acine; N Bo,ap,)[m(Ac, N Bp,) — ap,m(Ac,)][m(Ac; 0 Bpy) + (1 — ap,)m(Acy)]
+7(Acine, N Bp,ap:)[m(Ac, N Bp,) — ap,m(Ac,)|[w(Ac, N Bp,) + ap,m(Ac:)]
+ W(Acgmcé N Bp,)[7(Ac, N Bp,) — ap,n(Ac,)][m(Ac, N Bp,) — ap,m(Ag;)]}
— 1(Acine; N By, [m(Ac, N Bp,) — ap,m(Ac,)][m(Ac; N Bpy) + (1 — ap,)m(Acy)]
+ m(Acine; N Boyapy ) [m(Ac, N Bp,) — ap,m(Ac,)|[r(Ac, N Bp,) + ap,m(Acy)]
+ W(ACZ(QC; N BDQ)[W(ACZ. N Bp,) — ap,(Ac,)][r(Ac, N Bp,) — ap,m(Ag,)],

fora, 5 =1,2.



Proof of Lemma O: Let C7* = Cy if ¢ = 1 and CT* = C] if ¢ = 2,
DI = D, ifd, = 1and D{* = D} ifdy = 2, CP = Cy if ¢, = 1 and
C$2 = C)if ¢y =2, DP = Dy if dy = 1 and D@ = D} if dy = 2. Let
vy = Y1y, Yig,) " and v = (11, ,v16) ", where Y, = Nn(AcflﬁCQCQ N
BDflmD§2)/“n and v; = T(Agepee N BDllilngz) with i = 8(¢y — 1) +4(dy —
1)+2(cg—1)+ds and ¢q, ¢o, dy,dy = 1,2. Then, Zgl v; = 1. From Theorem
2, we obtain E(y,) = v and (k,/&)V*(y, —v) ~ N[0, diag(v)], as n — co.
Let h(z) = (hi(2)), ha(2)) ", where hy(z) = (31, zi—ap, Yooy z1)/ Y1, 2
ha(z) = [Z?:l Z4(i—1)+1 — @Dy 2?21(24(1‘—1)“ + 24(i—1)+2)]/ Ziﬁl 2z, and z =
(21,--,216) . Let hi(z) and hy(z) be the gradient vectors of hy(z) and

hy(z), respectively. Let hy;(z) is the jth component of h(z) for i = 1,2.

Then,
( 4 8
le{Zkzl Z4+k+(1 _aD1)Zk:1 28+7€}7 ] = 17273747
haj(z) = —2 N s tap, Sz}, =05,6,7,8,
\ —Z;Q{Zizl 2K — ap, 22:1 zk} otherwise,
and
( 3
212 Y ol zakr2 + (1 — ap,)(zakrs + 2ae1a) ), J = 1,5,9,13,
hoj(z) = 72y i —2.6.10,14
J 207 otk + ap, (Zakgs + Zapya) J , 0,10, 14,
_erz Zi:0{24k+1 — ap,(Z4p+1 + Zak42) }s otherwise,

\

where z, = 32.% 2. We get hi(y,) = [N,(Ac, N Bp,) — ap, Ny(Ac,)]/N,



and he(y,) = [Ny(Aconp,) — ap,Ny(Be,)]/N,. For the asymptotic mean,
we get ¢,(Ch, D1) = hi(v) = m(Ac, N Bp,) —ap,m(Ac,) and ¢, (Ca, Ds) =
ho(v) = 7(Ag, N Bp,) — ap,m(Ac,). We compute h] (v)diag(v)h (v),
hy (v)diag(v)hy(v), and A (v)diag(v)hy(v). Combining those, we have
the expression of o¢; p, ¢, p;- We finally obtain the result by the Delta

theorem. O

Lemma 2. Let

(S1.2)

Uy (C. D) = /2 (WAO N Bp) — aDNn(AC)>
»410 b n :

ENy
for C € A([0,1]) and D € A(O). If all assumptions of Theorem 2 hold

and Ho also holds, then

U1, (C1, D1) 0 0Cy,D1,C1,Di;Hy - OCy,Dy,Ca,DasHo
~ N ,
wThHO(CQ’DQ) 0 0C3,D3,C1,D1;Hy  9C3,D2,C2,D2;Ho

for any C1,Cy € #([0,1]) and Dy, Dy € B(O), where o¢, p,c,.p;:H, 15 the

limit of 7(C; N Cj)(ap,np, — ap,ap,) asn — oo fori,j=1,2.

Proof of Lemma B: By n(AcNBp) = apm(Ac) for all C € £(|0, 1]) and
D € #(0) under H, we have ¢,(C, D) = 0, implying (8I2). Considering
the same condition in the expression of ¢, D;.C;,D;, We obtain the expression

of 0Cy,D;,C;,Dj;Ho - [



As ¢ is an unknown parameter, it is important to have a way to estimate
it. According to Lemma B, for any given C' € Z(R") and D € #(0), if
n is large, then & *V{N,(Ac N Bp)} =~ E{N,(Ac N Bp)} = app,(Ac),
implying N, (Ac N Bp) approximately satisfies the conditions of the quasi-
Poisson model. Based on a partition {O1, -+ ,0x} of ©, using a kind of
a Pearson-type statistic recommended by McCullagh (1983), we obtain a

moment estimator of £ as

K

1 3 [N,(Ac N Be,) — N, (Ac N Be,))?

K—-1 \ ’

&=
i=1 NW(AC A BGi)

where N, (Ac N Be,) = ae,N,(Ac) is the predicted value of N,(Ac N Be,)
under Ny. If we choose C' = R™*, then we obtain the case for the entire R.

We choose C' = [0, 1] for a bounded W,.

Lemma 3. Assume that all assumptions of Theorem 2 hold and Hqy also
holds. If the partition {©y,--- , Ok} is chosen in a way such that n® min,< g ag, —

0o and maxi<x ae, — 0, then £ 5 €2 for any C € B([0,1]) with |C| > 0.

Proof of Lemma 3: As Zfil ae, = 1 and max;<x ay, — 0, we con-
clude K — oo. By Lemma B, we obtain v, g,(C, ©;) ~» N0, ae,(1 — ae,)].
Using 7 min;<x ag, — 00, we obtain kae, — oo for all i < K, imply-
ing that aéj/Ql/zn’Ho(C’, 0;) ~ N(0,1 — ae,) for each individual 7. Since

max;<x ae;, — 0, we further conclude that a5:/2¢n7HO(C, 0;) ~ N(0,1) for



each individual 7. Since E[N,(Ac N Bp)] = apE[N,(Ac)] under H,, we

conclude that

Nn(ACﬂBez) —Nn<ACﬂB@z) _ an(AC) a*l/Qw (C @)
Ny (A 1 Be,) {BIN, (Ag) /2t T

weakly converges to N(0,£?) for every i. By the properties of functional
central limit theorems, we conclude &2 5 ¢2 for any C' € 2([0,1]) with
|C| > 0. O

Proof of Theorem 3: Let Cz = [0,7] and Dy = {3 : B <X 0,3 € 0}
for any » > 0 and @ € O. Denote r = b(F) and ¢ = b(7). We obtain
0(Cz, Dg,Ci, Do) = b(T A 7)[ag(@ N 0") — ay(0)aq(0")] = (r Ar')]aqs(0 A
0') — ay(0)aq(0)], which is the covariance function of Gg4(r, ). Note that
N,/ky 21 and € 5 €2, By Theorem 2, we get Ty ~ [|Gyl|oo- O

Proof if Theorem 4: 1If H, is violated, then we can find C,. and Dy such

that ¢,(C,, Dg) # 0. By Lemma [, we get

N,(A¢, N Bp,) —apN, (A
Ii}?/Q{ 77( Cr [29]1/' & 77( CT) _¢W(Cr7D0)}WN[OvacmDe»CMDG]'
n

. o P
Since o¢, py.c,.p, 15 uniformly bounded and N, /k, — 1, we conclude

N, (Ac, N Bp,) —apNy(Ac,)
€]\[1$1—i-e)/2

— k17926, (C,, Dg) 5 0,¥ € > 0.

By {[ry =26, (Cy, Do)| > eNy* ™} = {16,(Cy, Do)| = crn (N, /1) 23,

we conclude lim,,_, P(|/17(71_E)/2¢77(CT,D9)| > cN,%/Q_E) = 1 for any ¢ > 0.



10

Thus,
Ny(Aag, N Bp,) —apN,(Ac,)
N7

P { > cN;/H}

for any € > 0. By the definition of T; and the relationship between N, and

Ky, we draw the conclusion of the theorem. O
Proof of Theorem 5: Let £ = {A, N By : 7 €0,1],0 € O} and

Nn(Am n BB) — E[Nn(Am n BB)]

1/2
f“n/

M, (A, N By) =

By Theorem 2 and Lemma O, we have M,(-) A Z(+), where Z(-) is a
mean zero Gaussian process on & with its covariance function given by

E[Z(A,, N Bg,)Z(Ar, N Bo,)| = 04, Be, Ary.Be,- We €Xpress M, (A, N Bg)

into

M, (A, N Bg)
:Nn(Am N By) — aq(6)E[N;(Ary)] + aqd(0)E[N;,(Ary)] — E[N,(Ary N Bo)]

ro” rn”

Ny(Ary N Bg) — aq(6)E[N,(Ayy)] _ ’@17/2@7(“4?7)7 By)
- £ ¢
:Nn(Am N By) — aa(6) N, (Ary) 4 aq(0){Ny(Ary) — E[N;(Ary)] _ ’1717/292517(147”777 By)

Er” Er” &

As n — oo, the second term goes to a mean zero Gaussian process. The
third term goes to a constant by the assumption. By the linkage between
the first term and T ¢, we conclude that lim, ,o, P(c; < Tye < ¢) > 0 for
any 0 < ¢; < ¢co < co. We draw the conclusion by the Radon-Nykodym

Theorem (Billingsley, 1999, P. 422) with consistent estimator of &. O
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