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Abstract: In the era of precision medicine, survival outcome data with high-throug-

hput predictors are routinely collected. Models with an exceedingly large number

of covariates are either infeasible to fit or likely to incur low predictability because

of overfitting. Variable screening is crucial to identifying and removing irrelevant

attributes. Although numerous screening methods have been proposed, most rely

on some particular modeling assumptions. Motivated by a study on detecting gene

signatures for the survival of patients with multiple myeloma, we propose a model-

free Lq-norm learning procedure, which includes the well-known Cramér–von Mises

and Kolmogorov criteria as two special cases. This work provides an integrative

framework for detecting predictors with various levels of impact, such as short- or

long-term impacts, on censored outcome data. The framework leads naturally to a

scheme that combines results from different q to reduce false negatives, an aspect

often overlooked by the current literature. We show that our method possesses

sure screening properties. The utility of the proposed method is confirmed using

simulation studies and an analysis of the multiple myeloma study.

Key words and phrases: Cramér–von Mises statistic, Kolmogorov statistic, Lq-norm

learning, survival data, variable screening.

1. Introduction

The emergence of high-throughput data arising from genomic, genetic, and

clinical studies has presented unique opportunities for discovering relevant infor-

mation on patients’ survival from massive databases. Scientific investigation of-

ten focuses on discerning lower-dimensional presentations of a high-dimensional

feature space that preserve the necessary information to predict survival out-

comes. Thus, new efficient and reliable methods are needed to select relevant

variables. In ultrahigh-dimensional settings, where the number of predictors

grows exponentially with the sample size, feature screening has become a key

analytical step in ensuring computational expediency, statistical accuracy, and
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algorithm stability (Fan, Feng and Wu (2010)). For example, in a motivating

clinical study (Avet-Loiseau et al. (2009)) on multiple myeloma patients, un-

derstanding the molecular etiology of this disease, such as detecting the gene

signatures that are relevant to survival, would lead to a more accurate risk clas-

sification system and personalized treatment (Mulligan et al. (2007)). However,

with gene expression measurements on more than 40,000 probe sets, this data

set challenges the existing statistical tools for dimension reduction.

Despite the success of many screening approaches, such as sure independence

screening (Fan and Lv (2008)) and its follow-up works, few ultrahigh-dimensional

screening tools exist for survival outcomes. Here, related works include a sure

screening procedure for proportional hazards models (Fan, Feng and Wu (2010)),

a Cox univariate shrinkage estimator (Tibshirani (2009)), a marginal maximum

partial likelihood estimator (Zhao and Li (2012)), and a general class of single-

index hazard rate statistics (Gorst-Rasmussen and Scheike (2013)). Going be-

yond marginal regressions, Hong, Kang and Li (2018) proposed a conditional

screening approach, when prior information is available on which variables should

be included in the models. However, the validity and usability of these methods

often hinge upon some restrictive modeling assumptions.

Model-free screening procedures have recently emerged as a useful tool to

avoid these restrictions. Representative works include a censored rank indepen-

dence screening method (Song et al. (2014)) and a quantile adaptive method (He,

Wang and Hong (2013)). These methods are typically robust against outliers in

predictors and are applicable to a wide range of survival models. However, they

are often computationally intensive or are not designed to handle discrete predic-

tors, which often appear in practice. See Hong and Li (Hong and Li (2017)) for

extensive survey on high-dimensional screening techniques for survival outcomes.

The Kolmogorov screening statistic, which compares distribution functions

across covariate-defined strata, has been proposed for screening nominal predic-

tors (Mai and Zou (2015); Zhu et al. (2012)). However, when the outcome data

are censored, it is unclear how the method would fare in terms of implementation,

interpretation, and theoretical justifications. On the other hand, the Cramér–von

Mises statistic was developed for detecting distribution differences across various

subpopulations in the presence of censoring. For example, Schumacher (1984)

demonstrated that the Cramér–von Mises test is superior to log-rank tests when

the proportional hazards assumption fails to hold; see also Koziol and Green

(1976); Stute (1997); Tamura, Faries and Feng (2000); Li and Feng (2005) in

various contexts. Several authors have shown that under general situations, such
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Figure 1. Comparisons of the Cramér–von Mises and Kolmogorov screening statistics
in two hypothetical scenarios when only X1 has an impact. Survival curves for X1 = 0
and X1 = 1 are shown as solid and dashed curves in Figure 1(a): Group X1 = 0 has a
constant hazard h(t) = 1, and Group X1 = 1 has h(t) = 4 for t ∈ (1.0, 1.4), and h(t) = 1
elsewhere. Figure 1(b) shows the density curves of the Cramér–von Mises statistics on
the active variable (solid curves) and 100 independent noise variables (dashed curves),
based on 100 simulations. Figure 1(c) presents the Kolmogorov statistics. Figure 1(c)
indicates a clearer separation than that in Figure 1(b), meaning that the Kolmogorov
statistic is more powerful than the Cramér–von Mises statistic in this setting. In Figure
1(d), Group X1 = 0 has a constant hazard h(t) = 1, and Group X1 = 1 has h(t) = 0.6
for t ∈ (0.01, 5), and h(t) = 1 elsewhere. Figures 1(e) and 1(f) represent the Cramér–von
Mises and Kolmogorov statistics, respectively, under the setting of Figure 1(d). Figure
1(e) shows a clearer separation between active and noise variables than Figure 1(f) does.

as when a covariate has a long-lasting impact on survival, the Cramér–von Mises

statistic may be more powerful than the Kolmogorov statistic in detecting such an

impact (Conover and Conover (1980); Razali et al. (2011); Woodruff and Moore

(1988); Arnold and Emerson (2011); Chiu and Liu (2009)). However, none of

these works have examined using the Cramér–von Mises statistic as a tool for

variable screening with censored outcome data.
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Because the goal of nonparametric screening is to detect the difference be-

tween survival functions for the subpopulations or strata defined by each can-

didate variable, both the Kolmogorov and the Cramér–von Mises statistics are

applicable. An often overlooked fact, however, is that the difference patterns may

vary across covariates: while some covariates may be impactful during the entire

span of follow-up, some covariates may only have short-term impacts, such as in

the case illustrated in Figure 1. For example, the survival differences between the

chemotherapy group and the chemotherapy plus radiation group among child-

hood cancer patients may be small. As opposed to the conventional results,

in this setting, the Kolmogorov statistic is more powerful than the Cramér–von

Mises statistic in detecting such differences; see Figures 1(b) and 1(c). Therefore,

given a massive data set, screening approaches that rely on a single screening cri-

terion, such as the Cramér–von Mises or Kolmogorov criteria, may not be able

to capture different heterogeneous patterns, leading to false discovery and false

nondiscovery.

This paper proposes a class of Lq-norm learning criteria, which include the

Cramér–von Mises and Kolmogorov statistics as two special cases, with q = 2

and q = ∞, respectively. The embedded weight q provides a convenient means

to detect predictors with short- or long-term impacts on survival. For example,

a larger q, which yields statistics more like the Kolmogorov statistic, is useful

for detecting predictors with a short-term impact. However, a smaller q, which

generates statistics more like the Cramér–von Mises statistic, is more powerful in

other, more general settings. For a specific data set, it is unclear which procedure

is more likely to miss important predictors with unknown patterns of impact,

including short- or long-term impacts, on outcomes. Our framework leads to a

natural scheme to combine results obtained from different q in order to reduce

false negatives, an aspect often overlooked by the literature. The hybrid method

proposed here presents a possible path to conduct data-driven integration of

different screening procedures, the utility of which is verified theoretically and

numerically. In addition, our method is valid without parametric assumptions or

other restrictive conditions that stipulate the dependence between the outcome

and predictors and, hence, is applicable to a variety of survival models. Our

method is invariant under univariate monotone transformations on survival time

or covariates or both. This property is appealing, because variable transformation

is widely applied in the data-processing stage. Finally, because the proposed

screening statistic is a function of Kaplan–Meier estimators, its computation is

straightforward and scalable for screening ultrahigh-dimensional data.
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2. The Lq-norm Learning Criteria

Let (Ω,F , P ) be the probability space that underlies all the random variables

mentioned in this paper, where Ω is the sample space, F is the σ-algebra, and P

is the probability measure. Suppose that we have n independent subjects with p

covariates, where p� n. Let i and j index subjects and covariates, respectively.

For example, Xi = (Xi1, . . . , Xip)
T denotes the covariate vector for subject i, and

Xij denotes covariate j for subject i. Let Ti be the survival time and Ci be the

potential censoring time. We observe that Yi = min{Ti, Ci} and δi = I(Ti ≤ Ci),
where I(·) is the indicator function. As a convention, we assume that Ti and Ci
are independent, given Xi. We further assume that (Ti, Ci, Xi) are independently

and identically distributed (i.i.d.). In particular, let (Ti, Xij , Xi) (i = 1, . . . , n)

be i.i.d. copies of (T,Xj , X), where X = (X1, . . . , Xp).

Denote by S(·) the marginal survival function of T , and by S(t | X) the

conditional survival function of T , given X. We define the set of active covariates

as

M = {j : S(t | X) depends on Xj for some t ∈ (0,∞)}.

We assume that the cardinality of M is small relative to p, because it is not

unreasonable to stipulate that only a small number of biomarkers are relevant to

patients’ survival in biomedical studies.

The task is to identify M, given the vast number of candidate variables,

which can be of mixed types. We propose our method by first considering a

categorical variable, say, Xj , with Kj categories, such that Xj ∈ {1, 2, . . . ,Kj}.
Later, we extend the method to include continuous covariates.

To proceed, we define the Lq-norm of g(T ), where g is a generic function, as

‖g(T )‖q = {E(|g(T )|q)}1/q =

{
−
∫ ∞

0
|g(t)|qdS(t)

}1/q

, (2.1)

where q ≥ 1, and the last equality holds because −dS(t) = f(t)dt.

In order to quantify the relevance of covariate Xj to the survival time T ,

we compute S(t | Xj), the conditional survival function within each category

of Xj ; afterwards, for every pair of Xj categories, say, k1 6= k2 ∈ {1, . . . ,Kj},
we compute the Lq-norm of S(T | Xj = k1) − S(T | Xj = k2), and take the

maximum over all pairs of (k1, k2). More explicitly,

Ψ
(q)
j = max

k1,k2∈{1,...,Kj}
‖S(T | Xj = k1)− S(T | Xj = k2)‖q. (2.2)
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The rationale of using (2.2) as the screening criterion is that it gauges the

survival differences across different subpopulations of Xj , and Ψ
(q)
j = 0 if and

only if T is independent of Xj . Hence, (2.2) measures the relevance of Xj to T .

The Lq-norm criteria are general. When q = 2, (2.2) is the Cramér–von Mises

statistic; when q =∞, it becomes the Kolmogorov statistic:

Ψ
(∞)
j = max

k1,k2∈{1,...,Kj}
sup
t
|S(t | Xj = k1)− S(t | Xj = k2)| . (2.3)

Denote by t1 < t2 < · · · < td the ordered observed failure times, and by

Ŝ(t) the Kaplan–Meier estimate of S(t), the marginal survival function of T at

time t. Within each category of a categorical variable, say, using subsamples

{i : Xij = k}, we can compute the Kaplan–Meier estimate Ŝ(t | Xj = k) of

S(t | Xj = k). Then, Ψ
(q)
j can be estimated by

Ψ̂
(q)
j = max

k1,k2∈{1,...,Kj}

{
−
∫ ∞

0

∣∣∣Ŝ(t | Xj = k1)− Ŝ(t | Xj = k2)
∣∣∣q dŜ(t)

}1/q

= max
k1,k2∈{1,...,Kj}

[
d∑
l=1

∣∣∣Ŝ(tl | Xj = k1)− Ŝ(tl | Xj = k2)
∣∣∣q

{
Ŝ(tl−1)− Ŝ(tl)

}]1/q

,

(2.4)

where we set t0 = 0, for notational convenience.

Finally, we select the active variables from

M̂ =
{
j : Ψ̂

(q)
j > cn−v, j = 1, . . . , p

}
, (2.5)

where c and v are constants for predetermined thresholds defined in Condition 1

in Section 3. Because the screening criterion is Lq-norm based, this procedure is

termed Lq-norm learning.

The empirical version of Ψ
(q)
j in (2.2) is difficult to evaluate when Xj takes

infinite values. However, we can find an approximation of Ψ
(q)
j by slicing Xj .

Without loss of generality, we assume that the support of Xj is the real line R.

Let X̃j = k if Xj ∈ [Q̂j(k−1), Q̂j(k)), where Q̂j(k) is the k/Kj×100th percentile of

the empirical distribution of Xj . For notational convenience, we set Q̂j(0) = −∞
and Q̂j(Kj) =∞. We refer to each [Q̂j(k−1), Q̂j(k)) as a slice.

Suppose there are N different ways of slicing a continuous covariate Xj ,

denoted by Λju, for u = 1, . . . , N , with each slice Λju containing Kju intervals,
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that is,

Λju =

{
[Q̂ju(k−1), Q̂ju(k)) : k = 1, . . . ,Kju and ∪Kju

k=1 [Q̂ju(k−1), Q̂ju(k)) = R
}
.

We then replace Xj with its discretized version X̃ju under each Λju; that is,

X̃ju = k if Xj ∈ [Q̂ju(k−1), Q̂ju(k)). To ensure there are sufficient samples within

each slice for all slicing schemes, one may take Kju = 3, . . . , [log(n)], which gives

N = [log(n)− 2] slicing schemes.

Now, let Ψ
(q)
j,Λjuo

= maxk1,k2∈{1,...,Kj} ‖S(t | X̃ju = k1) − S(t | X̃ju = k2)‖q
be the Lq-norm learning statistic corresponding to the slicing scheme of Λju for

a continuous covariate j. After slicing, Xj is independent of T if and only if

Ψ
(q)
j,Λjuo

= 0 for all possible choices of Λju; see Lemma 1 of Mai and Zou (2015).

In addition, although Ψ
(q)
j,Λjuo

is used as a surrogate of Ψ
(q)
j , Lemma 2 of Mai

and Zou (2015) shows that Ψ
(q)
j,Λjuo

could be a better than Ψ
(q)
j as a measure for

variable screening.

Finally, we combine the information from all Λju using the fused Lq-norm

learning statistic

Ψ̃
(q)
j =

N∑
u=1

Ψ̂
(q)
j,Λju

, (2.6)

where

Ψ̂
(q)
j,Λju

= max
k1,k2∈{1,...,Kju}

[
d∑
l=1

∣∣∣Ŝ(tl | X̃ju = k1)− Ŝ(tl | X̃ju = k2)
∣∣∣q

{
Ŝ(tl−1)− Ŝ(tl)

}]1/q

,

(2.7)

leading to the following screening criterion:

M̃ =
{
j : Ψ̃

(q)
j > c̃n−ṽ, j = 1, . . . , p

}
, (2.8)

where c̃ and ṽ are two positive constants. For favorable numerical experiments,

we opt to use the fused method or (2.8) as the screening criterion when Xj is

continuous.
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3. Sure Screening Properties

We establish the sure screening property of the proposed screening method.

The following regularity conditions are needed.

Condition 1. For any q ≥ 1, there exist c > 0 and v ∈ [0, 1/2), such that

minj∈MΨ
(q)
j ≥ 2cn−v, where c and v are defined as in (2.5).

Condition 2. There exist c0 > 0 and κ ∈ [0, (1 − 2v)/3), such that K =

max1≤j≤pKj ≤ c0n
κ, for any n ≥ 1.

Condition 1 stipulates that the minimal signal in the active set should be

sufficiently strong. Such an assumption is standard in feature screening literature;

see, for example, Condition 3 in Fan and Lv (2008), and Condition C2 in Li,

Zhong and Zhu (2012); He, Wang and Hong (2013); Cui, Li and Zhong (2015);

Ni and Fang (2016). Moreover, when the censoring rate is zero and q = ∞,

the proposed method includes the Kolmogorov filter in Mai and Zou (2015) as

a special case. Indeed, Condition 1 is weaker than condition (C1) of Mai and

Zou (2015), and can be satisfied even when the active set is correlated with the

inactive set.

Condition 2 allows the number of categories for each covariate to diverge

with a certain order. A similar assumption is made in Condition C3 of Ni and

Fang (2016).

Theorem 1. When all covariates are categorical, for any q ≥ 1, there exist

constants c1 > 0, c2 > 0, κ, and v under Conditions 1–2, for a sufficiently large

n. Then, we have that

P (M⊂ M̂) ≥ 1− c2p exp(−c1n
1−3κ−2v + κ log n).

Hence, when log p = c2n
α, with α ∈ [0, 1 − 3κ − 2v), Lq-norm learning exhibits

the sure screening property.

We next consider whenXj is continuous, for some j. We denote by fXj
(x) the

probability density of Xj , and replace Condition 2 with the following condition.

Condition 3. Suppose that fXj
(x) is continuous and bounded on the support

of Xj . There exist c3 > 0 and ρ ∈ [0, (1− 2v − 3κ)/2), such that min1≤k≤Kj−1

fXj
(Qj(k)) ≥ c3n

−ρ.

This condition implies that the density values among all the slicing points

have a lower bound in the order of n−ρ, ensuring that there are sufficient samples

within each slice of Xj .
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Theorem 2. When covariates include both continuous and categorical types, for

any q ≥ 1, there exist constants c3 > 0, c4 > 0, κ, v, and ρ under Conditions 1

and 3, for n sufficiently large. Then, we have that

P (M⊂ M̂) ≥ 1− c4p exp(−c3n
1−3κ−2v−2ρ + κ log n).

Hence, when log p = c4n
α, with α ∈ [0, 1 − 3κ − 2v − 2ρ), Lq-norm learning

exhibits the sure screening property.

Fused Lq-norm learning requires additional notation and regularity condi-

tions. Let Λjuo be the partition using the theoretical k/Kju × 100th percentile

of Xj , and denote by Qju(k) (k = 0, . . . ,Kju) the slicing points. Denote the true

value of the Lq-norm learning statistic for the partition Λjuo by Ψ
(q)
j,Λjuo

, and let

Ψ
(q)
jo =

∑N
u=1 Ψ

(q)
j,Λjuo

. Then, we have Conditions 4–5, which are modified from

Conditions 1 and 3, respectively.

Condition 4. For any q ≥ 1, there exist constants c̃ > 0 and ṽ ∈ [0, 1/2), such

that minj∈MΨ
(q)
jo ≥ 2c̃n−ṽ, where c̃ and ṽ are defined as in (2.8).

Condition 5. Suppose that fXj
(x) is bounded and continuous with respect

to x. There exist constants c̃0 > 0 and κ̃ ∈ [0, (1 − 2ṽ)/3), such that K̃ =

max1≤j≤p,1≤u≤N Kju ≤ c̃0n
κ̃. There exist constants c̃1 > 0 and ρ̃ ∈ [0, (1− 2ṽ −

3κ̃)/2), such that min1≤k≤Kju−1,1≤u≤N fXj
(Qju(k)) ≥ c̃1n

−ρ̃.

Theorem 3. When covariates include both continuous and categorical types, for

any q ≥ 1, there exist c̃2 > 0, c̃3 > 0, κ̃, ṽ, and ρ̃ under Conditions 4–5, for n

sufficiently large. Then, we have that

P (M⊂ M̃) ≥ 1− c̃3p log n exp

{
−c̃2n

1−3κ̃−2ṽ−2ρ̃

log n
+ κ̃ log n

}
.

When log p = c̃3(nα̃/ log n) and α ∈ [0, 1− 3κ̃− 2ṽ− 2ρ̃), fused Lq-norm learning

exhibits the sure screening property.

4. Hybrid Lq-norm Learning

The performance of the Lq-norm learning depends on q, with an unknown

best q for any given data set. Thus, instead of relying solely on a specific q, we

propose combining the Lq-norm learning results obtained from various q, and

show that this exhibits desirable theoretical properties.

Suppose that we perform screening based on various q, say, 1 ≤ q1 < · · · <
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qL <∞. We define hybrid Lq-norm learning as

M̃h =∪Ll=1M̃(ql), (4.1)

where M̃(ql) =
{
j : Ψ̃

(ql)
j > c̃hn

−vl , j = 1, . . . , p
}

, vl is a positive constant that

depends on ql, and c̃h is a positive constant not depending on l.

In principle, the range of ql should be sufficiently wide, and should cover

the Cramér–von Mises and Kolmogorov statistics. One possible choice that may

satisfy this principle is the Fibonacci numbers, with every number in the sequence

(after the first two) being the sum of the two preceding numbers. That is,

ql = 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . . In our numerical experience, the Lq-norm

statistic is very close to the Kolmogorov statistic when q > 30 (corresponding

to q = ∞). Thus, we may consider a sub-series of Fibonacci numbers, with the

maximum number being 89, as shown in our later simulation studies.

To show the sure screening property of hybrid Lq-norm learning, we assume

the following regularity conditions.

Condition 6. There exist ql ≥ 1, c̃h > 0, and vl ∈ [0, 1/2), such that minj∈MΨ
(ql)
jo

≥ c̃hn
−vl , where c̃h and vl are defined as in (4.1). There exist constants c0,l > 0

and κl ∈ [0, (1 − 2vl)/3), such that max1≤j≤p,1≤u≤N Kju ≤ c0,ln
κl . There exist

constants c1,l > 0 and ρl ∈ [0, (1− 2vl − 3κl)/2), such that min1≤k≤Kju−1,1≤u≤N
fXj

(Qju(k)) ≥ c1,ln
−ρl .

Theorem 4. When covariates include both continuous and categorical types,

there exist constants ql ≥ 1, c2,l > 0, c3,l > 0, κl, vl, and ρl under Condition 6,

for n sufficiently large. Then, we have that

P (M⊂ M̃h) ≥ 1− c3,lp log n exp

{
−c2,ln

1−3κl−2vl−2ρl

log n
+ κl log n

}
,

when log p = c3,l(n
α/ log n), with α ∈ [0, 1 − 3κl − 2vl − 2ρl). Thus, hybrid

Lq-norm learning exhibits the sure screening property.

Hybrid Lq-norm learning allows covariates chosen by any ql (l = 1, . . . , L)

to be included in the selected active set, which guarantees the recovery of the

true active set, or reduces the incidence of false negatives, to the extent possible.

This may fit the overarching goal of variable screening.
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5. Simulation Studies

We perform simulations to compare the finite-sample performance of the pro-

posed Lq-learning with that of competing methods, such as principled sure inde-

pendence screening (Zhao and Li (2012)), censored rank independence screen-

ing (Song et al. (2014)), independent screening for single-index hazard rate

models (Gorst-Rasmussen and Scheike (2013)), quantile adaptive screening (He,

Wang and Hong (2013)), and conditional sure independence screening (Hong,

Kang and Li (2018)). For the proposed Lq-norm learning approach, we consider

q = {1, 2, 5, 13, 89,∞} over its domain. Our preliminary analysis shows that large

values of q (≥ 30) give results similar to those of the Kolmogorov statistic, while

small or moderate values of q (< 10) resemble the Cramér–von Mises criterion.

In practice, the values of q would depend on users’ research goals: if the focus

is on finding predictors with a long-term impact, q should be chosen close to

one. However, if the focus is on finding predictors with a short-term effect, large

values of q are preferable.

Binary, categorical, and continuous variables are considered in our simula-

tions. The censoring times Ci are independently generated from a uniform dis-

tribution U [0, c0], with c0 chosen to give censoring proportions of approximately

20% and 40%.

Example 1. The underlying random vector x∗ = (x∗1, . . . , x
∗
p) is generated from a

multivariate normal distribution, with a mean vector of zero, and an exchangeable

correlation structure with an equal correlation of 0.5. For each j, x∗j is further

dichotomized by its median value and the obtained binary variable Xj = 0 if x∗j is

in the lower half, and Xj = 1 otherwise. The survival times are generated from an

accelerated failure time model with a baseline hazard function h0(t) = 0.1(t−2)2;

that is,

h(t | X) = h0{exp(βTX)t} exp(βTX),

where β = (−0.5,−0.5,−0.5,−0.5,−0.5, 0T
p−5)T. A similar model is considered

by Zhang and Peng (2009).

Example 2. The underlying random vector x∗ is generated as in Example 1.

For each j, x∗j is further quarterized by its quartile values: the obtained quarterly

variable Xj = 1 if x∗j is less than the lower quartile, 2 if between the lower quartile

and the median, 3 if between the median and the upper quartile, and 4 otherwise.

The survival times are generated from the proportional hazards model,
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Table 1. Performance of different variable screening methods for Examples 1–2, with
20% CR.

Example 1 Example 2

n = 400 n = 600 n = 400 n = 600

MMS TPR PIT MMS TPR PIT MMS TPR PIT MMS TPR PIT

PSIS 6 1.00 0.99 5 1.00 1.00 910 0.07 0.00 851 0.09 0.00

CRIS 1,000 0.00 0.00 1,000 0.00 0.00 841 0.06 0.00 829 0.11 0.00

FAST 5 1.00 0.99 5 1.00 1.00 923 0.05 0.00 871 0.06 0.00

QA - - - - - - 39 0.05 0.00 16 0.06 0.00

CS 5 1.00 1.00 5 1.00 1.00 799 0.29 0.00 788 0.30 0.00

L1 9 0.99 0.97 5 1.00 1.00 9 0.97 0.88 4 0.99 0.97

L2 7 1.00 0.99 5 1.00 1.00 10 0.97 0.88 4 0.99 0.97

L5 7 1.00 0.98 5 1.00 1.00 13 0.97 0.87 4 0.99 0.97

L13 7 0.99 0.97 5 1.00 1.00 16 0.96 0.83 4 0.99 0.96

L89 9 0.99 0.95 5 1.00 1.00 11 0.95 0.79 5 0.99 0.95

L∞ 9 0.99 0.94 5 1.00 1.00 11 0.94 0.78 6 0.99 0.95

Hybrid 9 0.99 0.97 5 1.00 1.00 12 0.95 0.81 5 0.99 0.96

h(t | X) = 0.1 exp


p∑
j=1

βjI(Xj ∈ {2, 3})

 ,

where β = (1.2, 0, 1, 0, 0.8, 0, 1, 0T
p−5)T.

Example 3. The survival times are generated from the following proportional

hazards model:

h(t | X) = 2t(|X1|+ |X2|),

where all covariates Xj (j = 1, . . . , p) are generated from an independent stan-

dard normal distribution. In this case, the marginal correlation between each of

the active variables, X1 and X2, and the survival time is zero.

Example 4. For each j, the observed discrete covariate Xj is generated as in

Example 1. The survival times are generated from the following proportional

hazards model:

h(t | X) =

{
1 + 4(X1 +X2), for t ∈ (1.3, 1.9],

1, for t ∈ (0, 1.3] ∪ (1.9,∞).

For each example, 500 simulated data sets are generated. We consider n =
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Table 2. Performance of different variable screening methods for Examples 3–4, with
20% CR.

Example 3 Example 4

n = 400 n = 600 n = 400 n = 600

MMS TPR PIT MMS TPR PIT MMS TPR PIT MMS TPR PIT

PSIS 730 0.05 0.00 737 0.06 0.01 110 0.56 0.36 54 0.79 0.66

CRIS 735 0.04 0.00 724 0.06 0.00 455 0.18 0.05 458 0.34 0.12

FAST 722 0.06 0.00 727 0.07 0.01 97 0.61 0.43 47 0.79 0.66

QA 8 0.95 0.90 4 0.01 0.00 - - - - - -

CS 481 0.55 0.09 440 0.56 0.11 52 0.78 0.55 20 0.79 0.66

L1 2 1.00 1.00 2 1.00 1.00 259 0.23 0.07 190 0.42 0.21

L2 2 1.00 1.00 2 1.00 1.00 121 0.42 0.22 60 0.80 0.66

L5 2 1.00 1.00 2 1.00 1.00 38 0.81 0.72 10 0.98 0.98

L13 2 1.00 1.00 2 1.00 1.00 17 0.85 0.78 4 0.99 0.99

L89 2 1.00 1.00 2 1.00 1.00 11 0.87 0.80 3 0.99 0.99

L∞ 2 1.00 1.00 2 1.00 1.00 11 0.88 0.82 3 0.99 0.99

Hybrid 2 1.00 1.00 2 1.00 1.00 16 0.86 0.77 5 0.99 0.98

Table 3. Performance of different variable screening methods for Examples 1–2, with
40% CR.

Example 1 Example 2

n = 400 n = 600 n = 400 n = 600

MMS TPR PIT MMS TPR PIT MMS TPR PIT MMS TPR PIT

PSIS 10 0.99 0.94 5 1.00 1.00 861 0.05 0.00 882 0.07 0.00

CRIS 1,000 0.00 0.00 1,000 0.00 0.00 862 0.06 0.00 879 0.06 0.00

FAST 10 0.99 0.95 5 1.00 1.00 873 0.02 0.00 889 0.04 0.00

QA - - - - - - 250 0.70 0.20 201 0.73 0.29

CS 5 1.00 0.99 5 1.00 1.00 823 0.27 0.00 786 0.28 0.00

L1 14 0.97 0.88 5 1.00 1.00 4 1.00 0.99 4 1.00 1.00

L2 10 0.99 0.93 5 1.00 1.00 4 1.00 0.99 4 1.00 1.00

L5 10 0.99 0.93 5 1.00 1.00 4 1.00 0.99 4 1.00 1.00

L13 11 0.98 0.91 5 1.00 1.00 5 1.00 0.99 4 1.00 1.00

L89 15 0.97 0.86 5 1.00 1.00 7 1.00 0.99 4 1.00 0.99

L∞ 15 0.97 0.86 5 1.00 1.00 7 1.00 0.99 4 1.00 0.99

Hybrid 13 0.98 0.90 5 1.00 1.00 5 0.99 0.97 4 1.00 1.00

400 and n = 600 to explore how the performance of the proposed nonparametric

method improves with the sample size. The performance is assessed using the

following criteria: minimum model size (MMS), probability of including the true

model (PIT), and true positive rate (TPR). In Examples 1–4, X1 is used as the
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Table 4. Performance of different variable screening methods for Examples 3–4, with
40% CR.

Example 3 Example 4

n = 400 n = 600 n = 400 n = 600

MMS TPR PIT MMS TPR PIT MMS TPR PIT MMS TPR PIT

PSIS 711 0.07 0.01 743 0.06 0.01 532 0.15 0.03 475 0.24 0.08

CRIS 696 0.05 0.00 762 0.04 0.00 531 0.14 0.02 497 0.23 0.06

FAST 705 0.08 0.01 740 0.06 0.01 532 0.16 0.03 473 0.25 0.09

QA 56 0.74 0.55 69 0.01 0.00 - - - - - -

CS 447 0.55 0.10 423 0.55 0.10 381 0.56 0.13 311 0.61 0.23

L1 2 1.00 1.00 2 1.00 1.00 429 0.14 0.02 337 0.26 0.03

L2 2 1.00 1.00 2 1.00 1.00 317 0.21 0.04 202 0.44 0.21

L5 2 1.00 1.00 2 1.00 1.00 189 0.40 0.17 76 0.75 0.58

L13 2 1.00 0.99 2 1.00 1.00 149 0.50 0.27 54 0.83 0.68

L89 2 0.99 0.99 2 1.00 1.00 138 0.54 0.31 43 0.84 0.70

L∞ 2 0.99 0.99 2 1.00 1.00 132 0.54 0.30 46 0.84 0.71

Hybrid 2 1.00 1.00 2 1.00 1.00 174 0.45 0.21 56 0.81 0.65

true conditioning set for the conditional screening method (Hong, Kang and Li

(2018)).

The results in Tables 1-4 show that the proposed Lq-norm learning achieves

a reasonable MMS, PIT, and TPR in the considered scenarios. Its performance

improves as the sample size increases, which may not be true for competing

methods. When the variables are categorical, as in Example 2, the results for

the competing methods are poor because these methods are not developed for

screening categorical variables. In particular, the B-spline-based quantile adap-

tive method (He, Wang and Hong (2013)) is not applicable to binary covariates.

On the other hand, in Example 3, when the marginal correlation between each

active variable and the survival time is zero, the competing methods all have dif-

ficulty in identifying active variables, including the conditional screening method,

which assumed one active variable is known. As we conjectured, the optimal q

in Lq-norm learning tends to be data-specific. For example, the minimum model

size decreases as q decreases in Example 2, whereas it decreases as q increases in

Example 4.

To check the invariance property of the proposed method, we use X1/3 in lieu

of X, and the log-transformed observed survival times in Example 3. The trans-

formed data yield the same Lq-norm learning statistic, supporting the invariance

property of the method. Finally, Table S1 of the Supplementary Material shows
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that the proposed method is not heavily impacted by the violation of the inde-

pendent censoring assumption.

6. Analysis of Multiple Myeloma Data

Multiple myeloma is a progressive blood disease, characterized by excessive

numbers of abnormal plasma cells in the bone marrow and an overproduction

of intact monoclonal immunoglobulin. Myeloma patients’ survival ranges from a

few months to more than 10 years, even within the same stage of cancer. Gene

expression profiling offers an effective way to predict the survival of patients

with newly diagnosed multiple myeloma. We apply the proposed method to

study a multiple myeloma trial, which is designed to identify gene signatures

that are relevant to patients’ survival (Avet-Loiseau et al. (2009)). The study

has independent and comparable training and testing sets. The training data set

contains data on 133 patients, with a 56% censoring rate, an average age of 55.2

years, and an average follow-up of 44.2 months. Of these patients 45% are female.

The test data set includes data on 37 patients, with a 51% censoring rate, a mean

age of 56.2 years, and a mean follow-up of 40.8 months. Among this group of

patients, 43% are female. Combining the training and testing samples, the study

consists of 170 patients, each with measurements of 44,280 gene expressions.

Because the number of gene expressions overwhelmes the sample size, we first

apply the proposed Lq-norm learning, as well as several competing methods, to

the training data set, with n1 = 133, to screen out irrelevant genes. Furthermore,

we reduce the dimension from p = 44, 280 to d = [n1/ log(n1)] = 27.

Because gene expression levels are continuous, we use the fused approach

introduced in Section 2.1. That is, we consider the slicing schemes Λj1,Λj2,Λj3,

which contain 3, 4, 5 (= [log(133)]) intervals, respectively. Then, we combine

the information from all Λju, for u = 1, 2, 3, using the fused Lq-norm learning

statistic in (2.6).

Table 5 reports the numbers of overlapping genes selected by the different

methods, showing that the variables selected by Lq-norm learning with different

q-values differ, and that the proposed method helps to choose novel genes not

identified by existing methods.

We next examine the performance of various methods using the random

survival forests approach, which is an extension of the random forests model

to right-censored survival data, and can be implemented using the R package

randomSurvivalForest (Ishwaran and Kogalur (2007)).
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Table 5. The numbers of overlapping genes among the top 27 genes selected by various
screening methods on the multiple myeloma training data set.

PSIS CRIS FAST CS QA L1 L2 L5 L13 L89 L∞ Hybrid
PSIS 27 6 4 2 0 2 4 1 2 1 1 2
CRIS 27 1 3 0 4 5 3 2 0 0 2
FAST 27 2 0 1 2 0 0 0 0 0
CS 27 0 3 3 5 6 6 6 6
QA 27 0 0 0 0 0 0 0
L1 27 22 14 8 5 4 12
L2 27 17 11 5 4 13
L5 27 20 15 13 20
L13 27 21 20 21
L89 27 23 17
L∞ 27 16
Hybrid 27

Table 6. Comparisons of the average c-statistics, along with its 95% confidence interval,
based on 10 random testing data sets of multiple myeloma.

PSIS CRIS FAST CS QA Hybrid
0.61 (0.53, 0.68) 0.59 (0.46, 0.72) 0.55 (0.44, 0.66) 0.59 (0.48, 0.70) 0.53 (0.40, 0.66) 0.63 (0.55, 0.72)

First, we randomly generate 10 training/testing splits from the full data set

of 170 patients, with 133 in the training set, and 37 in the testing set. In each

training data set, we select the top 27 genes by each method, and fitted a random

survival forests model. When fitting the random forests, a total of 100 trees are

generated for each training data set. Then, the fitted “forests” are applied to

each testing data set, for which a c-statistic is computed. The overall c-statistic

is the average of the c-statistics across all splits.

Finally, for each method, the average of the c-statistics from all 10 testing

data sets is listed in Table 6. In general, our method improves the c-statistics,

even though the improvement may not reach statistical significance.

To evaluate the impact of choosing different numbers of top genes, in the

Supplementary Material, we repeat the investigation by choosing the top 133

genes selected by each method; the results appear in Tables S2–S3.

To address the important biological question of which genes are relevant

to the survival of patients with multiple myeloma, we apply hybrid Lq-norm

learning to the whole data set and chose the top 27 genes. Based on these

genes, we fit a random survival forests model and assess the top 10 genes based

on their contributions to the model. Table 7 lists these genes, which have al-

ready been recognized in the cancer literature. In particular, probes 213901 x at,
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Table 7. The 10 most important genes selected by hybrid Lq-norm learning.

Probes Description
213901 x at Average expression differed by> 2.5-fold comparing Adwt with Adhz60

infection (Rao et al. (2006)); overexpressed in MMCs or in HMCLs com-
pared to normal counterparts (Kassambara et al. (2012)).

206150 at Significant in the apoptosis pathway in ER-positive tumors (Yu et al.
(2007)); genes exclusively deregulated in PC from MM but with a similar
expression profile in WM-PC and NPC (Gutiérrez et al. (2007)).

205689 at Concordantly differentially expressed within reported genetic regions of
gain or loss in relapses in favorable histology Wilms’ tumor (Huang et al.
(2009)).

39650 s at Hypomethylated and increased in expression (Andrews et al. (2010)).
218058 at Differentially expressed between the dormant SCP6 cell line and related

non-metastatic or low-metastatic cell lines, and highly bonemetastatic
PD cell lines (Lu et al. (2011)).

206662 at Up-regulated genes expressed at least twofold higher in NCK compared
with CVX (Santin et al. (2005)); genes exclusively deregulated in PC
from MM but with a similar expression profile in WM-PC and NPC
(Gutiérrez et al. (2007)).

216860 s at Differentially expressed after vaccination (Garćıa-Piñeres et al. (2009)).
206267 s at Gene expression in monoclonal CD4 T-LGL cells significantly (p <

0.006) changed after short-term in vitro hCMV stimulation (Rodŕıguez-
Caballero et al. (2008)).

207598 x at Pathway/response to DNA damage (Del Giudice et al. (2012)).
227894 at Genes showing expression profiles similar to genes identified as statisti-

cally significant (Bayne et al. (2008)).

NOTE: The genes selected by hybrid Lq-norm learning are reordered based on variable
importance ranking, assessed by a random survival forests model.

206150 at, and 206662 at have been known to be clinically significant in multiple

myeloma. Moreover, our method highlights possible novel candidates for mul-

tiple myeloma. For example, although probes 205689 at, 39650 s at, 218058 at,

216860 s at, 206267 s at, and 227894 at have not been identified in the multiple

myeloma literature, they have been linked to a variety of other cancers, including

prostate, lung, breast, head, and neck cancers. Therefore, their roles in multiple

myeloma are worth investigating.

7. Conclusion

This paper proposes a new class of model-free Lq-norm learning approaches

for screening ultrahigh-dimensional survival data. The important problem of

how to combine results from different screening procedures remains open (Liu,

Zhong and Li (2015)). To the best of our knowledge, this is the first attempt
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to combine the screening results with different q via (4.1). The intuition is that

hybrid learning retains the covariates chosen by any of the considered screen-

ing procedures, which may help reduce the false negatives, to the extent pos-

sible, which is a desirable property of screening procedures. Our framework

facilitates the fusion of screening procedures in other ways, such as M̃∗h =

∩Ll=1M̃(ql) and M̃∗∗h =
{
j : Ψ̃

(ql)∗
j > cn−v, j = 1, . . . , p

}
, where Ψ̃

(ql)∗
j = (Ψ̃

(ql)
j −

min1≤l≤L Ψ̃
(ql)
j )/(max1≤l≤L Ψ̃

(ql)
j −min1≤l≤L Ψ̃

(ql)
j ). Here, M̃∗h includes common

covariates selected by all ql (l = 1, . . . , L). This method can guarantee exclusion

of unimportant covariates to the greatest extent, but this rather restrictive cri-

terion may lead to many false negatives, which may not be ideal for knowledge

discovery in the exploratory phase. On the other hand, M̃∗∗h may be a compro-

mise between M̃h and M̃∗h. Normalization, by rescaling between 0 and 1, makes

the screening statistics across q comparable.

We envision that this hybrid framework can help address different needs.

When the priority is to control the false negatives, we recommend M̃h; when the

priority is to control false positives, we recommend M̃∗h; and when needing to

control both false negatives and false positives, we recommend M̃∗∗h .

A more detailed investigation of the strategy in a broader context or a search

for more efficient hybrid algorithms, though beyond the scope of this study, is

worth pursuing, and will be reported elsewhere.

Supplementary Material

The online Supplementary Material contains theoretical results, additional

simulation studies, and data analysis results.
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