THE L_{q}-NORM LEARNING FOR ULTRAHIGH-DIMENSIONAL SURVIVAL DATA : AN INTEGRATIVE FRAMEWORK

H. G. Hong ${ }^{\dagger}$, X. Chen ${ }^{\ddagger}$, J. Kang* and Y. Li^{*}
${ }^{\dagger}$ Michigan State University, USA
${ }^{\ddagger}$ Southwestern University of Finance and Economics, China,
* University of Michigan, USA

Supplementary Material

S1. Underlying probability space

Let (Ω, \mathcal{F}, P) be the probability space that underlies all the random variables in the paper. Here, Ω is the sample space, \mathcal{F} is the σ-algebra and P is the probability measure. Let $\omega \in \Omega$ denote a sample point. The ensuing proofs need the results of the strong convergence of Kaplan-Meier estimators and empirical quantiles for each covariate. We consider the individual subsets of Ω in which the convergence results hold. Specifically, Theorem 5.9 of Shao (1999) and Theorem 3.1 of Foldes and Rejto (1981) indicate that $\hat{S}(t), \hat{S}\left(t \mid X_{j}\right)$, $\hat{Q}_{j(k)}$ and $\hat{Q}_{j u(k)}$ are strong consistent estimators of $S(t), S\left(t \mid X_{j}\right), Q_{j(k)}$ and $Q_{j u(k)}$, for $1 \leq j \leq p$. That is, there exists an Ω_{j} such that on $\Omega_{j}, \sup _{0<t<\tau}\left|\hat{S}\left(t \mid X_{j}\right)-S\left(t \mid X_{j}\right)\right|=$ $o(1), \hat{Q}_{j(k)}-Q_{j(k)}=o(1)$ and $\hat{Q}_{j u(k)}-Q_{j u(k)}=o(1)$, where $\Omega_{j} \subset \Omega$ with $P\left(\Omega_{j}\right)=1$ and $\tau=\inf \{t: P(T>t)=0\}$. In addition, there exists an $\Omega_{0} \subset \Omega$ where $P\left(\Omega_{0}\right)=1$, such that on Ω_{0}, $\sup _{0<t<\tau}|\hat{S}(t)-S(t)|=o(1)$. Take $\Omega_{*}=\bigcap_{j=0}^{p} \Omega_{j}$. Then it follows that
$P\left(\Omega_{*}\right)=1$ and $P\left(\Omega_{*}^{c}\right)=0$, where Ω_{*}^{c} is the complement of Ω_{*}. All the events mentioned in the following proofs should implicitly be viewed as the intersections with Ω_{*}, which ensures that the aforementioned strong convergence results hold.

S2. Lemmas and proofs

We present several useful lemmas before proving the theoretical results in the main text.

Lemma 1. Let $\tau=\inf \{t: P(T>t)=0\}$. For a categorical covariate X_{j} with K_{j} categories, let $\hat{S}\left(t \mid X_{j}=k\right)$ be the Kaplan-Meier estimator of the conditional survival function within the category of $X_{j}=k, k=1, \ldots, K_{j}$. There exist $d_{0}>0, d_{1}>0, \kappa$ and v under Condition 2, for any $\epsilon>0$ and n sufficiently large,

$$
P\left\{\max _{1 \leq k \leq K_{j}} \sup _{t \in[0, \tau]}\left|\hat{S}\left(t \mid X_{j}=k\right)-S\left(t \mid X_{j}=k\right)\right|>\epsilon\right\} \leq d_{1} K \exp \left(-d_{0} \epsilon^{2} n^{1-3 \kappa}\right),
$$

where $K=\max _{1 \leq j \leq p} K_{j}$.

Proof. By the inequality in the last paragraph on page 1161 of Dabrowska (1989), there exist positive constants d_{0} and d_{1} not depending on ϵ, n and $S\left(t \mid X_{j}\right)$, such that

$$
\begin{aligned}
& P\left(\max _{k} \sup _{t \in[0, \tau]}\left|\hat{S}\left(t \mid X_{j}=k\right)-S\left(t \mid X_{j}=k\right)\right|>\epsilon\right) \\
\leq & d_{1} K_{j} \exp \left(-d_{0} \epsilon^{2} \min _{k} n_{k} K_{j}^{-2}\right) \\
\leq & d_{1} K \exp \left(-d_{0} \epsilon^{2} \min _{k} n_{k} K^{-2}\right)
\end{aligned}
$$

where n_{k} is the number of subjects within $X_{j}=k$. The result follows since $\min _{k} n_{k} \geq$ $n / K=n^{1-\kappa}$ by Condition 2.

Lemma 2. Under the same constants and conditions for Lemma for any $q \geq 1, \epsilon>0$ and
n sufficiently large,

$$
P\left(\left|\widehat{\Psi}_{j}^{(q)}-\Psi_{j}^{(q)}\right|>\epsilon\right) \leq 2 d_{1} K \exp \left(-\frac{d_{0}}{16 G(q)^{2}} \epsilon^{2} n^{1-3 \kappa}\right)
$$

where $G(q)=2\left\{\min _{k} \int_{0}^{\tau} S^{q}\left(u \mid X_{j}=k\right) d S(u) / 4\right\}^{(1 / q)-1}$.

Proof. By the Minkowski inequality and the definition of τ,

$$
\begin{aligned}
& \left|\widehat{\Psi}_{j}^{(q)}-\Psi_{j}^{(q)}\right| \\
= & \mid \max _{k_{1}, k_{2}}\left\{-\int_{0}^{\infty}\left|\hat{S}\left(u \mid X_{j}=k_{1}\right)-\hat{S}\left(u \mid X_{j}=k_{2}\right)\right|^{q} d \hat{S}(u)\right\}^{1 / q} \\
& -\max _{k_{1}, k_{2}}\left\{-\int_{0}^{\infty}\left|S\left(u \mid X_{j}=k_{1}\right)-S\left(u \mid X_{j}=k_{2}\right)\right|^{q} d S(u)\right\}^{1 / q} \mid \\
\leq & \max _{k_{1}}\left|\left\{\int_{0}^{\infty}\left|\hat{S}\left(u \mid X_{j}=k_{1}\right)\right|^{q} d \hat{S}(u)\right\}^{1 / q}-\left\{\int_{0}^{\infty}\left|S\left(u \mid X_{j}=k_{1}\right)\right|^{q} d S(u)\right\}^{1 / q}\right| \\
& +\max _{k_{2}}\left|\left\{\int_{0}^{\infty}\left|\hat{S}\left(u \mid X_{j}=k_{2}\right)\right|^{q} d \hat{S}(u)\right\}^{1 / q}-\left\{\int_{0}^{\infty}\left|S\left(u \mid X_{j}=k_{2}\right)\right|^{q} d S(u)\right\}^{1 / q}\right| \\
= & \max _{k_{1}}\left|\left\{\int_{0}^{\tau}\left|\hat{S}\left(u \mid X_{j}=k_{1}\right)\right|^{q} d \hat{S}(u)\right\}^{1 / q}-\left\{\int_{0}^{\tau}\left|S\left(u \mid X_{j}=k_{1}\right)\right|^{q} d S(u)\right\}^{1 / q}\right| \\
& +\max _{k_{2}}\left|\left\{\int_{0}^{\tau}\left|\hat{S}\left(u \mid X_{j}=k_{2}\right)\right|^{q} d \hat{S}(u)\right\}^{1 / q}-\left\{\int_{0}^{\tau}\left|S\left(u \mid X_{j}=k_{2}\right)\right|^{q} d S(u)\right\}^{1 / q}\right| \\
=: & I_{11}+I_{12} .
\end{aligned}
$$

We next bound I_{11} and I_{12} separately. We first define

$$
\psi(z)=\left\{\int_{0}^{\tau}\left|z\left[\hat{S}\left(u \mid X_{j}=k_{1}\right)-S\left(u \mid X_{j}=k_{1}\right)\right]+S\left(u \mid X_{j}=k_{1}\right)\right|^{q} d \hat{S}(u)\right\}^{1 / q}
$$

Here, $\psi(z)$ is continuous with respect to z on $z \in[0,1]$ and
$\psi(0)=\left\{\int_{0}^{\tau}\left|S\left(u \mid X_{j}=k_{1}\right)\right|^{q} d \hat{S}(u)\right\}^{1 / q}$ and $\psi(1)=\left\{\int_{0}^{\tau}\left|\hat{S}\left(u \mid X_{j}=k_{1}\right)\right|^{q} d \hat{S}(u)\right\}^{1 / q}$.
We intent to apply the mean value theorem to bound $|\psi(1)-\psi(0)|$. Since $\psi(z)$ involves an absolute value, we need to compute the subgradient of $\psi(z)$, which is denoted by $\partial \psi(z)$.

Given $|\partial(|z|)| \leq 1$ and by the strong consistency of $\hat{S}\left(t \mid X_{j}\right)$ to $S\left(t \mid X_{j}\right)$ and $\hat{S}(t)$ to $S(t)$, for any $z \in[0,1]$, we have that

$$
\begin{aligned}
|\partial \psi(z)| & \leq \mid\left[\int_{0}^{\tau}| | z\left\{\hat{S}\left(u \mid X_{j}=k_{1}\right)-S\left(u \mid X_{j}=k_{1}\right)\right\}+\left.S\left(u \mid X_{j}=k_{1}\right)\right|^{q} d \hat{S}(u)\right]^{(1 / q)-1} \\
& \times\left[\int_{0}^{\tau}\left|z\left\{\hat{S}\left(u \mid X_{j}=k_{1}\right)-S\left(u \mid X_{j}=k_{1}\right)\right\}+S\left(u \mid X_{j}=k_{1}\right)\right|^{q-1}\right. \\
& \left.\times\left\{\hat{S}\left(u \mid X_{j}=k_{1}\right)-S\left(u \mid X_{j}=k_{1}\right)\right\} \mid d \hat{S}(u)\right] \mid \\
& \leq G(q) \sup _{t \in[0, \tau]}\left|\hat{S}\left(t \mid X_{j}=k_{1}\right)-S\left(t \mid X_{j}=k_{1}\right)\right|
\end{aligned}
$$

where $G(q)=2\left\{\min _{k} \int_{0}^{\tau} S^{q}\left(u \mid X_{j}=k\right) d S(u) / 4\right\}^{(1 / q)-1}$.
Hence, by Rolle's mean value inequality theorem (Aussel et al., 1995),

$$
|\psi(1)-\psi(0)| \leq G(q) \sup _{t \in[0, \tau]}\left|\hat{S}\left(t \mid X_{j}=k_{1}\right)-S\left(t \mid X_{j}=k_{1}\right)\right| .
$$

Then, we have

$$
\begin{aligned}
I_{11} & =\max _{k_{1}}\left|\left\{\int_{0}^{\tau}\left|\hat{S}\left(u \mid X_{j}=k_{1}\right)\right|^{q} d \hat{S}(u)\right\}^{1 / q}-\left\{\int_{0}^{\tau}\left|S\left(u \mid X_{j}=k_{1}\right)\right|^{q} d S(u)\right\}^{1 / q}\right| \\
& \leq \max _{k_{1}}\left|\left\{\int_{0}^{\tau}\left|\hat{S}\left(u \mid X_{j}=k_{1}\right)\right|^{q} d \hat{S}(u)\right\}^{1 / q}-\left\{\int_{0}^{\tau}\left|S\left(u \mid X_{j}=k_{1}\right)\right|^{q} d \hat{S}(u)\right\}^{1 / q}\right| \\
& +\max _{k_{1}}\left|\left\{\int_{0}^{\tau}\left|S\left(u \mid X_{j}=k_{1}\right)\right|^{q} d \hat{S}(u)\right\}^{1 / q}-\left\{\int_{0}^{\tau}\left|S\left(u \mid X_{j}=k_{1}\right)\right|^{q} d S(u)\right\}^{1 / q}\right| \\
& \leq G(q) \times \max _{k_{1}} \sup _{t \in[0, \tau]}\left|\hat{S}\left(t \mid X_{j}=k_{1}\right)-S\left(t \mid X_{j}=k_{1}\right)\right|+\frac{\epsilon}{4}
\end{aligned}
$$

when n is sufficiently large. Here, the last inequality involving $\epsilon / 4$ stems from the uniform strong convergence of $\hat{S}(t)$ to $S(t)$ over $[0, \tau)$.

Similarly, we can obtain that

$$
\begin{aligned}
I_{12} & =\max _{k_{2}}\left|\left\{\int_{0}^{\tau}\left|\hat{S}\left(u \mid X_{j}=k_{2}\right)\right|^{q} d \hat{S}(u)\right\}^{1 / q}-\left\{\int_{0}^{\tau}\left|S\left(u \mid X_{j}=k_{2}\right)\right|^{q} d S(u)\right\}^{1 / q}\right| \\
& \leq G(q) \times \max _{k_{2}} \sup _{t \in[0, \tau]}\left|\hat{S}\left(t \mid X_{j}=k_{2}\right)-S\left(t \mid X_{j}=k_{2}\right)\right|+\frac{\epsilon}{4}
\end{aligned}
$$

for a sufficiently large n.
Therefore,

$$
\begin{aligned}
P\left(\left|\widehat{\Psi}_{j}^{(q)}-\Psi_{j}^{(q)}\right|>\epsilon\right) \leq & P\left(I_{11}>\epsilon / 2\right)+P\left(I_{12}>\epsilon / 2\right) \\
\leq & P\left\{\max _{1 \leq k_{1} \leq K_{j}} \sup _{t \in[0, \tau]}\left|\hat{S}\left(t \mid X_{j}=k_{1}\right)-S\left(t \mid X_{j}=k_{1}\right)\right|>\frac{\epsilon}{4 G(q)}\right\} \\
& +P\left\{\max _{1 \leq k_{2} \leq K_{j}} \sup _{t \in[0, \tau]}\left|\hat{S}\left(t \mid X_{j}=k_{2}\right)-S\left(t \mid X_{j}=k_{2}\right)\right|>\frac{\epsilon}{4 G(q)}\right\} \\
\leq & 2 d_{1} K \exp \left(-\frac{d_{0}}{16 G(q)^{2}} \epsilon^{2} n^{1-3 \kappa}\right) .
\end{aligned}
$$

Proof of Theorem 1. By Lemma 2, we have that

$$
\begin{aligned}
P\left(\mathcal{M} \subset \widehat{\mathcal{M}}_{1}\right) & \geq P\left(\left|\widehat{\Psi}_{j}^{(q)}-\Psi_{j}^{(q)}\right| \leq c n^{-v}\right) \\
& \geq P\left(\max _{1 \leq j \leq p}\left|\widehat{\Psi}_{j}^{(q)}-\Psi_{j}^{(q)}\right| \leq c n^{-v}\right) \\
& \geq 1-\sum_{j=1}^{p} P\left(\left|\widehat{\Psi}_{j}^{(q)}-\Psi_{j}^{(q)}\right|>c n^{-v}\right) \\
& \geq 1-\sum_{j=1}^{p}\left[2 d_{1} K \exp \left(-\frac{d_{0} c^{2}}{16 G(q)^{2}} n^{1-3 \kappa-2 v}\right)\right] \\
& =1-2 p d_{1} c_{0} n^{\kappa} \exp \left(-\frac{d_{0} c^{2}}{16 G(q)^{2}} n^{1-3 \kappa-2 v}\right) \\
& =1-c_{2} p \exp \left(-c_{1} n^{1-3 \kappa-2 v}+\kappa \log n\right),
\end{aligned}
$$

where $c_{2}=2 d_{1} c_{0}$ and $c_{1}=d_{0} c^{2} / 16 G(q)^{2}$.

Let $\hat{Q}_{j(k)}$ and $Q_{j(k)}$ be the empirical and theoretical $k / K_{j} \times 100$-th percentiles of X_{j}, for $k=1, \ldots, K_{j}$. For notational simplicity, let $\hat{J}_{k}=\left[\hat{Q}_{j(k-1)}, \hat{Q}_{j(k)}\right)$ and $J_{k}=\left[Q_{j(k-1)}, Q_{j(k)}\right)$.

Lemma 3. For a continuous covariate X_{j}, let $\hat{S}\left(t \mid X_{j} \in \hat{J}_{k}\right)$ be the Kaplan-Meier estimator of the conditional survival function within the subsamples of $X_{j} \in \hat{J}_{k}$. There exist constants
$c_{3}>0, c_{4}>0, \kappa$ and ρ under Condition 3, for sufficiently large n,

$$
P\left\{\max _{k} \sup _{t \in[0, \tau]}\left|\hat{S}\left(t \mid X_{j} \in \hat{J}_{k}\right)-S\left(t \mid X_{j} \in J_{k}\right)\right|>\epsilon\right\} \leq d_{3} K \exp \left(-d_{2} \epsilon^{2} n^{1-3 \kappa-2 \rho}\right),
$$

for any $1 \leq k \leq K_{j}$ and $K=\max _{1 \leq j \leq p} K_{j}$.

Proof. By the strong consistency of $\hat{Q}_{j(k)}$ and the continuity of $F_{X_{j}}$, it follows that when n is sufficiently large

$$
F_{X_{j}}\left(\hat{Q}_{j(k)}\right)-F_{X_{j}}\left(\hat{Q}_{j(k-1)}\right)>0.5\left\{F_{X_{j}}\left(Q_{j(k)}\right)-F_{X_{j}}\left(Q_{j(k-1)}\right)\right\}
$$

on Ω_{*} for $k=1, \ldots, K_{j}$. Here, by convention, $\hat{Q}_{j(0)}=Q_{j(0)}=0$ and $\hat{Q}_{j\left(K_{j}\right)}=Q_{j\left(K_{j}\right)}=\infty$.
Now for each $k=1, \ldots, K_{j}$, by the mean value theorem,

$$
\begin{aligned}
&\left|S\left(t \mid X_{j} \in \hat{J}_{k}\right)-S\left(t \mid X_{j} \in J_{k}\right)\right| \\
&= \left\lvert\, \frac{P\left(T>t, X_{j}<\hat{Q}_{j(k)}\right)-P\left(T>t, X_{j}<\hat{Q}_{j(k-1)}\right)}{F_{X_{j}}\left(\hat{Q}_{j(k)}\right)-F_{X_{j}}\left(\hat{Q}_{j(k-1)}\right)}\right. \\
& \leq \left.-\frac{P\left(T>t, X_{j}<Q_{j(k)}\right)-P\left(T>t, X_{j}<Q_{j(k-1)}\right)}{F_{X_{j}}\left(Q_{j(k)}\right)-F_{X_{j}}\left(Q_{j(k-1)}\right)} \right\rvert\, \\
& \left\lvert\, \frac{P\left(T>t, X_{j}<\hat{Q}_{j(k)}\right)-P\left(T>t, X_{j}<\hat{Q}_{j(k-1)}\right)}{F_{X_{j}}\left(\hat{Q}_{j(k)}\right)-F_{X_{j}}\left(\hat{Q}_{j(k-1)}\right)}\right. \\
& \left.+\frac{P\left(T>t, X_{j}<Q_{j(k)}\right)-P\left(T>t, X_{j}<Q_{j(k-1)}\right)}{F_{X_{j}}\left(\hat{Q}_{j(k)}\right)-F_{X_{j}}\left(\hat{Q}_{j(k-1)}\right)} \right\rvert\, \\
&-\frac{P\left(T>t, X_{j}<Q_{j(k)}\right)-P\left(T>t, X_{j}<Q_{j(k-1)}\right)}{F_{X_{j}}\left(\hat{Q}_{j(k)}\right)-F_{X_{j}}\left(\hat{Q}_{j(k-1)}\right)} \\
& \leq \left.\frac{2 \mid P\left(T>t, X_{j}<Q_{j(k)}\right)-P\left(T>t, X_{j}<Q_{j(k-1)}\right)}{F_{X_{j}}\left(Q_{j(k)}\right)-F_{X_{j}}\left(Q_{j(k-1)}\right)} \right\rvert\, \\
& F_{X_{j}}\left(Q_{j(k)}\right)-F_{X_{j}}\left(T>t, Q_{j(k-1)}\right) \\
&+\frac{2\left|P\left(T>t, X_{j}<\hat{Q}_{j(k-1)}\right)-P\left(T>t, X_{j}<Q_{j(k-1)}\right)\right|}{F_{X_{j}}\left(Q_{j(k)}\right)-F_{X_{j}}\left(Q_{j(k-1)}\right)} \\
&+\frac{2\left|F_{X_{j}}\left(\hat{Q}_{j(k-1)}\right)-F_{X_{j}}\left(Q_{j(k-1)}\right)\right|}{\left\{F_{X_{j}}\left(Q_{j(k)}\right)-F_{X_{j}}\left(Q_{j(k-1)}\right)\right\}^{2}}+\frac{2\left|F_{X_{j}}\left(\hat{Q}_{j(k)}\right)-F_{X_{j}}\left(Q_{j(k)}\right)\right|}{\left\{F_{X_{j}}\left(Q_{j(k)}\right)-F_{X_{j}}\left(Q_{j(k-1)}\right)\right\}^{2}} \\
&=: I_{21}+I_{22}+I_{23}+I_{24} .
\end{aligned}
$$

It is easy to show that $I_{21}=0$ when $k=K_{j}$ as $\hat{Q}_{j\left(K_{j}\right)}=Q_{j\left(K_{j}\right)}=\infty$. Now for $k=$ $1, \ldots, K_{j}-1$,

$$
\begin{aligned}
I_{21} & =\frac{2}{F_{X_{j}}\left(Q_{j(k)}\right)-F_{X_{j}}\left(Q_{j(k-1)}\right)}\left|P\left(T>t, X_{j}<\hat{Q}_{j(k)}\right)-P\left(T>t, X_{j}<Q_{j(k)}\right)\right| \\
& \leq \frac{2}{F_{X_{j}}\left(Q_{j(k)}\right)-F_{X_{j}}\left(Q_{j(k-1)}\right)}\left|\int_{t}^{\infty} f\left(s \mid Q_{j(k)}^{*}\right) f_{X_{j}}\left(Q_{j(k)}^{*}\right) d s\right| \max _{k}\left|\hat{Q}_{j(k)}-Q_{j(k)}\right| \\
& \leq \frac{2}{F_{X_{j}}\left(Q_{j(k)}\right)-F_{X_{j}}\left(Q_{j(k-1)}\right)} f_{X_{j}}\left(Q_{j(k)}^{*}\right) \max _{k}\left|\hat{Q}_{j(k)}-Q_{j(k)}\right| \\
& \leq \frac{2}{F_{X_{j}}\left(Q_{j(k)}\right)-F_{X_{j}}\left(Q_{j(k-1)}\right)} \max _{x} f_{X_{j}}(x) \max _{k}\left|\hat{Q}_{j(k)}-Q_{j(k)}\right|,
\end{aligned}
$$

where $Q_{j(k)}^{*}$ lies between $\hat{Q}_{j(k)}$ and $Q_{j(k)}$, for $k=1, \ldots, K_{j}-1$. By the strong consistency of $\hat{Q}_{j(k)}$, the continuity of $f_{X_{j}}$ and Theorem 5.9 of Shao 1999, there exist positive constants b_{01} and b_{11} such that

$$
\begin{aligned}
P\left(I_{21}>\frac{\epsilon}{8}\right) & \leq P\left[\max _{1 \leq k \leq K_{j}-1}\left|\hat{Q}_{j(k)}-Q_{j(k)}\right|>\frac{\epsilon\left\{F_{X_{j}}\left(Q_{j(k)}\right)-F_{X_{j}}\left(Q_{j(k-1)}\right)\right\}}{16 \max _{x} f_{X_{j}}(x)}\right] \\
& \leq b_{11} K_{j} \exp \left(-b_{01} n \delta_{\epsilon}^{2}\right)
\end{aligned}
$$

where $\delta_{\epsilon}=\min _{1 \leq k \leq K_{j}-1}\left\{F_{X_{j}}\left(Q_{j(k)}+\epsilon\right)-F\left(Q_{j(k)}\right), F\left(Q_{j(k)}\right)-F_{X_{j}}\left(Q_{j(k)}-\epsilon\right)\right\} \geq$ $\min _{1 \leq k \leq K_{j}-1} f\left(Q_{j(k)}\right) \epsilon$. Hence, we have that $P\left(I_{21}>\epsilon / 8\right) \leq b_{11} K \exp \left(-b_{01} c_{3}^{2} n^{1-2 \rho} \epsilon^{2}\right)$ by Condition 3 .

Similarly, for $w=2,3,4$, there exist constants $b_{0 w}$ and $b_{1 w}$ such that $P\left(I_{2 w}>\epsilon / 8\right) \leq$
$b_{1 w} K \exp \left(-b_{0 w} c_{3}^{2} n^{1-2 \rho} \epsilon^{2}\right)$. Therefore,

$$
\begin{aligned}
& P\left\{\max _{k} \sup _{t \in[0, \tau]}\left|\hat{S}\left(t \mid X_{j} \in \hat{J}_{k}\right)-S\left(t \mid X_{j} \in J_{k}\right)\right|>\epsilon\right\} \\
\leq & P\left\{\max _{k} \sup _{t \in[0, \tau]}\left|\hat{S}\left(t \mid X_{j} \in \hat{J}_{k}\right)-S\left(t \mid X_{j} \in \hat{J}_{k}\right)\right|>\epsilon / 2\right\} \\
& +P\left\{\max _{k} \sup _{t \in[0, \tau]}\left|S\left(t \mid X_{j} \in \hat{J}_{k}\right)-S\left(t \mid X_{j} \in J_{k}\right)\right|>\epsilon / 2\right\} \\
\leq & d_{1} K \exp \left\{-d_{0}(\epsilon / 2)^{2} n^{1-3 \kappa}\right\}+\sum_{w=1}^{4} P\left(I_{4 w}>\frac{\epsilon}{8}\right) \\
\leq & d_{1} K \exp \left\{-\frac{d_{0}}{4} n^{1-3 \kappa} \epsilon^{2}\right\}+\sum_{w=1}^{4} b_{1 w} K \exp \left(-b_{0 w} c_{3}^{2} n^{1-2 \rho} \epsilon^{2}\right) \\
\leq & d_{3} K \exp \left(-d_{2} n^{1-3 \kappa-2 \rho} \epsilon^{2}\right),
\end{aligned}
$$

where $d_{3}=\max \left\{d_{1}, b_{11}, \ldots, b_{14}\right\}$ and $d_{2}=\min \left\{d_{0} / 4, b_{01} c_{3}^{2}, \ldots, b_{04} c_{3}^{2}\right\}$.

Lemma 4. If X_{j} is a continuous covariate, under Condition 3, there exist positive constants d_{2}^{\prime} and d_{3}^{\prime}, for n sufficiently large,

$$
P\left(\left|\widehat{\Psi}_{j}^{(q)}-\Psi_{j}^{(q)}\right|>\epsilon\right) \leq d_{3}^{\prime} K \exp \left(-d_{2}^{\prime} \epsilon^{2} n^{1-3 \kappa-2 \rho}\right),
$$

where $K=\max _{1 \leq j \leq p} K_{j}$.
Proof. The proof of this lemma is similar to that of Lemma 2. By Lemma 3, the conclusion follows.

Proof of Theorem 2. By Lemma 4, the proof of this theorem is similar to that of Theorem 1.

For notational simplicity, we let $\hat{J}_{u r}=\left[\hat{Q}_{j u(r-1)}, \hat{Q}_{j u(r)}\right)$ and $J_{u r}=\left[Q_{j u(r-1)}, Q_{j u(r)}\right)$.
Lemma 5. If X_{j} is a continuous covariate, there exist constants $\tilde{d}_{0}>0, \tilde{d}_{1}>0, \tilde{\kappa}$ and $\tilde{\rho}$ under Condition 5, for any $\epsilon>0$ and n sufficiently large, we have that

$$
P\left(\left|\widetilde{\Psi}_{j}^{(q)}-\Psi_{j o}^{(q)}\right|>\epsilon\right) \leq \tilde{d}_{1} K \log n \exp \left(-\tilde{d}_{0} \epsilon^{2} n^{1-3 \tilde{\kappa}-2 \tilde{\rho}} / \log n\right),
$$

where $K=\max _{1 \leq j \leq p, 1 \leq u \leq N} K_{j u}$.

Proof.

$$
\begin{aligned}
& \left|\widetilde{\Psi}_{j}^{(q)}-\Psi_{j o}^{(q)}\right| \leq \sum_{u=1}^{N}\left|\widehat{\Psi}_{j, \Lambda j u}^{(q)}-\Psi_{j, \Lambda_{j u o}}^{(q)}\right| \\
& \leq \sum_{u=1}^{N}\left[\max _{k_{1}}\left|\left\{\int_{0}^{\tau}\left|\hat{S}\left(t \mid X_{j} \in \hat{J}_{u k_{1}}\right)\right|^{q} d \hat{S}(t)\right\}^{1 / q}-\left\{\int_{0}^{\tau}\left|S\left(t \mid X_{j} \in J_{u k_{1}}\right)\right|^{q} d S(t)\right\}^{1 / q}\right|\right. \\
& \left.+\max _{k_{2}}\left|\left\{\int_{0}^{\tau}\left|\hat{S}\left(t \mid X_{j} \in \hat{J}_{u k_{2}}\right)\right|^{q} d \hat{S}(t)\right\}^{1 / q}-\left\{\int_{0}^{\tau}\left|S\left(t \mid X_{j} \in J_{u k_{2}}\right)\right|^{q} d S(t)\right\}^{1 / q}\right|\right] .
\end{aligned}
$$

The conclusion follows by using a proof similar to Lemma 2 and Lemma 4 ,

Proof of Theorem 3. By Lemma 5, the proof is similar to that of Theorem 1.

Proof of Theorem 4. Since q_{l} satisfies Condition 6, by Theorem 3, there exist constants $c_{2, l}$, $c_{3, l}, \kappa_{l}, v_{l}$ and ρ_{l} such that

$$
P\left\{\mathcal{M} \subset \widetilde{\mathcal{M}}^{\left(q_{l}\right)}\right\} \geq 1-c_{3, l} p \log n \exp \left\{\left(-c_{2, l} n^{1-3 \kappa_{l}-2 v_{l}-2 \rho_{l}} / \log n\right)+\kappa_{l} \log n\right\}
$$

Note that $\widetilde{\mathcal{M}}_{h}=\bigcup_{l=1}^{L} \widetilde{\mathcal{M}}^{\left(q_{l}\right)}$. Hence, we have $\widetilde{\mathcal{M}}^{\left(q_{l}\right)} \subset \widetilde{\mathcal{M}}_{h}$ and

$$
\begin{aligned}
P\left(\mathcal{M} \subset \widetilde{\mathcal{M}}_{h}\right) & \geq P\left(\mathcal{M} \subset \widetilde{\mathcal{M}}^{\left(q_{l}\right)}\right) \\
& \geq 1-c_{3, l} p \log n \exp \left\{\left(-c_{2, l} n^{1-3 \kappa_{l}-2 v_{l}-2 \rho_{l}} / \log n\right)+\kappa_{l} \log n\right\}
\end{aligned}
$$

S3. Additional Simulation Results

We explored some dependent censoring situations, where the censoring times C_{i} depend on X. In the following, Example 3* is the same as Example 3, except that the censoring times C_{i} were generated from the following proportional hazards model

$$
h_{C}(t \mid X)=c_{0} \exp \left(\beta^{\mathrm{T}} X\right)
$$

where $\beta=\left(0.3,0.3,0_{p-2}^{\mathrm{T}}\right)^{\mathrm{T}}$ and c_{0} was chosen to give approximately 20% and 40% of censoring proportions. Table S1 shows that the proposed method still provides good performance under the considered dependent censoring scenarios.

We next studied the performance of the proposed methods when the number of selected the top genes was 133 , which was far more than 27 as reported in the main text. Table S 2 reports the numbers of overlapping genes selected by different methods, showing that the variables selected by L_{q}-norm learning with different q did differ and the proposed method helped choose novel genes that were not identified by the existing methods.

We calculated and compared the c-statistics obtained by various methods. First, using the full dataset of 170 patients, we randomly generated 10 training/testing splits, with 133 in the training set and the rest in the testing set. In each training dataset, we fitted a random survival forests model based on the top 133 genes selected by each method. When fitting the random forests, a total of 100 trees were generated for each dataset. Then the fitted "forests" were applied to each testing dataset, for which a c-statistic was computed. Finally, for each method, the average of the c-statistics from all 10 testing datasets, along with its confidence interval, is listed in Table S3. The results showed that even with more selected genes, the c-statistics did not improve much across all the methods compared to the ones based on the top 27 genes.

References

Aussel, D., J.-N. Corvellec, and M. Lassonde (1995). Mean value property and subdifferential criteria for lower semicontinuous functions. Transactions of the American Mathematical Society 347(10), 4147-4161.

REFERENCES

tics 17(3), 1157-1167.

Foldes, A. and L. Rejto (1981). Strong uniform consistency for nonparametric survival curve estimators from randomly censored data. The Annals of Statistics 9(1), 122-129.

Shao, J. (1999). Mathematical Statistics. New York: Springer.

Table S1: Performance of different variable screening methods with $(n, p)=(400,1000)$ under Examples 3 and 3^{*}.

		$20 \% \mathrm{CR}$			$40 \% \mathrm{CR}$	
	MMS	TPR	PIT	MMS	TPR	PIT
L_{1}	2	1.00	1.00	2	1.00	1.00
L_{2}	2	1.00	1.00	2	1.00	1.00
L_{5}	2	1.00	1.00	2	1.00	1.00
L_{13}	2	1.00	1.00	2	1.00	0.99
L_{89}	2	1.00	1.00	2	0.99	0.99
L_{∞}	2	1.00	1.00	2	0.99	0.99
L_{∞}	2	1.00	1.00	3	0.99	0.98
L_{89}	2	1.00	1.00	2	1.00	1.00
L_{13}	2	1.00	3	0.99	0.99	
L_{5}	2	1.00				

Table S2: The numbers of overlapping genes among the top 133 genes selected by various screening methods on the multiple myeloma training dataset.

	PSIS	CRIS	FAST	CS	QA	L_{1}	L_{2}	L_{5}	L_{13}	L_{89}	L_{∞}	Hybrid
PSIS	133	42	55	7	0	38	37	30	19	13	12	29
CRIS		133	16	5	1	30	31	27	17	13	17	26
FAST			133	9	1	15	14	11	4	2	1	10
CS				133	0	11	14	15	17	12	15	15
QA					133	0	0	0	0	0	2	0
L_{1}						133	122	88	53	36	33	82
L_{2}							133	94	57	37	34	84
L_{5}								133	94	72	69	109
L_{13}									133	108	97	99
L_{89}										133	115	84
L_{∞}											133	82
Hybrid												133

Table S3: Comparisons of the average c-statistics (95% CI) based on 10 random testing datasets of multiple myeloma.

PSIS	CRIS	FAST	CS	QA	Hybrid
$0.61(0.53,0.70)$	$0.62(0.49,0.75)$	$0.56(0.41,0.72)$	$0.60(0.43,0.76)$	$0.56(0.47,0.65)$	$0.63(0.56,0.69)$

