A CLASSICAL INVARIANCE APPROACH TO THE NORMAL MIXTURE PROBLEM

Monia Ranalli, Bruce G. Lindsay, and David R. Hunter

Pennsylvania State University

The Supplementary Material includes a proof of Lemma 1 in Section S1 and additional results from simulation studies in Section S2.

S1 Proof of Lemma 1

We prove that maximizing $L_{\mathbf{z}}(\boldsymbol{\tau}) = \int f_1(\boldsymbol{v}_1 + \boldsymbol{t}) \cdots f_1(\boldsymbol{v}_{n_1} + \boldsymbol{t}) f_2(\boldsymbol{w}_1 + \boldsymbol{t}) \cdots f_2(\boldsymbol{w}_{n_2} + \boldsymbol{t}) d\boldsymbol{t}$ as a function of $\boldsymbol{\delta} = \boldsymbol{\mu}_2 - \boldsymbol{\mu}_1$ results in Equation (7). In the paper this equation is indicated as (3.3) *Proof.* Since f_1 and f_2 are normal densities with parameters $(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1^2)$ and $(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2^2)$,

$$L_{\mathbf{z}}(\boldsymbol{\tau}) = c_1^{n_1} c_2^{n_2} \int \exp\left[-\frac{1}{2} \sum_{i=1}^{n_1} (\mathbf{v}_i + \mathbf{t} - \boldsymbol{\mu}_1)^\top \boldsymbol{\Sigma}_1^{-1} (\mathbf{v}_i + \mathbf{t} - \boldsymbol{\mu}_1) - \frac{1}{2} \sum_{i=1}^{n_2} (\mathbf{w}_i + \mathbf{t} - \boldsymbol{\mu}_2)^\top \boldsymbol{\Sigma}_2^{-1} (\mathbf{w}_i + \mathbf{t} - \boldsymbol{\mu}_2)\right] d\mathbf{t},$$
(S1.1)

with $c_1 = (2^d \pi^d \det \Sigma_1)^{-1/2}$ and $c_2 = (2^d \pi^d \det \Sigma_2)^{-1/2}$. Since the argument of the exponential function in Equation (S1.1) is quadratic in t, we may complete the square and write

$$L_{\mathbf{z}}(\boldsymbol{\tau}) = c_1^{n_1} c_2^{n_2} Q \int \exp\left[-\frac{1}{2} (\boldsymbol{t} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\boldsymbol{t} - \boldsymbol{\mu})\right] d\boldsymbol{t}$$
$$= K (\det \boldsymbol{\Sigma}_1)^{-n_1/2} (\det \boldsymbol{\Sigma}_2)^{-n_2/2} Q \det(\boldsymbol{\Sigma})^{1/2}, \tag{S1.2}$$

where K is a constant not depending on any parameters, $\boldsymbol{\Sigma} = (n_1 \boldsymbol{\Sigma}_1^{-1} + n_2 \boldsymbol{\Sigma}_2^{-1})^{-1}$,

$$\boldsymbol{\mu} = \boldsymbol{\Sigma} \boldsymbol{\Sigma}_{1}^{-1} \sum_{i=1}^{n_{1}} (\boldsymbol{v}_{i} - \boldsymbol{\mu}_{1}) + \boldsymbol{\Sigma} \boldsymbol{\Sigma}_{2}^{-1} \sum_{i=1}^{n_{2}} (\boldsymbol{w}_{i} - \boldsymbol{\mu}_{2}), \quad (S1.3)$$

and

$$Q = \exp\left[\frac{1}{2}\boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} - \frac{1}{2}\sum_{i=1}^{n_{1}}(\mathbf{v}_{i} - \boldsymbol{\mu}_{1})^{\top}\boldsymbol{\Sigma}_{1}^{-1}(\mathbf{v}_{i} - \boldsymbol{\mu}_{1}) - \frac{1}{2}\sum_{i=1}^{n_{2}}(\mathbf{w}_{i} - \boldsymbol{\mu}_{2})^{\top}\boldsymbol{\Sigma}_{2}^{-1}(\mathbf{w}_{i} - \boldsymbol{\mu}_{2})\right].$$
(S1.4)

Let us now focus on the expression $\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}$ contained inside expression (S1.4). Let us define $\boldsymbol{s}_v = \sum_{i=1}^{n_1} (\boldsymbol{v}_i - \boldsymbol{\mu}_1)$ and $\boldsymbol{C}_v = \sum_{i=1}^{n_1} (\boldsymbol{v}_i - \boldsymbol{\mu}_1) (\boldsymbol{v}_i - \boldsymbol{\mu}_1)^{\top}$. Similarly, $\boldsymbol{s}_w = \sum_{i=1}^{n_1} (\boldsymbol{w}_i - \boldsymbol{\mu}_2)$ and $\boldsymbol{C}_w = \sum_{i=1}^{n_1} (\boldsymbol{w}_i - \boldsymbol{\mu}_2) (\boldsymbol{w}_i - \boldsymbol{\mu}_2)^{\top}$. We may write

$$\boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} = \boldsymbol{s}_{v}^{\top} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\Sigma} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{s}_{v} + 2\boldsymbol{s}_{v}^{\top} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\Sigma} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{s}_{w} + \boldsymbol{s}_{w}^{\top} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\Sigma} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{s}_{w}$$
$$= \operatorname{Tr} \left(\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\Sigma} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{s}_{v} \boldsymbol{s}_{v}^{\top} \right) + 2 \operatorname{Tr} \left(\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\Sigma} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{s}_{w} \boldsymbol{s}_{v}^{\top} \right) + \operatorname{Tr} \left(\boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\Sigma} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{s}_{w} \boldsymbol{s}_{w}^{\top} \right)$$
(S1.5)

and therefore

$$Q = \exp\left\{\frac{1}{2}\left[\text{Expression (S1.5)}\right] - \frac{1}{2}\text{Tr}\left(\boldsymbol{\Sigma}_{1}^{-1}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{-1}\boldsymbol{C}_{v}\right) - \frac{1}{2}\text{Tr}\left(\boldsymbol{\Sigma}_{2}^{-1}\boldsymbol{\Sigma}\boldsymbol{\Sigma}_{2}^{-1}\boldsymbol{C}_{w}\right)\right\}.$$
 (S1.6)

We may now simplify this expression for Q using the identities

$$n_1 \boldsymbol{C}_v - \boldsymbol{s}_v \boldsymbol{s}_v^\top = n_1 \sum_{i=1}^{n_1} (\boldsymbol{v}_i - \overline{\boldsymbol{v}}) (\boldsymbol{v}_i - \overline{\boldsymbol{v}})^\top, \qquad (S1.7)$$

$$n_2 \boldsymbol{C}_w - \boldsymbol{s}_w \boldsymbol{s}_w^{\top} = n_2 \sum_{j=1}^{n_2} (\boldsymbol{w}_i - \overline{\boldsymbol{w}}) (\boldsymbol{w}_i - \overline{\boldsymbol{w}})^{\top},$$
 (S1.8)

$$n_2 \boldsymbol{C}_v + n_1 \boldsymbol{C}_w - 2\boldsymbol{s}_v \boldsymbol{s}_w^{\top} = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} (\boldsymbol{v}_i - \boldsymbol{w}_j + \boldsymbol{\delta}) (\boldsymbol{v}_i - \boldsymbol{w}_j + \boldsymbol{\delta})^{\top}$$
(S1.9)

and the fact that $\boldsymbol{\Sigma}^{-1} = \left(n_1 \boldsymbol{\Sigma}_1^{-1} + n_2 \boldsymbol{\Sigma}_2^{-1}\right)$. We obtain

$$Q = \exp\left\{-\frac{1}{2}\left[n_{1}\sum_{i=1}^{n_{1}}(\boldsymbol{v}_{i}-\overline{\boldsymbol{v}})^{\top}\boldsymbol{\Sigma}_{1}^{-1}\boldsymbol{\Sigma}\boldsymbol{\Sigma}_{1}^{-1}(\boldsymbol{v}_{i}-\overline{\boldsymbol{v}}) + n_{2}\sum_{j=1}^{n_{2}}(\boldsymbol{w}_{j}-\overline{\boldsymbol{w}})^{\top}\boldsymbol{\Sigma}_{2}^{-1}\boldsymbol{\Sigma}\boldsymbol{\Sigma}_{2}^{-1}(\boldsymbol{w}_{j}-\overline{\boldsymbol{w}}) + \sum_{j=1}^{n_{2}}\sum_{i=1}^{n_{2}}(\boldsymbol{v}_{i}-\boldsymbol{w}_{j}+\boldsymbol{\delta})^{\top}\boldsymbol{\Sigma}_{1}^{-1}\boldsymbol{\Sigma}\boldsymbol{\Sigma}_{2}^{-1}(\boldsymbol{v}_{i}-\boldsymbol{w}_{j}+\boldsymbol{\delta})\right]\right\}.$$
(S1.10)

$$i=1$$
 $j=1$
Since only the third term of Q contains $\boldsymbol{\delta}$, we may use straightforward differentiation to
maximize the logarithm of Equation (S1.2) as a function of $\boldsymbol{\delta}$, for fixed $\boldsymbol{\Sigma}_1$ and $\boldsymbol{\Sigma}_2$, at

 $\hat{\boldsymbol{\delta}} = \overline{\boldsymbol{w}} - \overline{\boldsymbol{v}}$. Substituting

$$(oldsymbol{v}_i - oldsymbol{w}_j + \hat{oldsymbol{\delta}})^{ op} = (oldsymbol{v}_i - \overline{oldsymbol{v}})^{ op} + (oldsymbol{w}_j - \overline{oldsymbol{w}})^{ op} - (oldsymbol{w}_j - \overline{oldsymbol{w}})(oldsymbol{v}_i - \overline{oldsymbol{v}})^{ op})$$

into expression (S1.10), and noting that summing the final two terms over i and j makes them disappear, we obtain

$$\hat{Q} = \exp\left\{-\frac{1}{2}\left[\sum_{i=1}^{n_1} (\boldsymbol{v}_i - \overline{\boldsymbol{v}})\boldsymbol{\Sigma}_1^{-1}\boldsymbol{\Sigma}(n_1\boldsymbol{\Sigma}_1^{-1} + n_2\boldsymbol{\Sigma}_2^{-1})(\boldsymbol{v}_i - \overline{\boldsymbol{v}})^\top + \sum_{j=1}^{n_2} (\boldsymbol{w}_j - \overline{\boldsymbol{w}})(n_2\boldsymbol{\Sigma}_2^{-1} + n_1\boldsymbol{\Sigma}_1^{-1})\boldsymbol{\Sigma}\boldsymbol{\Sigma}_2^{-1}(\boldsymbol{w}_j - \overline{\boldsymbol{w}})^\top\right]\right\}$$
$$= \exp\left\{-\frac{1}{2}\left[\sum_{i=1}^{n_1} (\boldsymbol{v}_i - \overline{\boldsymbol{v}})\boldsymbol{\Sigma}_1^{-1}(\boldsymbol{v}_i - \overline{\boldsymbol{v}})^\top + \sum_{j=1}^{n_2} (\boldsymbol{w}_j - \overline{\boldsymbol{w}})\boldsymbol{\Sigma}_2^{-1}(\boldsymbol{w}_j - \overline{\boldsymbol{w}})^\top\right]\right\}.$$
(S1.11)

Furthermore, we may verify that

$$(\det \Sigma_1)^{-n_1/2} (\det \Sigma_2)^{-n_2/2} \det(\Sigma)^{1/2} = \left[(\det \Sigma_1)^{n_1-1} (\det \Sigma_2)^{n_2-1} \det(n_1 \Sigma_2 + n_2 \Sigma_1) \right]^{-1/2}.$$

Thus, the value of $L_{\mathbf{z}}(\boldsymbol{\tau})$, maximized over $\boldsymbol{\delta}$, may be written as

$$K\left[(\det \boldsymbol{\Sigma}_{1})^{n_{1}-1}(\det \boldsymbol{\Sigma}_{2})^{n_{2}-1}\det(n_{1}\boldsymbol{\Sigma}_{2}+n_{2}\boldsymbol{\Sigma}_{1})\right]^{-1/2}\\ \exp\left\{-\frac{1}{2}\left[\sum_{i=1}^{n_{1}}(\boldsymbol{v}_{i}-\overline{\boldsymbol{v}})\boldsymbol{\Sigma}_{1}^{-1}(\boldsymbol{v}_{i}-\overline{\boldsymbol{v}})^{\top}+\sum_{j=1}^{n_{2}}(\boldsymbol{w}_{j}-\overline{\boldsymbol{w}})\boldsymbol{\Sigma}_{2}^{-1}(\boldsymbol{w}_{j}-\overline{\boldsymbol{w}})^{\top}\right]\right\},\$$

which proves the lemma.

S2 Additional results from simulation studies

Figure 1: Box plots of 500 parameter estimates, each resulting from a sample of size n = 100 from Model I. The competitors are our main proposal, labeled MC, using both B = 100 and B = 500; the unconstrained EM algorithm initialized with estimates produced by MC, labeled MC and Full, again using both B = 100 and B = 500; the constrained EM algorithm of Ingrassia and Rocci (2007), labeled Constr Full; the doubly smoothed algorithm of Seo and Lindsay (2010), labeled DS, using both h = 0.01 and h = 0.1; and our alternative approach from Section 6, labeled DS-MLE.

Figure 2: Box plots of 500 parameter estimates, each resulting from a sample of size n = 100 from Model II. The algorithm labels are explained in Figure 1.

h B	= 100 and B =	500; th	e constrained EM a	algorithn	n of Ingrassia and	Rocci ((2007), labeled Cor	nstrainee	d Full; the doubly-	smoothed
<u>ay</u> (2010), 1	abeled	l DS, usi	ng both $h = 0.01 a$	and $h = 0$	0.1; and our altern	ative a _l	pproach from Sectic	on 6, lab	oeled DS-MLE.	
l	0 = .3		$\mu_{1} = 0$		$\delta = 3$		$\sigma_1^2 = 1$		$\sigma_2^2 = .25$	
$\hat{p}(s.e. / Asym]$	p. s.e.)	\hat{p}_{mse}	$\hat{\mu}_1(\text{s.e.} / \text{Asymp. s.e.})$	$\hat{\mu}_{1;mse}$	$\hat{\delta}(\text{s.e.} / \text{Asymp. s.e.})$	$\hat{\delta}_{mse}$	$\hat{\sigma}_1^2(ext{s.e.} / ext{Asymp. s.e.})$	$\hat{\sigma}^2_{1;mse}$	$\sigma^2_2({ m s.e.}\ /\ { m Asymp. s.e.})$	$\hat{\sigma}^2_{2;mse}$
0.2994(0.0530)	(0.0475)	0.0028	0.0376(0.2342/0.2085)	0.0573	2.9594 (0.2367/0.0627)	0.0564	1.0515(0.4288/0.4981)	0.1862	0.2493 (0.0540/0.0510)	0.0029
0.3011 (0.0549	(0.0476)	0.0030	0.0473(0.2759/0.2114)	0.0782	2.9991 (0.0688 / 0.0624)	0.0047	$1.0474 \ (0.4279/0.4645)$	0.1849	$0.2470 \ (0.0529/0.0512)$	0.0028
0.3058(0.0489	(0.0479)	0.0024	0.0101 (0.2200/0.2086)	0.0484	2.9915(0.2183/0.0624)	0.0476	1.0192(0.3859/0.4465)	0.1490	0.2473 (0.0516 / 0.0512)	0.0027
0.3081 (0.0583	(0.0482)	0.0035	0.0244(0.3241/0.2083)	0.1055	2.9855(0.2304/0.0625)	0.0532	0.9933 (0.3542/0.4243)	0.1253	0.2520(0.0988/0.0531)	0.0097
0.3043 (0.0571	(0.0479)	0.0033	$0.0664 \ (0.2997/0.2145)$	0.0941	2.9994 (0.0690/0.0624)	0.0048	1.0876(0.4899/0.4953)	0.2472	$0.2434 \ (0.0546/0.0498)$	0.0030
0.3724 (0.0892	2/0.0544)	0.0132	0.4743(0.5729/0.3106)	0.5525	3.0235(0.0766/0.0674)	0.0064	$0.6635 \ (0.5483/0.1423)$	0.4133	1.2368 $(1.1717/0.1589)$	2.3439
0.3804 (0.097)	8/0.0543)	0.0160	0.5005(0.5889/0.3169)	0.5966	3.0351(0.0819/0.0674)	0.0079	$0.6091 \ (0.5354/0.1258)$	0.4389	1.2997 $(1.1396/0.1526)$	2.3981
0.3055 (0.0510	(0.0479)	0.0026	0.0210(0.2524/0.2082)	0.0640	2.9810(0.2455/0.0625)	0.0605	1.0053 (0.3880/0.4362)	0.1503	0.2482 $(0.0519/0.0507)$	0.0027
0.3009 (0.0220	0/0.0212	0.0005	-0.0107(0.0866/0.0909)	0.0076	3.0084 (0.0883/0.0279)	0.0078	0.9899 (0.1497/0.1447)	0.0225	0.2519 (0.0213/ 0.0216)	0.0005
0.3019 (0.022)	8/0.0212)	0.0005	-0.0051(0.1028/0.0910)	0.0106	2.9985(0.0299/0.0279)	0.0009	0.9979 (0.1619/0.1478)	0.0262	0.2501 (0.0218 / 0.0212)	0.0005
0.3015 (0.023	7/0.0212)	0.0006	-0.0032(0.0901/0.0911)	0.0081	3.0034 (0.0908/0.0279)	0.0082	0.9897 ($0.1499/0.1434$)	0.0225	0.2499 (0.0220/0.0212)	0.0005
0.3027 (0.024)	2/0.0213	0.0006	0.0149(0.1494/0.0901)	0.0225	2.9507(0.5015/0.0280)	0.2534	0.9898 (0.1930/0.1465)	0.0373	0.2528(0.0543/0.0210)	0.0029
0.3019 (0.0228	3/0.0212)	0.0005	-0.0049 ($0.1029/0.0910$)	0.0106	2.9985(0.0299/0.0279)	0.0009	$0.9982 \ (0.1620/0.1478)$	0.0262	0.2501 (0.0218/0.0212)	0.0005
0.3812 (0.0826	(0.0244)	0.0134	0.4788(0.5107/0.1382)	0.4896	3.0241(0.0755/0.0308)	0.0063	0.5957 (0.4371/0.0563)	0.3541	1.3974 (1.1764/0.0679)	2.6976
0.3895 (0.087)	9/0.0243)	0.0157	0.5062(0.5181/0.1444)	0.5241	3.0392(0.0516/0.0311)	0.0042	0.5563 (0.4376/0.0530)	0.3880	1.4357 $(1.1651/0.0663)$	2.7607
0.3015(0.0224)	/0.0212)	0.0005	0.0089 $(0.1120/0.0912)$	0.0126	2.9915 (0.1072/0.0279)	0.0115	1.0083 $(0.1695/0.1510)$	0.0287	0.2485(0.0216/0.0209)	0.0005

I. The competitor by MC, labeled N he doubly-smooth <u>+MLE.</u>	-2 0.
m Mode roduced d Full; t seled DS	
from a sample of size n from initialized with estimates p (2007), labeled Constraine pproach from Section 6, lab	20
estimates, each resulting f constrained EM algorithm im of Ingrassia and Rocci 0.1; and our alternative a	с і
l errors for 500 parameter 100 and $B = 500$; the unc te constrained EM algorith ing both $h = 0.01$ and $h =$	c
rors, and mean squareced MC, using both $B = 100$ and $B = 500$; the y (2010), labeled DS, using y (2010), labeled y (2010), using y (2010), labeled y (2010), using y (2010), labeled y (2010), using y (2010	c
whle 1: Means, standard en e our main proposal, label- Full, again using both B gorithm of Seo and Lindsa	

re explaii	ned in the caption	n for Table 1.									
u I	Method	p = .5		$\mu_1 = 0$		$\delta = 1$		$\sigma_1^2 = 1$		$\sigma_{2}^{2} = .25$	
		$\hat{p}(s.e. / Asymp. s.e.)$	$\hat{p}mse$	$\hat{\mu}_1(\text{s.e.} / \text{Asymp. s.e.})$	$\hat{\mu}_{1;mse}$	$\hat{\delta}(\text{s.e.} / \text{Asymp. s.e.})$	$\hat{\delta}_{mse}$	$\hat{\sigma}_1^2(\text{s.e.} / \text{Asymp. s.e.})$	$\hat{\sigma}^2_{1:mse}$	$\sigma_2^2(\text{s.e.} / \text{Asymp. s.e.})$	$\hat{\sigma}^2_{2:mse}$
	MC with $B = 100$	0.5097 (0.0771/0.0705)	0.0060	-0.2832 (0.1723/0.1730)	0.1098	1.6445(0.1343/0.0952)	0.4334	0.6118(0.1576/0.0938)	0.1754	0.5959(0.1500/0.2602)	0.1857
	MC & Full, $B = 100$	0.5296(0.3135/0.0768)	0.0986	-0.3329 (0.8729/0.2159)	0.8687	1.2735(0.8174/0.0764)	0.7394	0.6974 (0.5266/0.1136)	0.3675	0.7373(0.4729/0.4780)	0.2915
	MC with $B = 500$	0.4988 (0.0701/0.0695)	0.0049	-0.3200(0.1637/0.1799)	0.1291	1.6339(0.1416/0.0933)	0.4218	0.6039 $(0.1492/0.0925)$	0.1790	0.5897(0.1486/0.2363)	0.1903
001	MC & Full, $B = 500$	0.5101(0.3261/0.0774)	0.1059	-0.3110(0.8756/0.2042)	0.8594	1.3116 (0.9506/0.0770)	0.9961	0.7017 ($0.5105/0.1188$)	0.3483	0.7140(0.4976/0.5940)	0.3281
n = 100	Constrained Full	0.4929 ($0.3030/0.0866$)	0.0914	-0.2093 ($0.8749/0.1908$)	0.8053	1.2382(0.8854/0.0818)	0.8366	0.7824(0.5396/0.1405)	0.3370	0.7821(0.5031/0.4787)	0.2992
	DS with $h = 0.01$	0.4955(0.2140/0.1145)	0.0456	-0.0296(0.7262/0.1848)	0.5255	1.0411(0.6741/0.0973)	0.4537	0.8952 $(0.4839/0.1708)$	0.2439	0.9324(0.4861/0.4401)	0.2396
	DS with $h = 0.1$	0.5069 (0.2007/0.1195)	0.0401	0.0024(0.6490/0.1769)	0.4190	1.0382 (0.6099/0.0993)	0.3715	0.9252(0.4785/0.1822)	0.2334	0.9427 ($0.4849/0.4430$)	0.2372
	DS-MLE	0.4838(0.3338/0.0689)	0.1111	-0.3977 (0.7807/0.1902)	0.7645	$1.7587 \ (0.6961 / 0.1036)$	1.0576	0.6292(0.4250/0.0916)	0.3172	0.6831 (0.4776/0.1480)	0.3273
	MC with $B = 100$	0.4983 (0.0388/0.0314)	0.0015	-0.3141 (0.0811/0.0798)	0.1052	1.6090 (0.0637 / 0.0396)	0.3750	0.6108 (0.0673/0.0436)	0.1560	0.6103 (0.0606/0.1073)	0.1555
	MC & Full, $B = 100$	0.5240(0.3228/0.0398)	0.1042	-0.2736(0.9248/0.0888)	0.9257	1.1643(0.8423/0.0371)	0.7328	0.8479 ($0.4786/0.0649$)	0.2510	0.8720(0.4197/0.1294)	0.1916
	MC with $B = 500$	0.4996(0.0425/0.0314)	0.0018	-0.3042 (0.0854/0.0796)	0.0998	1.6088 (0.0613/0.0396)	0.3743	0.6019 ($0.0668/0.0429$)	0.1630	0.6062 (0.0637/0.1075)	0.1591
	MC & Full, $B = 500$	0.5178 ($0.3465/0.0391$)	0.1197	-0.2336(0.8053/0.0890)	0.6996	1.1914 (0.7767 / 0.0369)	0.6367	0.7709(0.4298/0.0585)	0.2363	0.8395(0.4479/0.1314)	0.2253
nne = u	Constrained Full	0.4829 ($0.3080/0.0447$)	0.0946	-0.1856(0.9297/0.0872)	0.8944	1.0934 (0.8415/0.0395)	0.7131	0.9022(0.4836/0.0756)	0.2422	0.9203(0.4164/0.1456)	0.1788
	DS with $h = 0.01$	0.4850 ($0.2030/0.0604$)	0.0412	-0.0146(0.6943/0.0843)	0.4798	0.9075(0.5836/0.0466)	0.3474	0.9904 (0.3826/0.0897)	0.1457	1.0253(0.3563/0.2068)	0.1269
	DS with $h = 0.1$	0.4945 ($0.1879/0.0661$)	0.0352	0.0751(0.4632/0.0788)	0.2191	0.9098(0.5184/0.0484)	0.2754	1.0359 $(0.3813/0.1018)$	0.1459	1.0098(0.3295/0.2255)	0.1081
	DS-MLE	0.4830(0.3663/0.0343)	0.1338	-0.3200 (0.8231/0.0772)	0.7763	$1.5931 \ (0.7435 \ 0.0381)$	0.9017	0.7828(0.4904/0.0606)	0.2864	0.7892 ($0.4215/0.3943$)	0.2212

Table 2: Means, standard errors, and mean squared errors for 500 parameter estimates, each resulting from a sample of size n from Model II. The method labels