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S1 Technical Details

Recall the estimator R̂(k) = (2n + 1)−1
∑n
j=−n Yj exp(−i2πkxj) (k ∈ Z) from the article.

This estimator is biased only in the design points, which asymptotically exhaust the interval

[−1/2, 1/2] at the rate n−1. We arrive at the following result concerning the bias of R̂.

Lemma 1. Let θ ∈ Rs, with s ≥ 1. Then

max
k∈Z

∣∣∣E[R̂(k)
]
−R(k)

∣∣∣ = O
(
n−1

)
.

Proof. For any s1 ≤ s2, we have the inclusion Rs2 ⊂ Rs1 , and, therefore, we only need to

prove the result for s = 1. For r = Kθ, we can write

E
[
R̂(k)

]
=

1

2n+ 1

n∑
j=−n

r(xj)e
−i2πkxj . (S1.1)

(S1.1) shows that R̂ is, on the average, estimating the discrete Fourier transform of r calculated

on the design points, which is expected.
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We can relate the discrete Fourier transform of r to its Fourier coefficients {R(k)}k∈Z as

follows. Partitioning the interval [−1/2, 1/2] into

n⋃
j=−n

[
2j − 1

4n+ 2
,

2j + 1

4n+ 2

)⋃{
1

2

}

allows a decomposition of R(k) into an average corresponding to the design points xj = j/(2n);

that is,

R(k) =

∫ 1/2

−1/2

r(x)e−i2πkx dx

=
1

2n+ 1

n∑
j=−n

∫ 1/2

−1/2

r

(
xj +

v − xj
2n+ 1

)
exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))
dv.

We can see that |E[R̂(k)]−R(k)| is bounded by the sum R1(k) +R2(k), with

R1(k) =
1

2n+ 1

n∑
j=−n

∫ 1/2

−1/2

∣∣∣∣r(xj)− r(xj +
v − xj
2n+ 1

)∣∣∣∣ dv
and R2(k) is equal to

1

2n+ 1

n∑
j=−n

∣∣∣∣ ∫ 1/2

−1/2

r

(
xj +

v − xj
2n+ 1

){
exp

(
− i2πkxj

)
− exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))}
dv

∣∣∣∣.
The result follows, if we can show that maxk∈ZRi(k) = O(n−1), for each i = 1, 2.

To continue, use Euler’s formula to write

exp
(
− i2πkxj

)
= cos

(
2πkxj

)
− i sin

(
2πkxj

)
.

Since sine and cosine are each Lipschitz functions with constant equal to 1, it follows that

∣∣∣∣ exp
(
− i2πkxj

)
− exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))∣∣∣∣2 ≤ 23π2k2

(
v − xj
2n+ 1

)2

.

Therefore, we have the bound

∣∣∣∣ exp
(
− i2πkxj

)
− exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))∣∣∣∣ ≤ 23/2π|k| |v − xj |
2n+ 1

,
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which will be used throughout the proof.

Beginning with R1(k), it follows from both θ ∈ R1 and the equivalence r = Kθ that

r ∈ R1 as well. Using the Fourier inversion formula, write∣∣∣∣r(xj)− r(xj +
v − xj
2n+ 1

)∣∣∣∣ ≤ 23/2π

2n+ 1

∣∣v − xj∣∣ ∞∑
k=−∞

|k|
∣∣R(k)

∣∣.
Hence, we can find an appropriate constant C > 0, such that R1(k) is bounded by

Cn−2
n∑

j=−n

∫ 1/2

−1/2

∣∣v − xj∣∣ dv,
which does not depend on k, and this is easily seen to be of order O(n−1). This implies that

maxk∈ZR1(k) = O(n−1).

Turning our attention to R2(k), we can assume without loss of generality that |k| > 0 as

this term is equal to zero whenever k = 0. The integral in R2(k) is equal to the sum of∫ 1/2

−1/2

{
r

(
xj +

v − xj
2n+ 1

)
− r(xj)

}
dv exp

(
− i2πkxj

)
and ∫ 1/2

−1/2

{
r(xj) exp

(
− i2πkxj

)
− r
(
xj +

v − xj
2n+ 1

)
exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))}
dv.

Therefore, R2(k) is bounded by the sum of maxk∈ZR1(k) and the quantity

1

2n+ 1

n∑
j=−n

∣∣∣∣ ∫ 1/2

−1/2

{
r(xj) exp

(
− i2πkxj

)
(S1.2)

− r
(
xj +

v − xj
2n+ 1

)
exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))}
dv

∣∣∣∣.
We can use the Fourier inversion formula to write

r(xj) exp
(
− i2πkxj

)
− r
(
xj +

v − xj
2n+ 1

)
exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))
(S1.3)

=

∞∑
ξ=−∞

R(ξ)

{
exp

(
i2π(ξ − k)xj

)
− exp

(
i2π(ξ − k)

(
xj +

v − xj
2n+ 1

))}
.
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From (S1.3), we can see that (S1.2) is further bounded by

1

2n+ 1

n∑
j=−n

∫ 1/2

−1/2

∞∑
ξ=−∞

|R(ξ)|
∣∣∣∣ exp

(
i2π(ξ − k)xj

)
− exp

(
i2π(ξ − k)

(
xj +

v − xj
2n+ 1

))∣∣∣∣ dv
≤ 23/2π

2n+ 1

{
1

2n+ 1

n∑
j=−n

∫ 1/2

−1/2

|v − xj | dv
}{ ∑

|ξ−k|>0

|ξ − k||R(ξ)|
}
.

Since we have already shown that r ∈ R1, we have, for ζ = ξ − k, max|k|>0

∑
|ζ|>0 |ζ||R(k +

ζ)| < ∞. Thus, we can find an appropriate constant C > 0 to see that (S1.2) is further

bounded by

Cn−2
n∑

j=−n

∫ 1/2

−1/2

|v − xj | dv,

which does not depend on k, and this is easily seen to be of order O(n−1). Combining this

fact with the result that maxk∈ZR1(k) = O(n−1) implies that maxk∈ZR2(k) = O(n−1).

With the result of Lemma 1, we can give the proof of Lemma 1 from the article:

Proof of Lemma 1 from the article. We begin with the decomposition

E
[
θ̂(x)

]
=

∞∑
k=−∞

Λ(hnk)Θ(k) exp(i2πkx) +

∞∑
k=−∞

Λ(hnk)

Ψ(k)

{
E
[
R̂(k)

]
−R(k)

}
exp(i2πkx)

so that E[θ̂(x)]− θ(x) is equal to

∞∑
k=−∞

{
Λ(hnk)− 1

}
Θ(k) exp(i2πkx) +

∞∑
k=−∞

Λ(hnk)

Ψ(k)

{
E
[
R̂(k)

]
−R(k)

}
exp(i2πkx).

We can see that supx∈[−1/2, 1/2] |E[θ̂(x)]− θ(x)| is bounded by

∞∑
k=−∞

|Λ(hnk)− 1||Θ(k)|+ max
k∈Z

∣∣∣E[R̂(k)
]
−R(k)

∣∣∣ ∞∑
k=−∞

|Λ(hnk)|
|Ψ(k)|

. (S1.4)

Partition Z into I(hn) ∪ Ic(hn), where I(hn) = {z ∈ Z : hn|z| ≤ M} = {z ∈ Z :

|z| ≤ Mh−1
n }. Hence, for every k ∈ Ic(hn), it follows that |Λ(hnk)| ≤ 1, which implies both
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statements |Λ(hnk) − 1| ≤ 2 and |k| > Mh−1
n hold. The first term in the right-hand side of

(S1.4) is therefore bounded by

2
∑

k∈Ic(hn)

|Θ(k)| ≤ 2hsnM
−s

∞∑
k=−∞

|k|s|Θ(k)|. (S1.5)

This implies the first term in (S1.4) is of order O(hsn).

We now turn to the second term in (S1.4). It follows from Assumptions 1 and 2 for the

series in this term to be bounded by

h−1
n

[
min

k∈{z∈Z : |z|≤Γ}
|Ψ(k)|

]−1
{
hn

∑
ω∈hnZ

|Λ(ω)|

}
+ h−b−1

n C−1
Ψ

{
hn

∑
ω∈hnZ

|ω|b|Λ(ω)|

}
,

which is easily seen to be of order O(h−b−1
n ). The additional factor of h−1

n appears in the bound

above because we have a shrinkage of k by hn. This implies that
∑∞
k=−∞{|Λ(hnk)|/|Ψ(k)|}

is of order O(h−b−1
n ). Now we only need to consider the term maxk∈Z |R̂(k) − R(k)|. The

assumptions of Lemma 1 are satisfied. It then follows for maxk∈Z |R̂(k) − R(k)| = O(n−1).

Hence, the second term in (S1.4) is of order O((nhb+1
n )−1).

We are now prepared to state the proof of Lemma 2 from the article.

Proof of Lemma 2 from the article. Without loss of generality we can assume that n ≥ 3.

Our argument is similar to the arguments found in Masry (1993), who gives related results

for an errors-in-variables model. We will employ truncation as follows. Let the stabilizing

sequence {ηn}n≥3 satisfy ηn = O((nh2b+1
n )−1/2 log1/2(n)) and the truncation sequence {tn}n≥3

satisfy tn = O((n log(n)(log log(n))1+δ)1/κ), with δ > 0. Write Kj = E1/κ[|Yj |κ]. We can

decompose θ̂(x)− E[θ̂(x)] into the sum of D1(x) = θ̂(x)− θ̂t(x), D2(x) = E[θ̂t(x)]− E[θ̂(x)]

and D3(x) = θ̂t(x)− E[θ̂t(x)], where

θ̂t(x) =
1

2n+ 1

n∑
j=−n

Yj1
[
|Yj | ≤ Kjtn

]
Wj,hn

(x), x ∈ [−1/2, 1/2].
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Beginning with D1(x), it follows along the same lines as the arguments in the proof of

Lemma 2.1 of Masry (1993) for supx∈[−1/2, 1/2] |D1(x)| = o(ηn), almost surely. It is easy to

show that supx∈[−1/2, 1/2] |Wj,hn(x)| is bounded by the series
∑∞
k=−∞{|Λ(hnk)|/|Ψ(k)|}, and

we have already shown that this series is of order O(h−b−1
n ) in the proof of Lemma 1 from the

article. Hence, we have that supx∈[−1/2, 1/2] |Wj,hn
(x)| = O(h−b−1

n ). It follows that we can

find an appropriate constant C > 0, such that we can bound supx∈[−1/2, 1/2] |D2(x)| by

Ch−b−1
n

1

2n+ 1

n∑
j=−n

E
[
|Yj |1

[
|Yj | > Kjtn

]]
. (S1.6)

Since κ > 1, we can apply Markov’s inequality to obtain

max
j=−n,...,n

E[|Yj |1[|Yj | > Kjtn]] = max
j=−n,...,n

∫ ∞
0

P
(
|Yj | > max{s, Kjtn}

)
ds ≤ κ

κ− 1
MKt

1−κ
n ,

with MK = maxj=−n,...,nKj . Therefore, enlarging the constant C in (S1.6) implies that

supx∈[−1/2, 1/2] |D2(x)| ≤ Ch−b−1
n t1−κn = o(ηn).

To continue, we will require an additional result. For any u, v ∈ [−1/2, 1/2], we can

repeat the arguments in the proof of Lemma 1 to see that

∣∣∣Wj,hn(u)−Wj,hn(v)
∣∣∣ ≤ ∣∣u− v∣∣23/2π

∞∑
k=−∞

|k| |Λ(hnk)|
|Ψ(k)|

.

Hence, we can find an appropriate constant C > 0, such that

∣∣Wj,hn
(u)−Wj,hn

(v)
∣∣ ≤ Ch−b−2

n |u− v|, u, v ∈ [−1/2, 1/2]. (S1.7)

Now we consider D3(x). Let {sn}n≥3 be a sequence satisfying sn = O(hb+2
n ηnt

−1
n ) = o(1),

such that, when we partition the interval [−1/2, 1/2] into s−1
n many intervals of the form

(xi, xi+1], with the first interval defined to be [−1/2, x2] = {−1/2} ∪ (−1/2, x2], the end

points of our intervals satisfy maxi=1,...,s−1
n
|xi+1 − xi| ≤ sn. For any x ∈ [−1/2, 1/2], there is
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exactly one interval (xi′ , xi′+1] that contains x. On this interval, we can write

D3(x) = D4,i(x)−D5,i(x) +D6,i,

where D4,i(x) = θ̂t(x)− θ̂t(xi′), D5,i(x) = E[θ̂t(x)]−E[θ̂t(xi′)], and D6,i = θ̂t(xi′)−E[θ̂t(xi′)].

It follows that supx∈[−1/2, 1/2] |D3(x)| is bounded by

max
i=1,...,s−1

n

sup
x∈(xi, xi+1]

∣∣D4,i(x)
∣∣+ max

i=1,...,s−1
n

sup
x∈(xi, xi+1]

∣∣D5,i(x)
∣∣+ max

i=1,...,s−1
n

∣∣D6,i

∣∣.
Hence, the proof is complete once we have shown

max
i=1,...,s−1

n

sup
x∈(xi, xi+1]

|D4,i(x)| = O(ηn), a.s., (S1.8)

max
i=1,...,s−1

n

sup
x∈(xi, xi+1]

|D5,i(x)| = O(ηn), (S1.9)

and

max
i=1,...,s−1

n

|D6,i| = O(ηn), a.s.. (S1.10)

Beginning with (S1.8), fix an arbitrary interval (xi, xi+1]. D4,i(x) is equal to

1

2n+ 1

n∑
j=−n

Yj1
[
|Yj | ≤ Kjtn

]{
Wj,hn

(x)−Wj,hn
(xi)

}
, x ∈ (xi, xi+1].

It follows from (S1.7) that the inequality supx∈(xi, xi+1] |D4,i(x)| ≤ Ctnh−b−2
n sn holds, almost

surely, independent of i, for some C > 0. Therefore, by construction of {sn}n≥3, (S1.8) holds.

Observing that D5,i(x) = E[D4,i(x)], (S1.9) holds as well.

To see the final statement (S1.10) holds, define the random variables Uj,i = {Yj1[|Yj | ≤

Kjtn]−E[Yj1[|Yj | ≤ Kjtn]]}Wj,hn(xi), j = −n, . . . , n. Standard arguments can then be used

to show that U−n,i, . . . , Un,i are independent, have mean zero, variance bounded by C1h
−2b−1
n ,

and are bounded in absolute value by C2tnh
−b−1
n , for some C1 > 0 and C2 > 0. Note that

both bounds are independent of j and i. Applying Bernstein’s Inequality [see, e.g., Lemma
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2.2.11 in van der Vaart and Wellner (1996)], there is an appropriate constant C > 0, such that

P

(
max

i=1,...,s−1
n

|D6,i| > ηn

)
≤ 2s−1

n exp

(
− C nη2

n

h−2b−1
n + tnh

−b−1
n ηn

)
. (S1.11)

In light of the fact that tnh
−b−1
n ηn = o(h−2b−1

n ), since κ > 2 + 1/b, we can enlarge C for the

right-hand side of (S1.11) to be further bounded by a positive constant multiplied by

h−3/2
n n(1/2)+(1/κ)−C log−(1/2−1/κ)(n)

(
log log(n)

)(1+δ)/κ
.

This bound is summable in n, provided we take C > (3/2)(1 + 1/(2b + 1)) + 1/κ, where

1/(2b + 1) accounts for the expansion of h−1
n ; that is, (n1/(2b+1)hn)−3/2 → 0, as n → ∞. It

then follows by the Borel-Cantelli lemma that (S1.10) holds.

We can now state the proof of Theorem 1 from the article:

Proof of Theorem 1 from the article. The first two assertions follow immediately from the re-

sults of Lemma 1 and Lemma 2 from the article, with the choice of regularizing sequence as

discussed in Section 2.1 of the article. This means that we only need to show the last assertion.

We begin by calculating the Fourier coefficients {Θ̂(ξ)}ξ∈Z of θ̂; that is,

Θ̂(ξ) =

∫ 1/2

−1/2

θ̂(x)e−i2πξx dx =

∞∑
k=−∞

Λ(hnk)

Ψ(k)
R̂(k)

∫ 1/2

−1/2

ei2π(k−ξ)x dx

= Λ(hnξ)Θ(ξ) +

{
E
[
R̂(ξ)

]
−R(ξ) +

1

2n+ 1

n∑
j=−n

εje
−i2πξxj

}
Λ(hnξ)

Ψ(ξ)
,

where we have used the orthonormality of the basis {exp(i2πkx) : x ∈ [−1/2, 1/2]}k∈Z in the

final equality. From the definition of Rs−1/2, we show that

∞∑
ξ=−∞

|ξ|s−1/2
∣∣Θ̂(ξ)

∣∣ <∞ (S1.12)

We can see that |Θ̂(ξ)| is bounded by

|Θ(ξ)|+

{
max
k∈Z

∣∣∣E[R̂(k)
]
−R(k)

∣∣∣+

∣∣∣∣ 1

2n+ 1

n∑
j=−n

εje
i2πξxj

∣∣∣∣
}
|Λ(hnξ)|
|Ψ(ξ)|

. (S1.13)
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θ ∈ Rs implies that θ ∈ Rs−1/2.

The assumptions of Lemma 1 are satisfied, and maxk∈Z |E[R̂(k)] − R(k)| = O(n−1).

Additionally, the map x 7→ exp(−i2πkx) is confined to the unit circle in the complex plane.

A standard truncation argument shows that

max
k∈Z

∣∣∣∣ 1

2n+ 1

n∑
j=−n

εje
−i2πkxj

∣∣∣∣ = O
(
n−1/2 log1/2(n)

)
, a.s.

In the proof of Lemma 1 from the article, we have shown that
∑∞
k=−∞{|Λ(hnk)|/|Ψ(k)|} =

O(h−b−1
n ), and a similar argument yields

∑∞
k=−∞{|k|s−1/2|Λ(hnk)|/|Ψ(k)|} = O(h

−s−b−1/2
n ),

with the assumption
∫∞
−∞ |u|

s+b−1/2|Λ(u)| du <∞. Together, these results imply that{
max
k∈Z

∣∣∣E[R̂(k)
]
−R(k)

∣∣∣+ max
k∈Z

∣∣∣∣ 1

2n+ 1

n∑
j=−n

εje
−i2πkxj

∣∣∣∣
} ∞∑
ξ=−∞

|ξ|s−1/2 |Λ(hnξ)|
|Ψ(ξ)|

is of order O(1+(n log(n))−1/2) = O(1), almost surely, and the series condition (S1.12) stated

for the last term in (S1.13) holds. It follows that θ̂ − θ ∈ Rs−1/2, almost surely, for large

enough n. This statement with the first assertion yields the third assertion.

Nickl and Pötscher (2007) study classes of functions of Besov- and Sobolev-type. These

authors derive results concerning the bracketing metric entropy of these spaces, and the re-

lated central limit theorems. Their Corollary 4 on bracketing numbers for weighted Sobolev

spaces can be extended to our case (see page 189). We summarize this result in the following

proposition:

Proposition 1. For the function space Rs,1, with s > 1/2, a finite constant C > 0 exists,

such that

logN[ ]

(
ε, Rs,1, ‖ · ‖∞

)
≤ Cε−1/s, ε > 0,

where N[ ](ε, Rs,1, ‖ · ‖∞) is the number of brackets of length ε required to cover the metric

space (Rs,1, ‖ · ‖∞).
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In light of the results on the estimator θ̂, we can now state a result on the modulus

of continuity relating F̂(t) to (2n + 1)−1
∑n
j=−n 1[εj ≤ t]. Using results on Donsker classes

of functions, we can show this modulus of continuity holds up to a negligible term of order

oP (n−1/2). The proof of this result follows along the same lines as the proof of Lemma A.1 in

Van Keilegom and Akritas (1999), and, therefore, it is omitted [see also Neumeyer (2009)].

Lemma 2. Let the assumptions of Theorem 1 from the article be satisfied, with s > 3/2. In

addition, assume that F admits a bounded Lebesgue density function f . Then supt∈R |Mn(t)| =

oP (n−1/2), where

Mn(t) =
1

2n+ 1

n∑
j=−n

1
[
εj ≤ t+

[
K
(
θ̂ − θ

)]
(xj)

]
−
∫ 1/2

−1/2

F
(
t+
[
K
(
θ̂ − θ

)]
(x)
)
dx

− 1

2n+ 1

n∑
j=−n

1[εj ≤ t] + F (t).

In the following result, we provide an expansion for the indirect regression estimator θ̂.

This property, combined with the modulus of continuity result above, shows that our residual-

based empirical distribution function behaves similarly to that in the a direct estimation setting

[see, e.g., Müller et al. (2007), who construct expansions for many residual-based empirical

distribution functions based on direct regression function estimators].

Proposition 2. Let the assumptions of Lemma 1 from the article be satisfied, and assume that

E[ε2
j ] < ∞, j = −n, . . . , n. Let the regularizing sequence {hn}n≥1 satisfy hs+b+1

n = o(n−1/2)

and (nhn)−1 = o(n−1/2). Then,

∣∣∣∣ ∫ 1/2

−1/2

[
K
(
θ̂ − θ

)]
(x) dx− 1

2n+ 1

n∑
j=−n

εj

∣∣∣∣ = oP (n−1/2).

Proof. Note that R̂(k)−E[R̂(k)] = (2n+ 1)−1
∑n
j=−n εj exp(−i2πkxj). The left-hand side of
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the assertion is bounded by S1 + S2 + S3, where

S1 =

∣∣∣∣ 1

2n+ 1

n∑
j=−n

εj

∫ 1/2

−1/2

{ ∞∑
k=−∞

{
Λ(hnk)− 1

}
ei2πk(x−xj)

}
dx

∣∣∣∣,
S2 =

∞∑
k=−∞

∣∣Λ(hnk)− 1
∣∣∣∣R(k)

∣∣∣∣∣∣ ∫ 1/2

−1/2

ei2πkx dx

∣∣∣∣,
and

S3 =

[
max
k∈Z

∣∣∣E[R̂(k)
]
−R(k)

∣∣∣] ∞∑
k=−∞

|Λ(hnk)|.

It follows that S1 = oP (n−1/2) from Assumption 2 from the article and that

1

2n+ 1

n∑
j=−n

{∫ 1/2

−1/2

{ ∞∑
k=−∞

{
Λ(hnk)− 1

}
ei2πk(x−xj)

}
dx

}2

= o(1).

The proof is complete, once we have shown that S1 = oP (n−1/2), S2 = o(n−1/2), and S3 =

o(n−1/2).

The convolution theorem for Fourier transformation implies that |R(k)| = |Θ(k)||Ψ(k)|.

Thus, the integral term in S2 is bounded by a positive constant C multiplied by |k|−1. This

fact, the constant C∗Ψ from Assumption 1 from the article, and that |Λ(hnk) − 1| ≤ 2 shows

that we can enlarge C, such that S2 is bounded by

Chs+b+1
n

∞∑
k=−∞

|k|s|Θ(k)| = O
(
hs+b+1
n

)
= o
(
n−1/2

)
.

The assumptions of Lemma 1 are satisfied, and maxk∈Z |E[R̂(k)] − R(k)| = O(n−1).

One shows that the series term in S3 is of order O(h−1
n ) using similar lines of argument to

those in the proof of Lemma 1 from the article. It follows that S3 is of order O((nhn)−1) =

o(n−1/2).

We can now give the proof of Theorem 2 from the article.
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Proof of Theorem 2 from the article. Recall Mn(t) from Lemma 2. A straightforward calcu-

lation shows that

1

2n+ 1

n∑
j=−n

{
1
[
ε̂j ≤ t

]
− 1
[
εj ≤ t

]
− εjf(t)

}
= Mn(t) +Hn(t) + Ln(t),

with

Hn(t) =

∫ 1/2

−1/2

F
(
t+
[
K
(
θ̂ − θ

)]
(x)
)
dx− F (t)− f(t)

∫ 1/2

−1/2

[
K
(
θ̂ − θ

)]
(x) dx

and

Ln(t) = f(t)

{∫ 1/2

−1/2

[
K
(
θ̂ − θ

)]
(x) dx− 1

2n+ 1

n∑
j=−n

εj

}
.

The assumptions of Lemma 2 are satisfied, and supt∈R |Mn(t)| = oP (n−1/2). The assertion

follows, once we show that supt∈R |Hn(t)| = oP (n−1/2) and supt∈R |Ln(t)| = oP (n−1/2).

Using the Hölder continuity of f , it follows that

Hn(t) =

∫ 1/2

−1/2

[
K
(
θ̂ − θ

)]
(x)

∫ 1

0

{
f
(
t+ s

[
K
(
θ̂ − θ

)]
(x)
)
− f(t)

}
ds dx,

writing Cf,γ for the Hölder constant of f with exponent γ. Therefore, supt∈R |Hn(t)| is

bounded by

Cf,γ
1 + γ

[
sup

x∈[−1/2, 1/2]

∣∣∣θ̂(x)− θ(x)
∣∣∣]1+γ

.

The assumptions of Theorem 1 from the article are satisfied, and the second term in the bound

above is o(n−1/2), almost surely. This fact implies that supt∈R |Hn(t)| = oP (n−1/2).

Since f is bounded, supt∈R |Ln(t)| is bounded by

sup
t∈R
|f(t)|

∣∣∣∣ ∫ 1/2

−1/2

[
K
(
θ̂ − θ

)]
(x) dx− 1

2n+ 1

n∑
j=−n

εj

∣∣∣∣.
The parameter sequence {hn}n≥1 satisfies

hs+b+1
n = O

(
n−1/2−1/(4s+4b+2) log(s+b+1)/(2s+2b+1)(n)

)
= o
(
n−1/2

)
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and (
nhn

)−1
= O

(
n−(2s+2b)/(2s+2b+1) log−1/(2s+2b+1)(n)

)
= o
(
n−1/2

)
,

since s+b > 1/2. The assumptions of Proposition 2 are satisfied, which implies that the second

term in the bound above is oP (n−1/2). This shows that supt∈R |Ln(t)| = oP (n−1/2).

Here, we provide a short proof of Proposition 1 from the article.

Proof of Proposition 1 from the article. Write the integrated variance of θ̂ as

∫ 1/2

−1/2

E
[{
θ̂(x)− E

[
θ̂(x)

]}2
]
dx =

σ2

2n+ 1

∞∑
k=−∞

Λ2(hnk)

Ψ2(k)
.

Repeating the arguments in the proof of Lemma 1 from the article shows that

∞∑
k=−∞

Λ2(hnk)

Ψ2(k)
= O

(
h−2b−1
n

)
.

Therefore, we can specify CΛ > 0 for the first assertion to hold. The second assertion follows

directly by an application of Lemma 1 from the article.

The choice of scaling sequence {cn}n≥1, used for the contaminates cnUj , j = −n, . . . , n,

in the smooth bootstrap always satisfies (ncn)−1 log(n) = o(1). Theorem A of Silverman

(1978), the Hölder continuity of w, and the results of Theorem 1 from the article imply that

f∗n is strongly consistent for f , uniformly over the entire real line. The result only holds

when the density function f is Hölder with exponent 2/3 < γ ≤ 1, the density function

w is of similar smoothness, and the smoothness index s of the function space Rs satisfies

s > (1 + γ)(2b+ 1)/(3γ − 2). This lower bound is larger than the lower bound on s required

by the second statement of Theorem 1 from the article. The additional smoothness in θ is

required due to the fact that residuals are used in the estimator f∗n rather than the model
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errors. Arguments similar to those used to prove related results in Neumeyer (2009) can be

used to prove the following result.

Proposition 3. Let the assumptions of Theorem 3 from the article be satisfied. Assume that

the densities f and w are Hölder continuous with exponent 2/3 < γ ≤ 1. Let the smoothness

index s of the function space Rs satisfy s > (1 + γ)(2b+ 1)/(3γ − 2). Then,

sup
t∈R

∣∣∣f∗n(t)− f(t)
∣∣∣ = oP (1),

sup
t∈R

∣∣∣F ∗n(t)− F (t)
∣∣∣ = oP (1),

and

sup
t∈R

∣∣∣E∗[ε∗1[ε∗ ≤ t]]− E[ε1[ε ≤ t]
]∣∣∣ = oP (1).

We omit proof of the following result because it is proven in exactly the same manner as

Theorem 1 from the article.

Proposition 4. Let the assumptions of Theorem 1 from the article be satisfied. Choose the

regularizing sequence {gn}n≥1 according to (2.3) from the article, and let the scaling sequence

{cn}n≥1 satisfy cn = O(n−α), with 0 < α < 1/2 + 1/κ. Then, P ∗-almost surely,

sup
x∈[−1/2, 1/2]

∣∣∣θ̂∗(x)− θ̂(x)
∣∣∣ = O

(
n−s/(2s+2b+1) logs/(2s+2b+1)(n)

)
.

If s > (2b+ 1)/(2γ), for some 0 < γ ≤ 1,

[
sup

x∈[−1/2, 1/2]

∣∣∣θ̂∗(x)− θ̂(x)
∣∣∣]1+γ

= o(n−1/2).

For large enough n,

θ̂∗ − θ̂ ∈ Rs−1/2,1.
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