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S1. Underlying probability space

Let (€2, F, P) be the probability space that underlies all the random variables in the paper.
Here, () is the sample space, F is the o-algebra and P is the probability measure. Let
w € () denote a sample point. The ensuing proofs need the results of the strong convergence
of Kaplan—Meier estimators and empirical quantiles for each covariate. We consider the
individual subsets of (2 in which the convergence results hold. Specifically, Theorem 5.9
of Shao (1999) and Theorem 3.1 of [Foldes and Rejto (1981) indicate that S(t), S(t | X;),
Qj(k) and qu(k) are strong consistent estimators of S(t), S(t | X;), Q;x) and Q k), for
1 < j < p. That is, there exists an ©; such that on Q;, sup,_,, |S(t | X;) — S(t | X;)| =
o(1), Qj(k) — Qjw = o(1) and qu(k) — Qjuky = o(1), where ; C Q with P(Q;) =1
and 7 = inf{t : P(T > t) = 0}. In addition, there exists an 2y C €2 where P({) = 1,

such that on Qq, sup,_,_, |S(t) — S(t)| = o(1). Take Q, = "_0%;. Then it follows that
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P(€,) = 1and P(Q25) = 0, where Q¢ is the complement of €2,.. All the events mentioned in
the following proofs should implicitly be viewed as the intersections with 2., which ensures

that the aforementioned strong convergence results hold.

S2. Lemmas and proofs

We present several useful lemmas before proving the theoretical results in the main text.

Lemma 1. Let 7 = inf{t : P(T" > t) = 0}. For a categorical covariate X; with K
categories, let S(t | X; = k) be the Kaplan-Meier estimator of the conditional survival
function within the category of X; = k,k = 1,..., K;. There exist dy > 0, d; > 0, k and v

under Condition 2, for any € > 0 and n sufficiently large,

P{ max sup [S(t | X; =k)—S(t]| X; = k)| > e} < d, K exp(—doe*n' "),

1<k<Kj tejo,r]
where K = max<;<p Kj.

Proof. By the inequality in the last paragraph on page 1161 of Dabrowska (1989), there exist

positive constants dj and d; not depending on €, n and S(t | X;), such that

P(max sup |S(t| X; =k)— S(t| X; = k)| > ¢)
k t€[0,7]

< 4 K; exp(—doe? mkin nkKj’Q)

< d K exp(—dyé? mkin np K ~?)

where ny, is the number of subjects within X; = k. The result follows since miny n; >

n/K = n'~* by Condition 2. O

Lemma 2. Under the same constants and conditions for Lemmall} for any ¢ > 1, ¢ > 0 and
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n sufficiently large,

do

P — 09| > €) < 2d, K exp (_Weznum) |

where G(q) = 2{min; [; S9(u | X; = k)dS (u)/4}1/ D1,

Proof. By the Minkowski inequality and the definition of T,

IN

|\DEQ) _ \IIEQ)|
1/q

k1,k2

max{—/ |,§(u | Xj=ki) — S’(U | X; = k2)|qd§(u)}
0
1/q

—max{—/ooo 1S(u | X; = k1) — S(u | X; = k:2)|qu(u)}

k1,k2

{/OOO el = klﬂng(u)}l/q - {/Ooo 1S(u| X; = k1)|qd5(u)}l/q

TR {/0‘” 5G] X = k2>|qd3(U)}l/q - {/Ooo [S(u| X; = krg)|qu(u)}l/q
T {/o St X = k1)|qd3(“)}l/q - {/O [S(u] X; = kl)lqu(u)}l/q
e {/o 5] X; = ’“2)|qd3(U>}l/q - {/O [S(u | X; = k2)|qd5(u)}1/q

Ill + 112.

We next bound /;; and /5 separately. We first define

W

_ . 1/q
2) = {/0 2[S(u | Xj = ki) = S(u| Xj = k)] + S(u| X; = fﬁ)!"dS(u)} :

Here, ¢(z) is continuous with respect to z on z € [0, 1] and

¥(0) =

1/q

{/O 1S(u| X; = k1)|qcz§(u>}1/q and (1) = {/0 S| X, = k1)|qd§(u)}

We intent to apply the mean value theorem to bound [i(1) — 1»(0)|. Since ¢(z) involves

an absolute value, we need to compute the subgradient of ¢)(z), which is denoted by 0 (z).
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Given |d(|z|)] < 1 and by the strong consistency of S(t | X;) to S(¢ | X;) and S(¢) to S(t),

for any z € [0, 1], we have that

|0¢(2)|

where G(q) = 2{miny, [ S9

<1l

[ 8 X = ) = (] X, = k) (] X, = k)l

X

X

< G(q) sup |S(t|X;=k)—S(t

te(0,7]

(1/g)—1

|2{S(u| X; =k) = S(u| X; =k)}+ S(u| X; = kp)|%dS (u)

(800 X, = k) = S(u] X, = k) a5 |

| X = k1)l

(u| Xj = k)dS(u)/4} /D1

Hence, by Rolle’s mean value inequality theorem (Aussel et al., [1995)),

|4 (1)

Then, we have

Ill

IA

+

<

max

max
k1

max
k1

G(q)

te[0,7]

{/ S(u | X; = ko) |%dS (u }
{/ 1S(u | X; = ko)|%dS (u }
{/ 1S(u | X; = ko) |%dS (u }

x max sup |S(t| X; = k1) —
ki1 te[0,7]

—(0)] < G(q) sup |S(t| X, =k)—S(t|X; =k)l

1/q
1S | X; = k) [* dS(u >}

1/q
1S | X; = k) |* dS(u >}

s
[ 1st i = mopasta >}1/q
S
X

S(t )|+Z

when n is sufficiently large. Here, the last inequality involving €/4 stems from the uniform

strong convergence of S(t) to S(t) over [0, 7).

Similarly, we can obtain that

Iz

IN

max

G(q)

{1501, = kapasta >}I/q—

x max sup |S(t | X; = ky)
k2 tefo,7)

{[ s, - k2)|qu(u>}1/q

€
_S(t|Xj:k2)|+Z
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for a sufficiently large n.

Therefore,

P(@;q) - ‘Ifﬁq)l >e€) < P(ln>e€/2)+ P(hy > €/2)
. €
< e _ e
< P{ 13%11229 t:}(l)g] 1S(t| X;=Fk) =S| X; =k)| > 4G(q)}
. €
P i, 2 80159501 =01 > g
do
< 24K — ptn )
< 2d4 exp( 16G(q)26n )
O
Proof of Theorem 1. By Lemma[2] we have that
PMc M) > P(@;f” ~ W] < cn“)
@ 3@ —v
> P(lrg@g};mlj v <en™)
p ~
> 11— ZP(|\I/§-q) — ‘Ifg-q)| > cn”")
j=1
p
d002
> 11— 2d K — 1=3r=2v
SRR { s ( 166" ) }
j=1
K dOCQ 1-3k—2v
= 1 —2pdicon” exp (— 16G(q)2n
= 1 —cpexp(—cn' ™2 + klogn),
where ¢, = 2d;cy and ¢; = doc?/16G(q)>. O

Let Qj(k) and Q; (1) be the empirical and theoretical k/K; x 100-th percentiles of X, for

k=1,..., K;. For notational simplicity, let .J, = [Qj(k_1), Qj(k)) and J;, = [Qjk—-1), Qj))-

Lemma 3. For a continuous covariate X, let S(t | X; € Ji) be the Kaplan—Meier estimator

of the conditional survival function within the subsamples of X; € Ji. There exist constants
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cs >0, cy > 0, k and p under Condition 3, for sufficiently large n,

i {mgx sup [S(t | X; € Jy) = S(t| X; € Jy)| > e} < d3K exp(—dae*n! %),

te[0,7]

forany 1l <k < K; and K = max;<;<p Kj.

Proof. By the strong consistency of Qj(k) and the continuity of Fx_, it follows that when n is

sufficiently large

Fx,(Qi) — Fx, (Qje-1)) > 0.5{Fx,(Q;m) — Fx,(Qjs-1))}

on (), fork =1,..., K;. Here, by convention, Qj(o) = @Qj(0) = 0 and Qj(Kj) = Qj(x;) = 0.

Now foreach & = 1,..., Kj, by the mean value theorem,

S(t] X; € Ji) = S(t] X; € i)
_ ‘P(T >1,X; < Qi) — P(T > t,X; < Qjr-1)
Fx; (Qjmy) — Fx; (Qja-1))
P(T>1,X; <Qiw) —P(T>tX; < Qj(kl))’
Fx; (Qjwy) — Fx; (Qji-1))

‘P(T >t,X; < Qj(k)) —P(T>tX;< Qj(kfl))
B Fx,(Qjr) — Fx, (Qje-1))
P(T>1,X; <Qjw) —PT>tX;< Qj(k_l))‘
Fx,(Qs09) = Fx, (Qj00-1)
+‘ P(T >tX; < C?j(k)) - P(T >4, X; < Qjk-1))
Fx; (Qj) — Fx; (Qj-1))
_P(T >4, X; < Qimy) —P(T>1,X; < Qj(k—l))‘
Fx,(Qim) — Fx, (Qje-1)
2P(T > t,X; < Qi) — P(T > t, X; < Q)]
Fx (Qj) — Fx;(Qjr—1))
+2\P(T >1,X; < Qi) — P(T >, X; < Qju))]
Fx (Qjwy) — Fix; (Qjx-1))
2|Fx, (Qie-1) — Fx,(Qje-1))| N 2| Fx, Qi) — Fx, (Qin)|
{Fx, (Qir) — Fx,(Qie-1)}*  {Fx;(Qiw) — Fx,; (Qjr-1))}?
=: Io; + Iog + Ioz + Io4.

IN
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It is easy to show that /5, = 0 when k = K as Qj(Kj) = Qj(Kj) = 00. Now for k =

1. K -1,
2 A~
Iy = Fx,(Qjm) — Fx,(Qje—1 )|P<T >, X; < Qi) — P(T >, X; < Qi)

2

< Fx,( Qi) — Fx, Qi) / F(s | Qi) fx; (@) )ds maX\Qj(k Qi
2

= FXj(Qj(k)) — FX].(QJ-(,C_1 )fX <Q k))max|Q] (k) — Qj(k)\
2 A

< ) mfxij (x) max Qs — Qiw)s

FXj(Qj(k)> - FXj(Qj(kq)

where Q;f(k) lies between Qj(k) and Qj), for k = 1,..., K; — 1. By the strong consistency
of Qj(k), the continuity of fx, and Theorem 5.9 of|Shao (1999), there exist positive constants

bo1 and by; such that

e{ Fx; (Qjwy) — Fix; (Qjr-1))}
16 max, fx;,(z)

€ .
P([Zl > é) < P{ max ’Qj(k) _Qj(k)’ >

1<k<K;—1

S bllKj exp(—bmné?),

where 0. = mini<p<r; 1 {Fx; (Qjm) + €) — F(Qjw), F( Qi) — Fx,;(Qjwy — €)} =
ming <p<,—1 f(Qjx))e. Hence, we have that P(Iy > €/8) < by K exp(—boicin'>Pe?)
by Condition 3.

Similarly, for w = 2,3, 4, there exist constants by, and by,, such that P(I5, > €/8) <
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b1w K exp(—bg,can'~?°€?). Therefore,

P{méxx sup |S(t| X; € Jy) — S(t| X; € J)| > €}

te[0,7]
< P{max sup [S(t] X; € Jo) = S(t| X; € Ji)| > ¢/2}
te[0,7]
+P{max sup |S(t|X; € Jo) = S(t] X; € )| > e€/2}
te(0,7]
4 €
< K exp{—do(e/2)’n' "} +) P(I4w > g)

w=1
d 4
< diKexp {—Zonl‘%ez} + Z brw K exp(—boucan'*e?)
w=1

< dyK exp(—dan e,
where d3 = max{dl, blla ceey b14} and dg = min{d0/4, bmcg, C 7b04C§}. O
Lemma 4. If X; is a continuous covariate, under Condition 3, there exist positive constants
dy and d, for n sufficiently large,

P(|(I\/§Q) — \Ilg-q)| > €) < dy K exp(—dye*n' %),

where K = maxi<;<p Kj.

J

Proof. The proof of this lemma is similar to that of Lemma[2] By Lemma[3] the conclusion

follows. L

Proof of Theorem 2. By Lemma [ the proof of this theorem is similar to that of Theorem

1. O
For notational simplicity, we let T = [qu(r,l), qu(r)) and Ju, = [Qjupr-1), Qju(r))-

Lemma 5. If X is a continuous covariate, there exist constants dy >0, dy >0, & and p

under Condition 5, for any € > 0 and n sufficiently large, we have that

p(|f1}§‘1) — \Ifgg)\ > €) < di K lognexp(—doe*n' 3% /logn),
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=J =Pt U

Proof.
|0 @ﬂ<§:w 2
N 1/q T 1/q
< Z {max {/ |S (t] X, e Juk1)|qd5( )} — {/ |S(t] X; € Juk1)|qd5(t)}
0

{[ 1501 e Juk2>|QdS<t>} i {[[1s01x€ Juk2>|st<t>}1/q

+ max } .
ko
The conclusion follows by using a proof similar to Lemma [2]and Lemma 4] [
Proof of Theorem 3. By Lemma 5 the proof is similar to that of Theorem 1. 0

Proof of Theorem 4. Since g satisfies Condition 6, by Theorem 3, there exist constants ¢y,

31, K1, v and p; such that
P{McC M@} >1— csiplognexp{(—com' 3172727 [logn) + k;log n}.
Note that M), = Uleﬁ/lv(ql). Hence, we have M (%) C M), and

PMC M) > PMcC M)

> 1 — ez plognexp{(—coyn' 2727271 [1ogn) + Kk logn}.

S3. Additional Simulation Results

We explored some dependent censoring situations, where the censoring times C; depend on
X. In the following, Example 3* is the same as Example 3, except that the censoring times

C; were generated from the following proportional hazards model

he(t | X) = coexp(BTX),
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where 3 = (0.3,0.3,0,_,)" and ¢y was chosen to give approximately 20% and 40% of cen-
soring proportions. Table[SI|shows that the proposed method still provides good performance
under the considered dependent censoring scenarios.

We next studied the performance of the proposed methods when the number of selected
the top genes was 133, which was far more than 27 as reported in the main text. Table
reports the numbers of overlapping genes selected by different methods, showing that the
variables selected by L,-norm learning with different ¢ did differ and the proposed method
helped choose novel genes that were not identified by the existing methods.

We calculated and compared the c-statistics obtained by various methods. First, using
the full dataset of 170 patients, we randomly generated 10 training/testing splits, with 133
in the training set and the rest in the testing set. In each training dataset, we fitted a random
survival forests model based on the top 133 genes selected by each method. When fitting the
random forests, a total of 100 trees were generated for each dataset. Then the fitted “forests”
were applied to each testing dataset, for which a c-statistic was computed. Finally, for each
method, the average of the c-statistics from all 10 testing datasets, along with its confidence
interval, is listed in Table @ The results showed that even with more selected genes, the
c-statistics did not improve much across all the methods compared to the ones based on the

top 27 genes.
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Table S1: Performance of different variable screening methods with (n, p) = (400, 1000) under Examples 3

and 3*.

20% CR 40% CR
Example 3
MMS TPR PIT MMS TPR PIT
Ly 2 1.00  1.00 2 1.00  1.00
L, 2 1.00  1.00 2 1.00  1.00
Ls 2 1.00  1.00 2 1.00  1.00
Lis 2 1.00  1.00 2 1.00  0.99
Lgo 2 1.00  1.00 2 0.99 0.9
Lo 2 1.00  1.00 2 0.99 0.9
Hybrid 2 1.00  1.00 2 1.00  1.00
20% CR 40% CR
Example 3*
MMS TPR PIT MMS TPR PIT
Ly 2 1.00  1.00 2 0.99 0.9
L, 2 1.00  1.00 2 0.99 0.9
Ls 2 1.00  1.00 2 0.99 0.98
Lis 2 1.00  1.00 2 0.99 0.9
Lgo 2 1.00  1.00 2 0.99 0.98
Lo 2 1.00  1.00 3 0.99 0.98

Hybrid 2 1.00 1.00 3 0.99 0.9
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Table S2: The numbers of overlapping genes among the top 133 genes selected by various screening methods

on the multiple myeloma training dataset.

PSIS  CRIS  FAST CS QA Ly Lo Ls L3 Lgg L Hybrid

PSIS 133 42 55 7 0 38 37 30 19 13 12 29
CRIS 133 16 5 1 30 31 27 17 13 17 26
FAST 133 9 1 15 14 11 4 2 1 10
CS 133 0 11 14 15 17 12 15 15
QA 133 0 0 0 0 0 2 0
Ly 133 122 88 53 36 33 82
Lo 133 94 57 37 34 84
Ls 133 94 72 69 109
L3 133 108 97 99
Lso 133 115 84
Lo 133 82
Hybrid 133

Table S3: Comparisons of the average c-statistics (95% CI) based on 10 random testing datasets of multiple

myeloma.

PSIS CRIS FAST CS QA Hybrid

0.61 (0.53,0.70)  0.62(0.49,0.75)  0.56 (0.41,0.72)  0.60 (0.43,0.76)  0.56 (0.47,0.65)  0.63 (0.56, 0.69)




	Underlying probability space
	Lemmas and proofs
	Additional Simulation Results

