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Abstract: Temporal discontinuities in time series represent one of the classic prob-

lems of time series. Such discontinuities are often analyzed by detecting changes

at specific times in the parameters governing a regression model fit to the series.

The regression framework examined here contains three classes of predictors: func-

tional form, seasonal, and stochastic. Regression errors are allowed to observe a

general stationary structure. Methods are proposed that provide the analyst with

full flexibility in selecting which set of regression parameters are allowed to change

under the alternative hypothesis. Here, we also examine several mathematical com-

plications that arise in the development of such procedures. A simulation study

illustrates the efficacy of the proposed methodology, where a test statistic based

on the residuals from an ARMA model is shown to perform most favorably. The

methods are applied to a carbon dioxide time series measured at Mauna Loa Obser-

vatory, where a shift in the seasonal variations is detected (in addition to a known

shift in trend), and to a series of monthly temperatures at Barrow, Alaska, where

only a shift in trend is found.

Key words and phrases: Asymptotic theory, changepoints, time series analysis.

1. Introduction

The detection of a changepoint (or structural break) within an ordered se-

quence of data is one of the classical problems of statistical analysis. Changepoint

methods for regression models have proliferated in recent decades (e.g., MacNeill

(1978); Hansen (2000); Aue et al. (2006, 2008); Gallagher, Lund and Robbins

(2013)). A related problem in changepoint diagnostics is how to incorporate

autocorrelation (e.g., see Bai (1993); Antoch, Hušková and Prášková (1997); Yu

(2007); Robbins et al. (2011a), etc.). The goal here is to develop a comprehensive

and flexible changepoint test for models of a general regression structure with

stationary error sequences. Specifically, we consider detection of temporal shifts

in the coefficients of a regression model in which the outcome series is allowed to

depend on three classes of predictors: 1) the terms governing the trend (where

the trend may be, for example, constant, linear, quadratic, etc.); 2) seasonal
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terms (i.e., that control periodic oscillations from the trend function); and 3)

stochastic covariates, which we use to explain the error in the outcome.

In related works, Gombay (2010) and Aue, Horváth and Hušková (2012)

present diagnostic methods for changepoints in regression models, while enabling

autocorrelated regression errors. Specifically, Aue, Horváth and Hušková (2012)

examine a regression structure with predictor terms that have a general func-

tional form. However, they model autocorrelation using a Bartlett-based variance

expression and approximate the large-sample distribution of their test statistics

using extreme value expressions. As a result, their asymptotic approximations do

not perform well on finite samples, where they employ bootstrapping techniques

to address this issue.

Robbins, Gallagher and Lund (2016) extend the framework of Aue, Horváth

and Hušková (2012) to a more general model that is designed to incorporate

seasonality and covariate information, in addition to functional trend. Robbins,

Gallagher and Lund (2016) also fit an autoregressive moving average (ARMA)

model to the regression residuals and develop a changepoint test statistic based

on the resulting ARMA fit. However, their method is limited in that only the

underlying functional trend is allowed to change. Thus detecting of changepoints

in the seasonal structure and/or covariate/outcome relationships within a regres-

sion model remains an unresolved problem. Note that Aue, Horváth and Hušková

(2012) discuss changepoints in a seasonal cycle, using harmonic functions with a

fixed number of oscillations to capture seasonality. However, asymptotic methods

that mandate such a representation are not necessarily appropriate when using

real data; that is, they do not enable the period of the seasonal cycle to remain

constant as the total sample size increases.

Detecting changes in the seasonal structure of a time series or in the tem-

poral relationship between a predictor and the resulting outcome is certainly of

practical relevance. Consider the following climate examples. First, several au-

thors (e.g., Buermann et al. (2007); Zeng et al. (2014)) have posited that the

amplitude of the seasonal oscillations in atmospheric carbon dioxide (CO2) mea-

surements is increasing over time. Furthermore, researchers have found evidence

that the warming of surface temperatures in polar climates is greater in winter

seasons than it is in summer seasons (Lu and Cai (2009); Screen and Simmonds

(2010)). Lastly, Elsner, Bossak and Niu (2001) find that the magnitude of the

well-established dependence between El Niño and hurricane frequency has de-

clined over time.

Furthermore, most existing methods (e.g., Aue, Horváth and Hušková (2012))
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mandate that all regression coefficients change simultaneously. Thus, we expand

upon existing tests for changes in a trend by developing separate tests for changes

in the seasonal structure and outcome/covariate relationships. Then, we illus-

trate that these three classes of tests are asymptotically independent, which

enables them to packaged as a single omnibus test that can detect discontinu-

ities within any preselected subset of coefficients in the general regression model

described earlier. Throughout, regression errors are allowed to contain serial

correlation. Flexible procedures based on ordinary least squares (OLS) resid-

uals and ARMA residuals are developed. Several mathematical complications

arise in efforts to extend existing changepoint methods; innovative approaches

are required to overcome these obstacles.

The methods presented here are designed for the at-most-one-changepoint

(AMOC) alternative. Nonetheless, we show that the proposed method can be

used to first detect a shift in trend, and then separately test for a change in

seasonal oscillations while incorporating any discontinuity in the trend. Disen-

tangling changes in trend from changes in seasonality proves prudent within the

data examples presented here.

The article proceeds in the following manner. Section 2 provides the math-

ematical context, including a discussion of technical details of relevant extant

methodologies. Section 3 outlines the foundations for our general method by ad-

dressing the setting of independent and identically distributed (i.i.d.) regression

errors. In Section 4, procedures that encapsulate the autocorrelation in regres-

sion errors are developed. In Section 5, we examine the finite-sample performance

of the proposed methods using simulations. Section 6 presents an application of

the developed techniques to two data sets: 1) carbon dioxide levels, measured at

the Mauna Loa Observatory in Hawaii, and 2) average temperatures in Barrow,

Alaska. These applications illustrate the importance of flexibility in comprehen-

sive changepoint detection methods.

2. Technical Preliminaries

Let {Yt}, for t = 1, . . . , n, denote a response sequence, where n is the sample

size. The null hypothesis model for the tth time point is

Yt = α̃′x̃t + β̃′s̃t + γ̃ ′ṽt + εt, (2.1)

where x̃t is a vector of deterministic design points that control any long-term

temporal trend, s̃t is a vector of terms that determine any seasonal cycle, and
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ṽt is a vector of stochastic covariates. These vectors have length px, ps, and pv,

respectively. In addition, α̃, β̃ and γ̃ are vectors of regression coefficients, and

{εt} is a stationary mean zero error sequence. All sequences indexed by t are

defined for t ∈ (1, . . . , n). A functional form is imposed on {x̃t}. That is, set

x̃t = (f1(t/n), . . . , fpx(t/n))′, where for each j = 1, . . . , px, fj(z) is a continuous

function for z ∈ (0, 1). Commonly, these functions will encompass an intercept

term by setting f1(z) = 1. The functions are evaluated at times scaled to the unit

interval, for mathematical convenience. In the case of a polynomial trend, for

example, one can safely define predictors using tj instead of (t/n)j (Aue, Horváth

and Hušková (2012); Robbins, Gallagher and Lund (2016)). Furthermore, {s̃t}
contains periodic deterministic design points with known period T , such that

s̃t+T = s̃t, for all t. It is also assumed without loss of generality (as long as the

model contains an intercept term) that
∑T

t=1 s̃t = 0. As a result of this impo-

sition, the predictor terms st are interpreted as governing seasonal oscillations

from the overall trend function, and the parameters β̃ control the magnitude of

these oscillations. Finally, {ṽt} contains stationary terms that, without loss of

generality, satisfy E[ṽt] = 0 and have finite second moments. Note that the first

qx terms of α̃, where qx < px, are allowed to shift at the changepoint time; qs
and qv are defined similarly.

Define K ⊂ (0, 1), such that K = {z ∈ (0, 1) : k = bnzc is an admissible

changepoint time}, with b·c indicating the floor function. We use K = {z : ` ≤
z ≤ h}, where 0 < ` < h < 1. Restricting this set of admissible changepoints

away from the boundaries of [0, 1] ensures that the test statistics defined in the

forthcoming discourse are asymptotically finite.

The formal assumptions imposed here are outlined in Appendix A of the

Supplementary Material. Note that in (A.1) in Assumption 4, wherein the re-

gression errors {εt} are written as a causal expression in terms of a sequence

{Zt} of white noise innovations that have variance σ2 (this implies stationarity

and facilitates autocorrelation in the error sequence). Furthermore, the variabil-

ity attributable to autocorrelation can often be encapsulated by monitoring the

quantity

τ2 := lim
n→∞

1

n
Var

(
n∑
t=1

εt

)
. (2.2)

A process that observes (A.1) exhibits short memory in that τ2 <∞.

We consider an alternative hypothesis that allows preselected subsets of the

regression coefficients α̃, β̃, and γ̃ to shift at a single unknown time c, for 1 ≤
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c < n. To enable complete flexibility in the choice of which parameters change,

x̃t is decomposed into two sub-vectors: xt, which has length qx, and x∗t of length

px − qx. That is, we write x̃t = (x′t, (x
∗
t )
′)′. Similarly, we set s̃t = (s′t, (s

∗
t )
′)′

and ṽt = (v′t, (v
∗
t )
′)′, where st and vt have length qs and qv, respectively. The

alternative hypothesis model for {Yt} is

Yt = (α+ δx,t)
′xt + (β + δs,t)

′st + (γ + δv,t)
′vt

+ (α∗)′x∗t + (β∗)′s∗t + (γ∗)′v∗t + εt,

where the vectors of the regression coefficients have been decomposed in a similar

manner. That is, we set α̃ = (α′, (α∗)′)′, β̃ = (β′, (β∗)′)′, and γ̃ = (γ ′, (γ∗)′)′.

The expressions δx,t, δs,t, and δv,t quantify the magnitude of the structural break.

Specifically,

δx,t =

{
0, t ≤ c,
∆x, t > c,

δs,t =

{
0, t ≤ c,
∆s, t > c,

and δv,t =

{
0, t ≤ c,
∆v, t > c,

which are vectors of dimension qx, qs, and qv, respectively. The double sub-

script (e.g., x, t) in the above definitions is a notational structure used frequently

throughout this paper. The first subscript (e.g., x) simply refers to a set of

predictor variables (from the functional form, seasonal, or stochastic predictor

sets), and the second (e.g., t for t ∈ (1, . . . , n)) is a time-varying index. Defining

∆ = ((∆x)′, (∆s)
′, (∆v)

′)′, we test

H0 : ∆ = 0 against H1 : ∆ 6= 0. (2.3)

Because the actual changepoint time, c, is assumed to be unknown, the

methodology developed here involves examining processes of test statistics that

are evaluated for each element in the set of admissible changepoint times. We

define order-of-probability notation that indicates the convergence rates for such

processes when considered across all k that satisfy k/n ∈ K. Given a random

process {Xn(k)} for k/n ∈ K and for some sequence an , we write

Xn(k) = op(an, k) when max
k/n∈K

||Xn(k)||∞ = op(an), (2.4)

and

Xn(k) = Op(an, k) when max
k/n∈K

||Xn(k)||∞ = Op(an),

as n→∞ . Similar notation for deterministic processes is defined using o(an, k)
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and O(an, k).

3. Fully Flexible Changepoint Tests

In this section, tests for the hypotheses in (2.3) are developed, assuming i.i.d

regression errors. Later, we extend the resultant procedure to settings involving

general stationary errors later. In line with earlier work (e.g., Robbins, Gallagher

and Lund (2016)), we use a Wald-type statistic based on an estimator for ∆,

which is then expressed as weighted sum of OLS residuals.

Letting ∆̂k denote the OLS estimate of ∆ (which disregards autocorrelation

within the errors) and assuming that a changepoint occurs at time k, with k/n ∈
K, the Wald statistic used to test for the presence of a change at time k is

Fk := ∆̂′kVar(∆̂k)
−1∆̂k. Note that it is assumed throughout that all processes

indexed by k (where k typically indicates a hypothetical changepoint time) have

k that satisfies k/n ∈ K. Letting α̂, β̂, and γ̂ denote OLS estimators of α̃, β̃,

and γ̃, respectively, calculated under H0, the OLS residuals are defined as

ε̂t = Yt − (α̂′x̃t + β̂′s̃t + γ̂ ′ṽt). (3.1)

Defining mt=(x′t, s
′
t,v
′
t)
′ and Nk=

∑k
t=1 ε̂tmt, it holds that Fk=N′kVar(Nk)

−1Nk.

In practice, we use

F̂k =
N′kC

−1
k Nk

τ̂2
(3.2)

to test for a changepoint at time k, where Ck is a matrix satisfying Var(Nk) =

τ2Ck, conditional upon {ṽt}, whenever {εt} is white noise with variance τ2.

The specific form of Ck is given in (A.5) in Appendix F of the Supplementary

Material. A discussion of choices for τ̂2, which estimates τ2, is postponed until

Section 4, wherein the white noise assumption is relaxed.

To detect a changepoint at an unknown time, consider the maximally selected

statistic

F̂ = max
k

n
∈K

F̂k. (3.3)

For this statistic, and others defined later, the estimated changepoint time ĉ is the

argument k that maximizes F̂k (although we focus on a statistical confirmation

of the presence of a changepoint, as opposed to the properties of its estimator).

The large-sample behavior of F̂ is stated formally in Theorem 1 below; however,

we first provide further discourse to help illustrate the components of its limiting

process.
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The process {Nk}, which drives F̂ , is itself underpinned by three separate

processes:

Nx,k =

k∑
t=1

ε̂txt, Ns,k =

k∑
t=1

ε̂tst, and Nv,k =

k∑
t=1

ε̂tvt, (3.4)

for 1 ≤ k ≤ n. It would appear that, given the orthogonal nature of the re-

gression design, these three processes are pairwise asymptotically uncorrelated;

this is shown formally within the proof of Theorem 1 provided in the Supple-

mentary Material (Appendix F). Thus, for large n, F̂k may be divided into three

uncorrelated components:

F̂k ≈ F̂x,k + F̂s,k + F̂v,k,

where F̂x,k = N′x,kVar(Nx,k)
−1Nx,k, and F̂s,k and F̂v,k are defined in an analogous

manner. The variance terms in these expressions can be approximated using

equations of the form V̂ar(Ns,k) = τ̂2Cs,k, where Cs,k is defined in (A.10) of

Appendix F of the Supplementary Material.

The process {F̂x,k} was used by Robbins, Gallagher and Lund (2016) to

detect a shift in the trend function only. We briefly repeat the results here.

Letting ⇒ denote weak convergence in D[0, 1], the space of right-continuous

functions with left-hand limits,

F̂x,bnzc ⇒ B̃1(z), for z ∈ K, where B̃1(z) = Λ(z)′Ω(z)−1Λ(z). (3.5)

See Appendix B of the Supplementary Material for details on the convergence

and terms in (3.5).

The processes {F̂s,k} and {F̂v,k} have not been considered previously and

behave as the square of scaled multidimensional Brownian bridges for large sam-

ple sizes. Although a detailed justification for this claim is provided in the proof

of Theorem 1, key concepts that yield the claim are sketched below. First, note

that

(nτ2)−1Var(Ns,bnzc)⇒ z(1− z)DT , (3.6)

and

(nτ2)−1Var(Nv,bnzc)⇒ z(1− z)Σv, (3.7)
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as n→∞, for z ∈ K, where DT =
∑T

j=1 sjs
′
j/T and Σv = Var(v1). In addition,

Ns,k =

k∑
t=1

stεt −
k

n

n∑
t=1

stεt + op(
√
n, k), (3.8)

and

Nv,k =

k∑
t=1

vtεt −
k

n

n∑
t=1

vtεt + op(
√
n, k), (3.9)

where the order-of-probability notation introduced in (2.4) is employed. Letting

{Wd(z)}z∈[0,1] denote a d-dimensional Wiener process, (3.6)–(3.9) yield that

(nτ2DT )−1/2Ns,bnzc ⇒Wqs(z)− zWqs(1), (3.10)

and

(nτ2Σv)
−1/2Nv,bnzc ⇒Wqv(z)− zWqv(1). (3.11)

The asymptotic behavior of F̂ is stated within the following theorem.

Theorem 1. Assume that the null hypothesis is true, i.e., that the data {Yt} obey

the model in (2.1), and that Assumptions 1–3 in Appendix A of the Supplementary

Material hold. Furthermore, assume that the errors {εt} are i.i.d. with variance

τ2. If F̂ is calculated from (3.3),

F̂
D−→ sup

z∈K
B̃(z),

as n→∞, where

B̃(z) = B̃1(z) + B̃2(z). (3.12)

The stochastic process {B̃1(z)}, which is defined in (3.5), is independent of

{B̃2(z)}, where

B̃2(z) =
Bd(z)

′Bd(z)

z(1− z)
, (3.13)

for z ∈ K, with d = qs + qv. In addition, {Bd(z) := Wd(z) − zWd(1)} denotes

a d-dimensional set of independent Brownian bridges, each defined for z ∈ [0, 1].

Note that the limit process {B̃(z)} is not influenced by the characteristics of

{s̃t} and {ṽt} (aside from their dimensionality), but does depend on the specific

functions that underpin {x̃t}. Thus, if qx = 0 or if px = 1, with f1(z) ∝ 1 for all

z ∈ [0, 1], it holds that B̃(z) simplifies to a sum of qx+qs+qv scaled and squared

Brownian bridges (see Csörgő and Horváth (1997) and Robbins et al. (2011b) for
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closed-form approximations of the supremum of this process).

Note that the procedure outlined here can be used to test for changes in

coefficients governing st and vt while incorporating a known change in trend.

Let fi+1(z) = 1{t>c∗}fi(z) for odd i, where 1{A} is the indicator of event A

and c∗/n ∈ (0, 1). In order to satisfy Assumption 2 from Appendix A of the

Supplementary Material with this model, one may impose qx = 0. In Section 6,

it proves prudent to disentangle changes in trend from changes in seasonality in

such a manner.

4. Tests under Autocorrelated Errors

Here, we extend the test statistics illustrated in the previous section to set-

tings where regression errors contain autocorrelation. That is, the regression

errors {εt} are allowed to obey the general stationary structure outlined in Sec-

tion 2. The F̂ statistic introduced above has the power to detect discontinuities

in the presence of autocorrelated errors. Thus, we need to identify manners of

adjustment so that type-I error rates can be controlled.

Robbins, Gallagher and Lund (2016) argue that {F̂x,k} has the same limit

process in circumstances where regression errors contain autocorrelation. This is

observed when regression errors are white noise if the estimate of the marginal

error variance is replaced with a consistent estimator of the long-run variance

term τ2 from (2.2). Furthermore, their calculations incorporate the following

Bartlett-based estimator of τ2 in the event that regression errors contain a sta-

tionary autocorrelation structure:

τ̂2 =
1

n

n∑
t=1

ε̂2t + 2

qn∑
j=1

(
1− j

qn + 1

)
1

n− j

n−j∑
t=1

ε̂tε̂t+j , (4.1)

where qn is a bandwidth that diverges to infinity as n→∞, but the divergence

is slow enough to ensure that |τ̂2 − τ2| = op(1). Setting V̂ar(Nx,k) = τ̂2Cx,k,

where Cx,k is defined in (A.9) in Appendix F of the Supplementary Material, it

holds that F̂x,bnzc ⇒ B̃1(z), for z ∈ K, where F̂x,k = N′x,kV̂ar(Nx,k)
−1Nx,k and

B̃1(z) is defined in (3.5).

We use related techniques to adjust F̂s,k and F̂v,k for autocorrelation. The

process {εtst} is not necessarily stationary, nor is the long-run variance of its

partial sums sequence assured to be proportional to τ (i.e., it does not obey

a version of Lemma A.1 of, Robbins, Gallagher and Lund (2016) for general

st). An estimation of the long-run variance of {Ns,k} requires intra-period ag-
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gregation. Specifically, let ei =
∑iT

t=T (i−1)+1 stεt and êi =
∑iT

t=T (i−1)+1 stε̂t, for

i ∈ (1, . . . ,m), where m = bn/T c. Note that the sequence {ei} is stationary—

therefore, the variance of {Ns,k} may be approximated by incorporating the term

τs := limm→∞
1
TmVar [

∑m
i=1 eie

′
i] . A consistent estimate of τs is

τ̂s =
1

Tm

m∑
i=1

êiê
′
i +

qm∑
j=1

(
1− j

qm + 1

)
1

T (m− j)

m−j∑
i=1

(
êiê
′
i+j + êi+j ê

′
i

)
. (4.2)

In light of (3.8), it follows that (nτ̂s)
−1/2Ns,bnzc ⇒Wqs(z)− zWqs(1).

To approximate the long-run variance of {Nv,k}, use

τ̂v =
1

n

n∑
t=1

ε̂tε̂
′
t +

qn∑
j=1

(
1− j

qn + 1

)
1

n− j

n−j∑
t=1

(
ε̂tε̂
′
t+j + ε̂t+j ε̂

′
t,
)
, (4.3)

where ε̂t = ε̂tṽt. Similarly to (3.9), we see (nτ̂v)
−1/2Nv,bnzc ⇒Wqv(z)−zWqv(1).

Therefore, setting

F̂ ∗k = τ̂−2N′x,kC
−1
x,kNx,k + N′s,kτ̂

−1
s Ns,k + N′v,kτ̂

−1
v Nv,k, (4.4)

the following result is evident.

Theorem 2. Assume that the conditions of Theorem 1 hold, with the exception

that the error sequence {εt} follows the general stationary structure outlined in

Section 2. Furthermore, assume that F̂ ∗k is in accordance with (4.4). Then it

holds that

F̂ ∗ := max
k/n∈K

F̂ ∗k
D−→ sup

z∈K
B̃(z)

as n→∞, where B̃(z) is defined in (3.12).

Note that there are alternatives to the Bartlett-based method of estimation of

the long-run variance terms (e.g., τ2, τs and τv) described above. For example, we

can estimate the terms using a spectral density (Andrews and Monahan (1992))

or data-dependent bandwidths (Newey and West (1994)). However, previous

work (e.g., Robbins et al. (2011a)) shows that in changepoint settings, tests that

require such variance terms have performance issues in finite samples that extend

to circumstances where the variance term is assumed known. We expect similar

results to hold for our methods.
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4.1. Tests based on ARMA residuals

An advantage of F̂ ∗k from (4.4) is that it does not impose a parametric

model on the error sequence {εt}. However, convergence of this statistic can be

quite slow; this problem is exacerbated in the presence of strong autocorrelation.

A solution to this issue, in line with the suggestions of several authors (e.g.,

Bai (1993); Robbins et al. (2011a); Robbins, Gallagher and Lund (2016)), is to

construct changepoint statistics using residuals from an autoregressive moving

average (ARMA) model, instead of using OLS residuals. This effectively reduces

the statistic to its white noise components; the resulting procedure is more stable

across a wide array of autocorrelation structures.

In the remainder of this section, assume that the i.i.d. innovations sequence

{Zt} generates the error sequence {εt} via the ARMA formulation:

εt − φ1εt−1 − · · · − φparεt−par = Zt + θ1Zt−1 + · · ·+ θqma
Zt−qma

, t ∈ Z, (4.5)

where par and qma are the ARMA orders; if the coefficients above define a station-

ary model, this formulation obeys (A.1) from Appendix A of the Supplementary

Material and enables an estimation of the innovations sequence. Specifically, the

sequence of ARMA residuals {Ẑt} is calculated to satisfy the recursion

Ẑt = ε̂t − ˆ̂φ1ε̂t−1 − · · · − ˆ̂φpar ε̂t−par − ˆ̂θ1Ẑt−1 − · · · − ˆ̂θqma
Ẑt−qma

,

for all t. In the above, ˆ̂φi and ˆ̂θj are consistent (under H0) estimators of the

ARMA parameters. Robbins, Gallagher and Lund (2016) consider ARMA-based

approahces for the trend component. They define Rx,k =
∑k

t=1 xtẐt and illus-

trate that
Rx,k

σ̂
√
n
−

Nx,k

τ̂
√
n

= op(1, k), (4.6)

where σ̂2 =
∑n

t=1 Ẑ
2
t /n estimates the white noise variance, τ̂2 is defined in (4.1),

Nx,k is calculated in the same manner as in (3.4), and the op(an, k) notation is

as defined in (2.4). Then, they define an ARMA residuals-based analogue to F̂x,k

via

L̂x,k =
R′x,kC

−1
x,kRx,k

σ̂2
.

It follows that the processes {F̂x,k} and {L̂x,k} are asymptotically equivalent,

which implies that their maximally selected analogues have the same limit dis-

tribution.
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Deriving statistics based on ARMA residuals for seasonal and covariate com-

ponents requires different approaches. Note that the result in (4.6) is based on

the fact that for a continuous function f(·) and for large n, f((t+1)/n) ≈ f(t/n);

no such relationship holds for the sequences {st} or {vt}. That is, letting

Rs,k =

k∑
t=1

stẐt and Rv,k =

k∑
t=1

vtẐt,

there is no expression akin to that of (4.6) that connects Rs,k to Ns,k or Rv,k to

Nv,k in general settings. Further efforts to extract the asymptotic behavior of

{Rs,k} and {Rv,k} directly do not bear fruit. To explain, Bai (1993) establishes

an asymptotic equivalence between a partial sums sequence of ARMA residuals

and an analogous partial sums sequence defined using the true ARMA errors;

however, {Rs,k} and {Rv,k} do not yield similar results. That is,

Rs,k −
k∑
t=1

stZt = Op(
√
n, k) and Rv,k −

k∑
t=1

vtZt = Op(
√
n, k),

and faster rates of convergence do not hold in general. Instead, we examine the

processes

R∗s,k =

k∑
t=1

stẐt −
k

n

n∑
t=1

stẐt, and R∗v,k =

k∑
t=1

vtẐt −
k

n

n∑
t=1

vtẐt. (4.7)

The limit behavior of these quantities (under both of H0 and H1) is established

in the following lemma; see Appendix F of the Supplementary Material for the

proof.

Lemma 1. Assume that the conditions for Theorem 1 hold, with the exception

that {εt} obeys the ARMA formulation in (4.5). Letting

Us,k =

k∑
t=1

stZt −
k

n

n∑
t=1

stZt and Uv,k =

k∑
t=1

vtZt −
k

n

n∑
t=1

vtZt,

it holds that

R∗s,k√
n
−

Us,k√
n

= op(1, k), and
R∗v,k√
n
−

Uv,k√
n

= op(1, k),

The large-sample behavior of {Us,k} and {Uv,k} follows from the case of
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i.i.d regression errors considered earlier. Specifically, the fact that (3.8) yields

(3.10) implies

(σ̂2nDT )−1/2Us,bnzc ⇒Wqs(z)− zWqs(1).

Similarly,

(σ̂2nΣ̂v)
−1/2Uv,bnzc ⇒Wqv(z)− zWqv(1).

Therefore, defining statistics for a change at time k via

L̂∗s,k =
(R∗s,k)

′D−1T R∗s,k
σ̂2k(1− (k/n))

and L̂∗v,k =
(R∗v,k)

′Σ̂−1v R∗v,k
σ̂2k(1− (k/n))

,

it follows that

L̂∗s,bnzc ⇒
Bqs(z)

′Bqs(z)

z(1− z)
and L̂∗v,bnzc ⇒

Bqv(z)′Bqv(z)

z(1− z)
, (4.8)

for z ∈ K, where {Bd(z)} is a d-dimensional Brownian bridge. In addition, an

omnibus test is defined as

L̂k = L̂x,k + L̂∗s,k + L̂∗v,k. (4.9)

The limit distribution of the maximally selected version of the above test is stated

as follows.

Theorem 3. Assume that the conditions of Lemma 1 hold and that {L̂k} is

calculated in accordance with (4.9). Then, it holds that

L̂ := max
k

n
∈K

L̂k
D−→ sup

z∈K
B̃(z),

as n→∞, where {B̃(z)} is defined in (3.12).

A proof of Theorem 3 is given in the Supplementary Material (Appendix

F), showing that the processes {Rx,k}, {R∗s,k} and {R∗v,k} are asymptotically

uncorrelated. Otherwise, the theorem is a direct consequence of (4.6), Lemma 1,

and (4.8). Arguments related to the power of L̂ are given next.

The quantities F̂ and F̂ ∗ are derived from Wald-based expressions. There-

fore it can be presumed that these statistics will have sufficient power to detect

changepoints. Furthermore, existing theory (e.g., Bai (1997)) establishes the

consistency of a changepoint estimator (e.g., ĉ = arg maxk F̂
∗
k ) found using these

statistics. However, we use the following result, which is also proven in Appendix

F of the Supplementary Material, to demonstrate that L̂x,k has asymptotic power
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of one in the event that ∆x 6= 0 (and, likewise, for L̂∗s,k and L̂∗v,k). The corollary

also shows that the respective changepoint estimators consistently estimate the

changepoint time when written as a proportion of the sample size.

Corollary 1. Assume that the conditions of Theorem 3 hold; however, we relax

the assumption that H0 is true (and therefore permit H1 to hold). It follows that

lim
n→∞

P

(
max
k

n
∈K

L̂x,k > cα

)
= 1 and n−1 arg max

k
L̂x,k

P−→ κ if ∆x 6= 0,

for any constant cα when c/n→ κ, where
P−→ denotes convergence in probability

as n→∞. Similarly,

lim
n→∞

P

(
max
k

n
∈K

L̂∗s,k > cα

)
= 1 and n−1 arg max

k
L̂∗s,k

P−→ κ if ∆s 6= 0,

with

lim
n→∞

P

(
max
k

n
∈K

L̂∗v,k > cα

)
= 1 and n−1 arg max

k
L̂∗v,k

P−→ κ if ∆v 6= 0.

A direct consequence of Corollary 1 is that L̂ has asymptotic power of one

and that n−1 arg maxk L̂k
P−→ κ when ∆ = (∆′x,∆

′
s,∆

′
v)
′ 6= 0.

The Supplementary Material provides additional theoretical results. Ap-

pendix C illustrates simplifications of the ARMA residuals-based statistic that

are observed if st follows some commonly used expressions, including harmonic

terms and categorical representations of the seasonal fluctuations. Appendix D

considers the more general circumstance where {ṽt} has a nonstationary mean

structure.

5. Simulations

In this section, simulated data are used to study the efficacy of the proposed

methods on samples of finite size. Although there are many ways to generate

data under the general regression models studied here, we focus on the following

baseline model. Specifically, the vector of responses, (Y1, . . . , Yn)′, is generated

using a null hypothesis model of

Yt = α1 + α2

(
t

n

)
+ β1 cos

(
2πt

12

)
+ β2 sin

(
2πt

12

)
+ γ1v1,t + γ2v2,t + εt,
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for t = 1, . . . , n, where we fix n = 1, 000. This model contains a linear trend,

two harmonic terms that govern periodicity (T = 12), and a pair of stochastic

covariates, {v1,t} and {v2,t}.
The stochastic covariates are generated from vj,t = ζ1,j + ζ2,j(t/n) + uj,t,

when uj,t = Φjuj,t−1 + Wj,t, for j = 1, 2, where Φ1 and Φ2 are autoregressive

coefficients (we set Φ1 = 0.5 and Φ2 = −0.2); and {W1,t} and {W2,t} are (Gaus-

sian) white noise processes. Lastly, the regression errors {εt} are generated using

an ARMA(1,1) model satisfying εt−φεt−1 = Zt+θZt−1, where {Zt} is also Gaus-

sian white noise. All white noise processes have unit variance, although we set

Cor(W1,t,W2,t) = 0.3 and Cor(Wj,t, Zt) = 0 for j = 1, 2 (and no cross-correlation

exists at nonzero lags in these processes). The terms φ and θ will be varied

throughout, and we fix ζ1,1 = ζ1,2 = 0, ζ2,1 = 1, and ζ2,2 = −0.5.

The regression coefficients that define the mean function of Yt are determined

as follows. For t ≤ c, where c is the changepoint time, we set α1 = α2 = 1,

whereas for t > c, we use α1 = α2 = 1 + δx. Similarly, for t ≤ c, we use

β1 = β2 = 1 and γ1 = γ2 = 1, with β1 = β2 = 1 + δs and γ1 = γ2 = 1 + δv for

t > c. Note that ∆ = (δx, δx, δs, δs, δv, δv)
′, where δx, δs, and δv are treated as

bandwidth parameters used to vary the magnitude of a change. Throughout, we

use c = n/2 = 500.

We examine the empirical performance of the F̂ ∗ test of Theorem 2 and the

L̂ test of Theorem 3. Specifically, we estimate the size and power of a test of

H0 : ∆ = 0 against three separate alternative hypotheses:

• H1a: All regression coefficients are allowed to change at an unknown time

c.

• H1c: Only the vector of coefficients that govern the periodicity, i.e., (β1, β2)
′,

is allowed to change at unknown time c.

• H1d: Only the vector of coefficients that govern the relationship with the

covariates, i.e., (γ1, γ2)
′, is allowed to change at unknown time c.

We test H1c using F̂ ∗k = F̂ ∗s,k and L̂k = L̂s,k, whereas H1d is tested using F̂ ∗k =

F̂ ∗v,k and L̂k = L̂v,k. The setting where only the coefficients that govern the

trend function are allowed to change (which would be alternative H1b here),

was evaluated by Robbins, Gallagher and Lund (2016) and has been studied in

detail by several other authors under less general regression models; therefore,

it is not included here (although it is considered within the data applications in

Section 6). For the F̂ ∗ test, we use qn = bn1/3c when calculating the expressions
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seen in (4.1) and (4.3), and thus qm = b(n/12)1/3c when calculating the term in

(4.2). For all tests, the set of admissible changepoint times is set as {k : 0.05n ≤
k ≤ 0.95n}. This selection is in line with earlier works (e.g., Robbins et al.

(2011a,b); Gallagher, Lund and Robbins (2013)), although alternatives should

be considered if a priori knowledge suggests a wider or narrower bound (note

that wider bounds will yield higher critical values for the test statistics).

As noted earlier, in certain circumstances, closed-form approximations for

the limit process {B̃(z)} exist. Otherwise, critical values for the F̂ ∗ and L̂ statis-

tics need to be derived by simulating realizations of the limit process. Throughout

the remainder of the article, critical values of our test statistics are derived by

simulating n discrete time points for each realization of {B̃(z)}. We base critical

values on 1,000,000 independently generated realizations of this process.

To begin, we study the empirical type-I error (i.e., it is imposed that ∆ =

0) of the tests. The size of the tests is most sensitive to the choice of the

parameters that govern the autocorrelation within the regression errors; thus,

results are provided for various choices of φ, while fixing θ = 0 (which implies

{εt} follows an AR(1)). It is assumed that the correct ARMA order is known

(although φ is estimated), and trends in the stochastic covariates are filtered prior

to applying the methods. The findings are illustrated in Figure 1 (left column).

The results uniformly indicate that the L̂ test is preferred to the F̂ ∗ test. The

L̂ statistic gives well-controlled type-I error across wide ranges of φ, which is

not the case for the F̂ ∗ statistic. The F̂ ∗ test performs particularly poorly when

considering alternative H1c; specifically, it is overly conservative. The process

{F̂ ∗s,k} observes slow convergence due to difficulties in estimating the quantity in

(4.2)—this quality is estimated using b1, 000/12c = 83 observations. For larger

n, the empirical type-I error is closer to the nominal value for this test.

Next, the power of these tests is examined. Figure 1 (right column) dis-

plays the power of the F̂ ∗ and L̂ statistics for tests of the alternative hypothe-

ses mentioned above. When alternative H1a is examined, various values of

δ = δx = δs = δv are employed, whereas when alternatives H1c and H1d are

considered, we vary the choice of δs and δv, respectively. These analyses use

φ = 0.5 and θ = 0 throughout (where the correct ARMA order is again assumed

to be known). The findings show that both tests have sufficient power to detect

changepoints under each alternative examined, although the L̂ test shows power

superior to that of F̂ ∗ (varying φ does not alter this conclusion).

Simulations for misspecified ARMA models are shown in the Supplementary

Material (Appendix E).
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Figure 1. Simulated type-I error (left column) and power (right column) rates for tests

based on the F̂ ∗ and L̂ statistics at a significance level of 0.05 with n = 1, 000. Results
are shown for tests of three alternative hypotheses: H1a (top row); H1c (middle row);
H1d (bottom row). Type-I error rates are shown as a function of the AR(1) parameter φ.
Power is given for various choices of δx, δs, and δv (with φ = 0.5), where δx = δs = δv = δ
when examining alternative H1a. Type-I errors are based on 100,000 independently
simulated data sets for each value of φ, whereas power is based on 25,000 data sets for
each value of δ/δs/δv.

6. Data Applications

6.1. Mauna Loa CO2

To examine the performance of the proposed methods using real data, the

methodology is first applied to a time series of average atmospheric carbon diox-
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ide (CO2) levels, measured monthly (in parts per million by volume) at the

Mauna Loa Observatory on the island of Hawaii from March 1958 to June 2015

(n = 688). The series exhibits a marked increasing trend (which is often thought

to be the byproduct of anthropogenic carbon emissions), which many authors

have examined in search of structural breaks (e.g., Lund and Reeves (2002);

Beaulieu, Chen and Sarmiento (2012); Robbins, Gallagher and Lund (2016)).

Such endeavors frequently yield evidence of a shift in the underlying trend struc-

ture that coincides with the eruption of Mount Pinatubo in June 1991. The CO2

time series also observes pronounced periodicity. Seasonality in CO2 levels is

thought to be a direct consequence of vegetation growth; therefore, the periodic

structure of the series has been examined closely within the climate literature.

Many authors have claimed that the amplitude of the series has increased over

time (e.g., Bacastow, Keeling and Whorf (1985); Buermann et al. (2007); Zeng

et al. (2014)).

Changes in the seasonal pattern of the CO2 data have a variety of posited

causes, including: a) increased prominence of droughts, purportedly brought on

by global warming; b) increased overall levels of vegetation, brought on by the

higher overall CO2 levels; and c) increased prominence of agriculture to accom-

modate a growing human population (Zeng et al. (2014)). Despite the wealth of

literature on the issue, there does not appear to be a consensus on the causes of

the changes in the seasonal CO2 fluctuations, nor have such changes been verified

using rigorous statistical tools. This example illustrates the prudence of methods

that examine changes in trend and seasonal structures separately, because these

aspects of the CO2 data sequence are underpinned by different environmental

processes.

The following null hypothesis model, which enables a quadratic trend func-

tion, is fit to the Mauna Loa CO2 series. Let Yt indicate the CO2 level at month

t, and assume

Yt =α1 + α2

(
t

n

)
+ α3

(
t

n

)2

+

4∑
j=1

[
β1,j cos

(
2πjt

12

)
+ β2,j sin

(
2πjt

12

)]
+ γ1ENSOt−12 + εt,

(6.1)

where ENSOt denotes the El Niño/Southern Oscillation index at month t (this

index is used with a time lag of one year to improve predictive power). First,

two separate alternatives to this model are considered:
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• H1a: All regression coefficients are allowed to change at an unknown time

c.

• H1b: Only elements in the vector of terms that govern the trend sequence,

i.e., (α1, α2, α3), are allowed to change at time c.

To test against alternative H1a, we use the OLS residuals-based statistic F̂ ∗ from

Theorem 2 and the ARMA residuals-based statistic L̂ from Theorem 3. To test

alternative H1c, we set F̂ ∗k = F̂ ∗x,k and L̂k = L̂x,k to account for the fact that

only the trend function may change.

In order to study changes in the seasonal and covariate coefficients separately,

the following revision of (6.1) is considered:

Yt = α1 + α2

(
t

n

)
+ α3

(
t

n

)2

+ α41{t>c∗} + α5

(
t

n

)
1{t>c∗} + α6

(
t

n

)2

1{t>c∗}

+

4∑
j=1

[
β1,j cos

(
2πjt

12

)
+ β2,j sin

(
2πjt

12

)]
+ γ1ENSOt−12, (6.2)

where 1{A} is the indicator of event A, and where c∗ is a known time that satisfies

1 ≤ c∗ < n. The revised null hypothesis model is designed to incorporate a

known shift in trend. Therefore, in the results shown in this section, c∗ is the

changepoint time estimated under the test of the hypothesis in H1b. Note that

in order to satisfy Assumption 2 in Appendix A of the Supplementary Material,

changes in α4, α5, or α6 cannot be allowed. We test (6.2) against the alternative

hypotheses described below:

• H1c*: Only elements in (β1,1, β2,1, . . . , β1,4, β2,4)
′, the vector of terms that

govern the periodicity, are allowed to change at time c.

• H1d*: Only γ1 is allowed to change at time c.

These hypotheses may be tested using F̂ ∗ and L̂∗, where we set F̂ ∗k = F̂ ∗s,k
and L̂k = L̂s,k for H1c*, and F̂ ∗k = F̂ ∗v,k and L̂k = L̂v,k for H1d*. Under the

notation of Theorem 1, the limit distribution of these statistics observes B̃(z) =

B̃2(z), where d = qs for H1c* and d = qv for H1d*. Throughout this section,

p-values are approximated using 1,000,000 independently simulated realizations

of supz∈K B̃(z); each realization is calculated using n discrete time points from

the process {B̃(z)}. As in Section 5, this section imposes the condition that an

admissible changepoint time k satisfies 0.05n ≤ k ≤ 0.95n.



1676 ROBBINS

Table 1. Results for application of the methodology to the Mauna Loa CO2 time series,
where ρ denotes a bandwidth parameter. When the F̂ ∗ test is used, we set qn = ρ when
calculating the expressions seen in (4.1) and (4.3), and we set qm = ρ/121/3 (rounded to

the nearest integer) when calculating the term in (4.2); similarly, for the L̂ test, we set
par = ρ and qma = 0 (i.e., an AR(ρ) is used). For hypotheses H1c* and H1d*, c∗ = 400
is used.

Alternative Model H1a Alternative Model H1b Alternative Model H1c* Alternative Model H1d*

F̂ ∗ Test L̂ Test F̂ ∗ Test L̂ Test F̂ ∗ Test L̂ Test F̂ ∗ Test L̂ Test

ρ ĉ p-val. ĉ p-val. ĉ p-val. ĉ p-val. ĉ p-val. ĉ p-val. ĉ p-val. ĉ p-val.

2 402 0.000 229 0.000 402 0.000 400 0.002 188 0.053 216 0.000 463 0.510 584 0.557

4 368 0.000 216 0.000 402 0.000 400 0.012 188 0.174 216 0.000 463 0.694 584 0.551

8 368 0.000 229 0.000 402 0.000 400 0.021 188 0.359 216 0.000 463 0.818 584 0.476

12 368 0.000 229 0.000 402 0.000 400 0.011 644 0.116 216 0.000 463 0.836 584 0.392

16 379 0.000 226 0.000 402 0.000 400 0.060 644 0.000 217 0.000 463 0.832 624 0.423

24 368 0.000 229 0.001 402 0.003 400 0.033 650 0.002 222 0.000 463 0.867 624 0.355

Table 1 shows the results for the application of the F̂ ∗ test of Theorem 2

and the L̂ test of Theorem 3 to the CO2 data across each of the four alternative

hypotheses mentioned above. The table also shows the results for various choices

of the bandwidth parameter ρ (see the description in the caption to the table)

that governs the selection of terms such as qn, qm, par, and qma. We prefer to use

ρ = 12 when applying the L̂ statistic (as this value of par ensures that there the

ARMA residuals that are devoid of autocorrelation) and ρ = 8 when using the

F̂ ∗ statistic (which is consistent with the rule-of-thumb; qn = n1/3). The value

of F̂ ∗ is much more sensitive to the choice of the bandwidth parameter than is

the value of L̂; thus, and in accordance with the results of Section 5, the L̂ test

is our preferred method. The shift in the trend of CO2 levels that occurs in June

1991 (ĉ = 400) and was detected by other authors is confirmed by the test of

hypothesis H1b. However, shifts in trend are not the focus here (refer to the

aforementioned references for a discussion of the trend behavior in this data set).

When all regression coefficients are allowed to shift (hypothesis H1a), we

see a strongly significant changepoint that occurs in late 1976 (as estimated

by the L̂ test), which “overrides” the discontinuity in the trend that is often

attributed to Mount Pinatubo. The test of Hypothesis H1c* indicates a strongly

significant change in the parameters governing the seasonal pattern that also

occurs in 1976. In short, it appears that the shift in the seasonal structure is

given precedence when using the omnibus test of H1a. This fact is likely an

artifact of the underlying mathematical model (there are more parameters that

govern the seasonal behavior than those that govern the trend function).
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Figure 2. The fitted CO2 values (with underlying trend function) calculated using the
model in alternative hypothesis H1c* (top), and a plot of the expected oscillations, i.e.,
seasonal variations from the trend, estimated before and after the changepoint found
under alternative H1c* (bottom).

Figure 2 includes a plot of the predicted CO2 series overlaid on the observed

data values; however, a change in seasonal behavior is not evident from a visual

investigation of the series. To offer further analysis, Figure 2 also shows the

expected oscillations (i.e., departures) from the trend function for the CO2 data.

The pattern of oscillations observed before and after the changepoint are shown,

where it is assumed that a change in the seasonal pattern occurs at time ĉ = 216,

as estimated under alternative H1c*. The changepoint indicated by alternative

H1c* indeed resulted in a subtle shift in the seasonal behavior. Specifically,

the amplitude of the oscillations is 5.97 ppm prior to the changepoint, and 6.56

ppm afterwards (which represents a 10% increase in amplitude). This finding

is in line with the report of Zeng et al. (2014), who observe a 15% long-term

increase in the seasonal amplitude. OLS parameter estimates under the null and

alternative for this (and the following) example are provided in Appendix G of

the Supplementary Material.
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6.2. Temperatures at Barrow, AK

We next apply the proposed methodology to a series of average monthly tem-

peratures measured (in degrees Celsius) at the Wiley Post–Will Rogers Memorial

Airport in Barrow, Alaska, from October 1920 to June 2015 (n = 1, 137). At

515 km north of the Arctic Circle, Barrow is the northernmost city in the United

States. Owing to obvious implications of melting of ice sheets, patterns of warm-

ing temperatures in polar climates such as Barrow have been heavily researched

in the scientific literature. Such studies frequently observe that polar regions have

endured greater rates of warming than other regions have (e.g., Holland and Bitz

(2003); Serreze and Francis (2006)). Differential rates of warming by season are

also of interest. Using historical and simulated data, several researchers (e.g.,

Lu and Cai (2009); Screen and Simmonds (2010); Manabe, Ploshay and Lau

(2011); Bintanja and Van der Linden (2013)) stipulate that warming is occurring

at higher rates during winter seasons than during summer seasons within polar

regions.

Because a linear trend is frequently used to model temperature data, the

null hypothesis model fitted to the Barrow data is

Yt = α1 + α2

(
t

n

)
+

11∑
j=1

βjsj,t + γ1ENSOt−4 + εt,

where sj,t obeys (A.4) from the Supplementary Materials with T = 12, and

where ENSOt again denotes the El Niño/Southern Oscillation index. The validity

of this null hypothesis model is tested against alternative models indicated by

corresponding versions of H1a (all coefficients are allowed to shift) and H1b (onl

the trend is allowed to shift). Given the presence of a shift in trend at some time

c∗, we also test for a changepoint in only the seasonal coefficients (β1, . . . , β11)

(i.e., alternative H1c*), and for a change in γ1 only (i.e., alternative H1d*).

The results are shown in Table 2. The omnibus changepoint test of al-

ternative H1a indicates a statistically significant discontinuity at time ĉ = 914

(November 1996). However, when we search for a change in trend only (alterna-

tive H1b), the changepoint, though still statistically significant, is estimated to

occur at ĉ = 513 (June 1963). When testing for a change in the seasonal variation

only (alternative H1c*), the estimated changepoint time is again ĉ = 914. How-

ever, the change in seasonal variation is not statistically significant (p = 0.265).

These observations indicate that the omnibus statistic is dominated by the com-

ponent that is estimating the change in seasonality. Note that there are two
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Table 2. Results for application of the methodology to the Barrow temperature time se-
ries, where ρ denotes a bandwidth parameter. See the caption to Table 1 for a description
of ρ. Under hypotheses H1c* and H1d*, c∗ = 513 is used.

Alternative Model H1a Alternative Model H1b Alternative Model H1c* Alternative Model H1d*

F̂ ∗ Test L̂ Test F̂ ∗ Test L̂ Test F̂ ∗ Test L̂ Test F̂ ∗ Test L̂ Test

ρ ĉ p-val. ĉ p-val. ĉ p-val. ĉ p-val. ĉ p-val. ĉ p-val. ĉ p-val. ĉ p-val.

2 895 0.000 819 0.000 520 0.000 513 0.000 914 0.582 914 0.250 692 0.890 692 0.967

4 895 0.000 914 0.001 520 0.000 513 0.000 60 0.775 914 0.268 692 0.913 692 0.965

8 895 0.001 914 0.004 520 0.000 513 0.001 60 0.850 914 0.259 692 0.932 692 0.978

12 896 0.006 914 0.024 520 0.000 513 0.009 60 0.702 914 0.270 692 0.937 692 0.976

16 896 0.022 914 0.046 520 0.000 513 0.043 60 0.250 914 0.246 692 0.930 692 0.962

24 60 0.005 914 0.149 520 0.002 375 0.117 60 0.003 914 0.337 692 0.923 692 0.923

parameters that control the trend, whereas there are 11 parameters that control

seasonality. Therefore, the addition of the L̂x (which finds a significant change-

point) to the L̂s statistic (which finds a nonsignificant changepoint) is enough

to result in an omnibus statistic that estimates a significant changepoint at the

time given by the L̂s statistic. This example further emphasizes the need to test

for changes in trend and seasonal variation separately.

Figure 3 illustrates the OLS residuals estimated under alternative model H1a.

The autocorrelation observed in these residuals is small (the lag-1 correlation

is 0.27 under the null hypothesis). An AR(2) sufficiently captures the residual

autocorrelation. Figure 3 also shows the temperature series with fitted values and

trend when the change in trend is included. The estimated rate of temperature

increase under the null hypothesis is 2.19 ◦C per century; whereas, when a change

in trend is allowed to occur at time ĉ = 513, it is estimated that the temperature

decreased at a rate of 0.19 ◦C per century prior to June 1963, and has increased

at a rate of 7.54 ◦C per century since. This result is in line with the findings of

other authors (e.g., Bloomfield (1992); Jones and Moberg (2003); Jones, Wigley

and Wright (2011)), who observe relative stability in global temperatures from

the mid-1940’s to the mid-1970s followed by an extended period of warming.

However, the magnitude of the warming that we observe over the last few decades

in Barrow is substantially greater than the global rate of 2.06 ◦C per century

from 1977–2001, as estimated by Jones and Moberg (2003). This observation

supports the theory of amplified warming in the Arctic (Holland and Bitz (2003)).

However, our study does not confirm the finding of previous work that stipulates

that the amount of amplification varies by season (Screen and Simmonds (2010)).
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Figure 3. The fitted temperature values (measured in ◦C) for the Barrow, AK, series
with an underlying trend function after alternative model H1a has been fit (top), and
the resulting OLS residuals (bottom).

7. Discussion

As observed in prior works (Robbins et al. (2011a); Robbins, Gallagher and

Lund (2016)), tests based on ARMA residuals (L̂) outperform those that fail to

exploit the error structure (F̂ ∗). This is due in large part to difficulties with

estimating a long-run variance term (τ2) in finite samples. In addition, the

convergence of a partial sums sequence of independent terms ({Zt}) is known to

be quicker than that of autocorrelated variates ({εt}).
The methods introduced here were developed for the AMOC setting. Al-

though we have shown that these methods can be used to detect shifts that

occur at separate times in different components of the regression model, some

discussion of the multiple changepoint setting is warranted. Segmentation (e.g.,

see Menne and Williams Jr. (2009); Robbins et al. (2011b)) is often used to detect

multiple changepoints with AMOC methods. This process works well, as long

as the shifts occur in a manner that yields a monotonic increasing or decreasing

outcome. In other situations, such as those involving wavelets, it is usually nec-

essary to consider procedures developed specifically for a multiple changepoint
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setting (e.g., Bai and Perron (1998); Cho and Fryzlewicz (2011); Yau and Zhao

(2016); Horvath, Pouliot and Wang (2017)). Extension of such methods to the

general framework considered here is left for future work. Furthmore, note that

local alternatives (e.g., Andrews (1993)) are not discussed here; this is also left

for future work.

An important innovation provided by the methodology introduced in this

paper is the ability to test for changes in a specific coefficient (or set of coefficients)

of a large regression model. This enables an analyst to run a variety of tests

to assess regression coefficients separately (as in Sections 5 and 6). To hedge

against false-positive changepoint detections, the omnibus test (i.e., hypothesis

H1a) should be considered prior to evaluating coefficients separately. However, if

a substantial number of tests are being applied to the same data set, the analyst

should consider corrections for multiple testing, such as those that control the

false discovery rate (Benjamini and Hochberg (1995)).

Supplementary Material

The online Supplementary Material contains miscellaneous additional con-

tent, including technical details and proofs.
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