
Statistica Sinica 30 (2020), 1605-1632
doi:https://doi.org/10.5705/ss.202017.0375

TIME-VARYING HAZARDS MODEL FOR

INCORPORATING IRREGULARLY MEASURED

HIGH-DIMENSIONAL BIOMARKERS

Xiang Li1, Quefeng Li2, Donglin Zeng2,

Karen Marder1, Jane Paulsen3 and Yuanjia Wang1

1 Columbia University, 2 University of North Carolina, Chapel Hill

and 3 University of Iowa

Abstract: Clinical studies with time-to-event outcomes often collect measurements

of a large number of time-varying covariates over time (e.g., clinical assessments or

neuroimaging biomarkers) in order to build a time-sensitive prognostic model. How-

ever, resource-intensive or invasive (e.g., lumbar puncture) data-collection processes

mean that biomarkers may be measured infrequently and, thus, not be available at

every observed event time point. Therefore, leveraging all available time-varying

biomarkers is important to improving our models event occurrence. We propose

a kernel smoothing-based approach that borrows information across subjects to

remedy the problem of infrequent and unbalanced biomarker measurements under

a time-varying hazards model. A penalized pseudo-likelihood function is proposed

for estimation, and an efficient augmented penalization minimization algorithm

related to the alternating direction method of multipliers is adopted for computa-

tion. Given several regularity conditions, used to control the approximation bias

and stochastic variability, we show that even in the presence of ultrahigh dimen-

sionality, the proposed method selects important biomarkers with high probability.

We use simulation studies to show that our method outperforms existing meth-

ods in terms of estimation and selection performance. Finally, we apply the pro-

posed method to real data to model time-to-disease conversion using longitudinal,

whole-brain structural magnetic resonance imaging biomarkers. The results show

substantial improvement in performance over that of current standards, including

using baseline measures only.

Key words and phrases: Biomarker studies, high-dimensional covariates, irregu-

lar measurements, kernel-weighted estimation, neurological disorders, time-varying

hazards model.

1. Introduction

Time-varying biomarkers are often collected in studies on disease mecha-

nisms and when building time-varying prognostic models for time-to-event out-
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comes, such as disease onset. Technological advancements have made repeated

measurements of high-dimensional time-varying biomarkers possible at the indi-

vidual level. However, while these are potentially useful in terms of improving

the power of predictions, several statistical and computational challenges have

emerged. First, collecting certain biomarkers may be resource-intensive or in-

vasive (e.g., neuroimaging measures involving radiation exposure). As a result,

such measurements tend to be infrequent and irregularly spaced over time for

each subject. Thus, the biomarkers as covariates may not be available at ev-

ery observed event time point. Second, an extensive body of literature (Desikan

et al. (2006); Chen et al. (2014); Paulsen et al. (2014a); Ryan et al. (2015))

suggests that biomarker effects on neurological disorders vary with age, time,

and an individual’s disease progression. For example, a large natural history

study of a neurological disorder (Paulsen et al. (2014a)), Huntington’s disease

(HD), showed that regional brain atrophy measures, considered important HD

biomarkers, manifest differential rates of decline at distinct disease stages. Then,

a work on neurobiological processes revealed an age-dependent effect pattern for

brain activation, as measured by neuroimaging biomarkers (Ryan et al. (2015)).

Third, biomarkers often exhibit a biological network structure (e.g., structural

covariation network, He, Chen and Evans (2008); structural and functional brain

networks, Bullmore and Bassett (2011); gene co-expression network, Stuart et al.

(2003)), where linked biomarkers may indicate a similar likelihood of disease di-

agnosis or prognosis, owing to their sharing of disease pathways. Given these

challenges, a valid statistical method that includes the biomarkers for prediction

should take into account all available non-frequent biomarker measurements and

time-varying effects as well as the high dimensionality and informative network

structure among covariates.

The methods commonly used to associate time-dependent biomarkers with

hazards of time-to-event outcomes require that biomarkers be completely ob-

served at each event time (Honda and Härdle (2014); Honda and Yabe (2017)).

As a result, they cannot be applied when the biomarkers are measured infre-

quently and irregularly. An easy solution is to treat this as a missing covariates

problem, which means we can impute missing biomarkers at an event time using

the last value carried forward (LVCF; Andersen and Liestol (2003)). However,

while straightforward to implement, this approach may induce bias and lead

to incorrect inferences, especially when the biomarkers show substantial change

(Prentice (1982); Tsiatis and Davidian (2001)). Several sophisticated approaches

(Tsiatis and Davidian (2004); Gould et al. (2014); Taylor et al. (2013)) have
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been proposed as alternatives, that link group-average (rather than individual)

biomarker trajectories with time-to-event outcome models. However, the predic-

tive performance of the models obtained from these approaches may not reflect

the true predictivity of the biomarker measures collected on each individual.

Other methods link unobserved random effects to time-to-event models using a

measurement error model and joint modeling (e.g., Rizopoulos (2011)). However,

measurement error models are not practically relevant when biomarker variation

is due to true biological variability rather than random errors. Thus, we need to

be able to directly associate observed biomarker values on each individual (rather

than group-average or random effects) with the event times. Recent works along

this line include those of Cao, Zeng and Fine (2014); Cao et al. (2015), although

they do not deal with time-varying effects or with high-dimensional biomarkers.

In addition, the estimation of high-dimensional, time-dependent effect pro-

file functions for biomarkers on event outcomes using limited data is an am-

bitious goal. Thus, incorporating biological information is crucial to reducing

model space complexity and stabilizing the estimation. The following strong bi-

ological evidence has been observed for neurodegenerative disorders: (1) signals

are clustered in networks (He, Chen and Evans (2008); Eidelberg and Surmeier

(2011); Parikshak, Gandal and Geschwind (2015)); (2) biomarker signals evolve

with disease progression and/or age (Desikan et al. (2006); Chen et al. (2014);

Paulsen et al. (2014a)); and (3) signals are expected to be sparse (e.g., Liu et al.

(2014)). Existing methods used to select functions for hazards models (e.g., Yan

and Huang (2012); Liu et al. (2013)) or transformation models (Liu and Zeng

(2013)) do not simultaneously handle irregularly measured time-dependent co-

variates and incorporate biological information. In our motivating study and

in other applications, subjects’ biomarker assessments were scheduled less fre-

quently scheduled than clinical visits and, thus, did not necessarily coincide,

rendering the aforementioned works nonapplicable.

In this article, we propose a unified method for estimating the time-varying

effects in a hazards model using high-dimensional time-varying biomarkers that

are measured irregularly. Our first contribution is that we resolve the complica-

tion of unavailable biomarkers at some event times without excluding subjects

with missing biomarkers. To this end, we adopt local kernel smoothing to pool

observations across event times and subjects. Second, to facilitate the selection

of the entire profile function, after approximating each function using B-splines,

we incorporate a group sparsity penalty on the spline coefficients, inspired by the

work of Huang, Horowitz and Wei (2010). Furthermore, to incorporate the bio-
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logical network structure among the biomarkers, we include an additional regular-

ization to encourage strongly linked biomarkers to yield similar prognosis effects.

It is challenging to control the selection and estimation accuracy when deal-

ing with high-dimensional functions, because estimation noise at any given time

point may cause a biomarker to enter the model. Thus, our third contribution

is to propose an efficient computational algorithm that achieves `0-penalty-like

sparsity of the functions by modifying popular augmented penalization methods,

including the alternating direction method of multipliers (ADMM; Boyd et al.

(2011)) algorithm. Fourth, our examination of the theoretical properties includes

establishing a high-dimensional oracle selection for functions (instead of scalar

parameters) in the presence of the kernel approximation. This requires tech-

niques to appropriately control for approximation bias and stochastic variability,

which are not available in existing theories.

The remainder of the paper is organized as follows. In Section 2, we describe

a time-varying hazards model with time-varying biomarkers, an approximated

likelihood function used to borrow information, and an efficient algorithm for

implementation. In Section 3, we provide theories showing that, under a general

class of penalty functions, our method admits the “oracle property” in terms of

selecting and estimating the true time-dependent effects. In Section 4, we extend

the proposed algorithm to incorporate the biological network structure in the

model regularization. In Section 5, we present simulation studies that examine

the finite-sample performance of the proposed method, demonstrating that it

outperforms alternative approaches. In Section 6, we apply our method to data

from a study (Paulsen et al. (2014b)) that uses whole-brain structural magnetic

resonance imaging (MRI) data to estimate a network-regularized biomarker sig-

nature in order to predict the time-to-onset of HD. We show that the predictive

performance of the proposed model is significantly better than that of the LVCF,

baseline-only analyses, and current standards developed independently in the re-

cent literature (Long et al. (2016)). Finally, we conclude the paper in Section

7.

2. Methodologies

2.1. Model and estimation

Assume that data are collected from n independent and identically dis-

tributed (i.i.d.) subjects. For subject i, let Xi(t) denote a pn-dimensional vector

of covariates including time-dependent biomarkers, and let Ti denote the time-
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to-event of interest (e.g., age-at-onset of a disease). To model the time-varying

effects of covariates on the event, we propose a time-varying hazards model in

which we assume that the conditional hazard rate function of Ti = t, given the

covariate history by time t, is

λ(t|Xi(s), s ≤ t) = λ0(t) exp
{
βT (t)Xi(t)

}
, (2.1)

where λ0(t) is an unspecified baseline hazard function, and β(t) is a vector of

covariate effects at time t. Note that (2.1) can also include additional compo-

nents of the covariate history, for instance, lagging effects, by expanding Xi(t)

to include the covariate history.

Assume that Xi(t) is only measured at ni discrete time points: ti1, . . . , tini
.

The observed data consist of
{
T̃i = min(Ti, Ci),∆i = I(Ti ≤ Ci),Xi(ti1), . . . ,

Xi(tini
)
}
, for i = 1, . . . , n, where Ci denotes the censoring time, assumed to be

conditionally independent of Ti given Xi(t), T̃i is the observed event time or

censoring time, and ∆i the censoring indicator. Furthermore, let Yi(t) = I(T̃i ≥
t) and Ni(t) = I(T̃i ≤ t,∆i = 1) denote the at-risk process and the observed

counting process, respectively.

If a complete history of the covariate processesXi(t) is available for all t < T̃i
and all i, then the classic log-partial likelihood (Fleming and Harrington (2011)),

defined as

n−1
n∑
i=1

∫ τ

0

βT (t)Xi(t)− log

n−1
n∑
j=1

Yj(t) exp{βT (t)Xj(t)}

dNi(t), (2.2)

can be maximized to estimate the coefficients, where τ is the duration of a study.

Because Xi(t) is only observable at some distinct time points, we need to approx-

imate each term in the above log-partial likelihood function using the observed

data. Note that the objective function (2.2) relies on some empirical average of

the functionals of Xi(t). Thus, the approximation does not need to be accurate

for each subject’s Xi(t); instead, an accurate approximation of this empirical

average Xi(t) is sufficient. This motivates us to adopt kernel smoothing by pool-

ing observations from the same trajectory on subject i, but also from the other

subjects when approximating Xi(t). Specifically, consider the kernel smoothing

proposed in Andersen and Liestol (2003), and weight the subjects in the pooled

data, where the weights are based on the distance between the observed mea-

surement times and t; the resulting approximated objective function is given
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as

lsn(β) =n−1
n∑
i=1

∫ τ

0

ni∑
v=1

Khn
(t− tiv)

(
βT (t)Xi(tiv)

− log

[
n−1

n∑
j=1

nj∑
k=1

Khn
(t− tjk)Yj(t) exp{βT (t)Xj(tjk)}

])
dNi(t),

where Khn
(t) = h−1

n K(t/hn) for some symmetric kernel function K(·) and band-

width hn.

Because β(t) is fully nonparametric, maximization is not feasible. Thus,

we use a B-spline approximation for each βj(t), j = 1, . . . , pn. Specifically, let

φ1,m(t), . . . , φqn,m(t) be the B-spline basis functions of order m associated with

(qn−m) equally spaced interior knots 0 = t0 < t1 < · · · < tqn−m < tqn−m+1 = τ ,

where τ is the study duration. The basis functions can be generated using the

Cox–de Boor recursion formula φ`,0(t) := 1 if t` ≤ t < t`+1, and φ`,0(t) := 0

otherwise. Furthermore, φ`,k(t) := (t−t`)/(t`+k−1−t`)φ`,k−1(t)+(t`+k−t)/(t`+k−
t`+1)φ`+1,k−1(t), for 1 ≤ k ≤ m.

To simplify the notation, we write φ`,m(t) as φ`(t). Define φ(t) = (φ1(t), . . . ,

φqn(t))T . Then, for the jth component of β(t), we approximate βj(t) by

βj(t) ≈ γTj φ(t), j = 1, . . . , pn, (2.3)

where γj = (γj1, . . . , γjqn)T is a coefficient vector for the B-spline approximation.

Consequently, define Zi(t, u) = Xi(t)⊗φ(u), where ⊗ is the Kronecker product,

and γ =
(
γT1 , . . . ,γ

T
pn

)T
. Then, we propose maximizing

ln(γ) =n−1
n∑
i=1

∫ ni∑
v=1

Khn
(t− tiv)

(
γTZi(tiv, t)

− log

[
n−1

n∑
j=1

nj∑
k=1

I(T̃j ≥ t)Khn
(t− tjk) exp

{
γTZj(tjk, t)

}])
dNi(t)

=n−1
n∑
i=1

ni∑
v=1

∆iKhn
(T̃i − tiv)

(
γTZi(tiv, T̃i)

− log

[
n−1

n∑
j=1

nj∑
k=1

I(T̃j ≥ T̃i)Khn
(T̃i − tjk) exp

{
γTZj(tjk, T̃i)

}])
(2.4)
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to estimate γ, and thus β(t).

2.2. Sparsity regularization

With a large number of biomarkers, directly maximizing ln(γ) may lead to

high variability in the time-varying effects, and may even be infeasible. Further-

more, because most of the biomarkers are expected to be noninformative in terms

of disease prognosis, it is important that we identify which ones contribute to the

underlying biological mechanism. Thus, we impose a regularization to stabilize

the computation and for variable selection. Specifically, we propose minimizing

the following penalized function:

γ̂ = arg min
γ

{−ln(γ) + p(γ; νn)} , (2.5)

where p(γ; νn) is a prespecified penalty function with tuning parameter νn.

Because we aim to select the important βj(t) as functions in [0, τ ], or equiva-

lently, γj as a vector, the penalty is imposed on the Euclidean norm of γj , rather

than on each component of γj . Furthermore, to encourage oracle selection, follow-

ing Zhang and Zhang (2012), one may wish to choose a concave penalty function.

Therefore, we choose the penalty term p(γ; νn) = νn
∑pn

j=1

√
qnρ(‖γj‖2), where

ρ(·) is a general penalty function imposed on ‖γj‖2, the Euclidean norm of γj .

For example, ρ(t) = t gives the LASSO penalty,

ρ(t) =

∫ t

0
I(u ≤ νn) +

(aνn − u)+

(a− 1)νn
I(u ≥ νn)du

gives the SCAD penalty (Fan and Li (2001)), and

ρ(t) =

∫ t

0

(aνn − u)+

aνn
du

yields the MCP penalty (Zhang (2010)). As an extreme case, we can choose

p(γ; νn) to be the `0-penalty, which is defined as νn
∑pn

j=1

√
qn‖γj‖G0, with ‖γj‖G0 =

I(‖γj‖2 6= 0). A concave penalty may lead to a nonconvex minimization; in the

next section, we describe a unified algorithm to facilitate the computation.

2.3. Computational algorithm

We propose a unified computational algorithm for the optimization (2.5).

The algorithm is motivated by a class of proximal methods that perform aug-

mentation and splitting, including the ADMM algorithm (Boyd et al. (2011)).
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Specifically, additional slack variables θ of the same dimension as the target

variables γ are introduced to facilitate efficient computation and scaling.

Following Li et al. (2017), we first approximate (2.5) by the following con-

strained optimization problem:

arg min
γ,θ

− ln(γ) + p(θ; νn) subject to

pn∑
j=1

‖γj − θj‖2 ≤ cn, (2.6)

where cn is some constant that controls the difference between γ and θ. Note

that the ADMM algorithm is a special case when cn = 0 in (2.6). We further

propose solving the equivalent Lagrangian problem

arg min
γ,θ

− ln(γ) + p(θ; νn) + φn

pn∑
j=1

√
qn‖γj − θj‖2, (2.7)

where φn is the Lagrangian multiplier. We delegate the proof of the equivalence

between (2.6) and (2.7) to the Supplementary Material. Thus, we can mini-

mize (2.7) for given νn and φn by iteratively updating all parameters using the

following algorithm: at the kth iteration,

γk+1 = arg min
γ

−ln(γ) + φn

pn∑
j=1

√
qn‖γj − θkj ‖2, (2.8)

θk+1 = arg min
θ

p(θ; νn) + φn

pn∑
j=1

√
qn‖γk+1

j − θj‖2. (2.9)

Note that the above update (2.8) is similar to updating a regularized regres-

sion using a group LASSO, where the objective function is convex. For (2.9),

when p(θ; νn) = νn
∑pn

j=1

√
qnρ(‖γj‖2), we can perform a groupwise minimiza-

tion, which often results in an explicit solution. Therefore, each iteration of

the proposed algorithm involves one step of convex minimization and one step

of simple calculation. The tuning parameters νn and φn can be chosen using

likelihood-based cross-validation.

For example, when p(γ; νn) is chosen as the `0-penalty, the second step in

each iteration of the above algorithm becomes

θk+1 = arg min
θ

νn

pn∑
j=1

√
qn‖θj‖G0 + φn

pn∑
j=1

√
qn‖γk+1

j − θj‖2.
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In Section 4, we show the groupwise `0-penalty acts as a hard threshold for the

estimates obtained in the first step. Simple algebra gives, for j = 1, . . . , pn,

θk+1
j = γk+1

j I

(
‖γk+1

j ‖2 >
νn
φn

)
. (2.10)

Note that, the challenge in selecting informative biomarkers from a large can-

didate pool arises because each component of the effect profiles β(t) is a function.

Thus, the estimation noise on the entire range of t needs to be controlled, and a

penalty needs to be imposed on its norm.

Furthermore, when the dimension of Xi(t) is high, the computation in (2.8)

can still be intensive, even if it is a convex minimization. In Section 4, we

suggest a coordinate-descent approach, in which we first approximate ln(γ) using

a summation of the quadratic functions for each γj . Thus, the computation can

easily scale up to high-dimensional scenarios.

3. Theoretical Properties

The main challenge in proving theoretical properties is to appropriately con-

trol for the approximation bias resulting from the local kernel smoothing in the

approximated likelihood (2.3) and stochastic variability. Let β∗(t) denote the

true value of β(t), and let β∗j (t) denote its jth element. We provide a nonasymp-

totic result showing that, with large probability, the nonzero β∗j (t) can be cor-

rectly selected and consistently estimated by β̂j(t), where β̂j(t) := γ̂Tj φ(t) and

γ̂ = (γ̂T1 , . . . , γ̂
T
pn)T is the estimator given by (2.5). In particular, we allow pn

and qn to diverge to infinity and νn to converge to zero with n.

3.1. Technical notation

Before presenting regularity conditions, we need the following notation. Let

S(l)
n (γ, t)=n−1

n∑
i=1

ni∑
v=1

Khn
(t−tiv)Yi(t){Zi(tiv, t)}⊗l exp{γTZi(tiv, t)}, l=0, 1, 2.

(3.1)

Then, the approximated log-partial likelihood for optimization can be rewrit-

ten as

ln(γ) =
1

n

n∑
i=1

∫ τ

0

ni∑
v=1

Khn
(t− tiv)

[
γTZi(tiv, t)− log{S(0)

n (γ, t)}
]
dNi(t).
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Denote En(γ, t) = S
(1)
n (γ, t)/S

(0)
n (γ, t). Then, the gradient vector, denoted by

Un(γ), and the negative Hessian matrix, denoted by In(γ), of ln(γ) are given by

Un(γ) =
1

n

n∑
i=1

∫ τ

0

ni∑
v=1

Khn
(t− tiv){Zi(tiv, t)−En(γ, t)}dNi(t),

In(γ) =
1

n

n∑
i=1

∫ τ

0

ni∑
v=1

Khn
(t− tiv)

{
S

(2)
n (γ, t)

S
(0)
n (γ, t)

−En(γ, t)⊗2

}
dNi(t).

In addition, we define

s̄(l)(γ, t) = E[Y (t){Z(t, t)}⊗l exp{γTZ(t, t)}], for l = 0, 1, 2;

e(γ, t) = s̄(1)(γ, t)/s̄(0)(γ, t), and

Σ(γ, t) =

∫ τ

0

{
s̄(2)(γ, t)

s̄(0)(γ, t)
− e(γ, t)⊗2

}
s̄(0)(γ, t)λv(t)dΛ0(t),

where we assume {ti1, . . . , tini
} follow an independent counting process with in-

tensity function λv(t).

In the penalized partial likelihood (2.5), we assume ρ(t) belongs to a gen-

eral class of folded-concave functions, as discussed in Fan and Lv (2011). Such

a class of functions will be characterized by Condition 11 in Section 3.2. In

particular, denote κ(ρ,u) as the “local concavity” of ρ(·) at a general vector

u = (u1, . . . , us)
T ∈ Rs, yielding

κ(ρ,u) = lim
ε→0+

max
1≤j≤s

sup
t1<t2∈(|uj |−ε,|uj |+ε)

−ρ
′(t2)− ρ′(t1)

t2 − t1
.

For example, for the LASSO penalty, κ(ρ,u) = 0, whereas for the SCAD penalty,

κ(ρ,u) =

{
(a− 1)−1ν−1

n , if there exists a uj such that νn ≤ |uj | ≤ aνn;

0, otherwise.

Our subsequent regularity condition for the penalty function is expressed in terms

of κ(ρ,u).

Lastly, for a vector a, let ‖a‖∞ = maxj |aj | denote its sup-norm. For a

matrix A, let ‖A‖∞ = maxi
∑

j |aij | denote its matrix sup-norm, where aij is

the (i, j)th element of A. Let λmin(A) and λmax(A) be the minimal and maximal

eigenvalues of A, respectively.
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3.2. Regularity conditions

We define the unique projection of β∗j (t) on the sieve space consisting of φ(t)

as γ∗Tj φ(t), where γ∗j is a qn-dimensional vector. DenoteM = {j : β∗j (t) 6= 0, t ∈
[0, τ ]} as the set of active β∗j (t). We assume that when qn is sufficiently large,M
is equivalent to the support of γ∗; that is, M =

{
j : γ∗j 6= 0

}
. In other words,

the important covariates with β∗j (t) 6= 0 are fully characterized by the nonzero γ∗

vectors when we choose a sufficient number of spline bases. Let rn = |M| denote

its cardinality. Denote A = {jl : j ∈ M and 1 ≤ l ≤ qn}. Note that |A| = rnqn.

Denote dn = minj∈M‖γ∗j ‖2 as the minimal signal strength. For a set S, denote aS
as the subvector of a with indices in S, and ASS as the submatrix with row and

column indices in S. Let B0 := {γ ∈ Rpnqn : ‖γA−γ∗A‖∞ ≤ dn and γAc = 0}. We

assume that M is a universal positive constant and that the following conditions

hold.

Condition 1. Λ0(τ) =
∫ τ

0 λ0(t)dt <∞ and P{C ≥ τ} > 0.

Condition 2. supt∈[0,τ ] |Xj(t)| ≤M , for all 1 ≤ j ≤ p; supt∈[0,τ ] |(β∗(t))TX(t)| ≤
M .

Condition 3. λv(t) is bounded and twice continuously differentiable with a bounded

second derivative.

Condition 4. The kernel function K(x) is symmetric and has a finite second

moment.

Condition 5. |E[Xj(t)]| ≤ M and E[Xj(t)] is twice continuously differentiable

and

|(E[Xj(t)])
′′| ≤ M . In addition, E[Xj(t) − Xj(s)]

2 ≤ M(t − s)2 holds almost

everywhere for t, s ∈ [0, τ ].

Condition 6. There exists some positive constant α such that supt∈[0,τ ] |β∗j (t)−
(γ∗j )Tφ(t)| ≤ cαq−αn for all 1 ≤ j ≤ pn, where cα is some positive constant.

Condition 7. (nhn)−1/2 = O(1).

Condition 8. rnqncnd
1/2
n = o(n), where cn := rnq

2
nh
−1
n ∨ h−2

n .

Condition 9. supγ∈B0
‖ΣAA(γ)−1‖∞ ≤M .

Condition 10. supγ∈B0
‖ΣAcA(γ)ΣAA(γ)−1‖∞ ≤ (1−ζ)ρ′(0+)/ρ′(dn/2), for some

ζ ∈ (0, 1).

Condition 11. ρ(t) is increasing and concave in t ∈ [0,∞), and has a continuous

derivative ρ′(t), with 0 < ρ′(0+) < M . supγ∈B0
|νnκ(ρ,γ)| ≤M .

Condition 1 is a common condition when using the Cox model. Condition
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2 is used to establish the exponential type of concentration inequalities for the

gradient vector. Condition 3 is a smoothness condition on λv(t). Condition 4 is

imposed on the kernel function and is satisfied for common kernel functions, such

as the Gaussian kernel and Epanechnikov kernel. Condition 5 is a smoothing

assumption on E[Xj(t)]. Because this condition is imposed on the population

average, it allows the individual realization of Xij(t) to be nonsmooth or even

discontinuous. For example, the trajectory of Xij(t) may have a discontinuity

point that is from a continuous distribution in [0, τ ]. Condition 6 requires that

β∗j (t) be sufficiently smooth that it can be well approximated by splines. If

β∗j (t) has bounded kth derivatives, then α = k − 1 (see Schumaker (2007)).

Condition 9 and Condition 10 are imposed on the population information matrix

Σ(γ). Similar conditions also appear in derivations of the oracle properties for

parametric models (Fan and Lv (2011)). Condition 10 is an irrepresentable-type

condition. If some concave penalties (e.g., SCAD or MCP) are used, the upper

bound in Condition 10 is allowed to diverge to infinity at a polynomial rate of n

(Fan and Lv (2011)). If the `1-penalty is used, the upper bound reduces to 1− ζ,

which is exactly the irrepresentable condition needed for the LASSO (Zhao and

Yu (2006)). Under Conditions 9 and 10, similar results for the sample information

matrix In(γ) can be shown to hold with high probability (See Lemma S5 in the

Supplementary Material). Condition 11 is imposed on the penalty function, and

is satisfied by commonly used penalty functions, such as the LASSO, SCAD, and

MCP.

3.3. Main results

We first give a concentration inequality for the gradient vector Un(γ∗), which

will play a key role in establishing the main result.

Lemma 1. Under conditions 1 to 8, there exist positive constants C1, C2, C3,

C4, and D such that, for any x > 0 and ε > 0, it holds with probability no less

than 1− ε− C1 exp(−C2nh
6
nx

2)− C3 exp(−C4x) that

|Un,j(γ∗)| ≤ D{(nh2
n)−1/2x+ πn},

where Un,j(γ
∗) is the jth element of Un(γ∗) and πn = (rnqncnd

1/2
n /n)1/2 + h2

n +

rnq
−α
n .

Remark 1. In contrast to existing studies on the ordinary Cox model in high-

dimensional settings (Bradic, Fan and Jiang (2011)), the expectation of the gra-

dient vector Un(γ∗) is no longer equal to zero, owing to the spline approximation
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of β∗(t) and the local smoothing. The term πn quantifies such a bias. In the

expression of πn, h2
n is the result of local smoothing, rnq

−α
n is the result of the

approximation of (γ∗j )Tφ(t) by β∗j (t), and (rnqncnd
1/2
n /n)1/2 is introduced by

S
(l)
n (γ, t). However, owing to the conditions of pn, qn, and dn, the bias πn van-

ishes as the sample size n grows, and so it does not affect the variable selection

given in Theorem 1 below.

Remark 2. Under condition 3, ni = OP (1); that is, for any ε > 0, there is

a constant Mε such that P (ni > Mε) ≤ ε. Such an ε appears in Lemma 1.

All other probabilities are calculated conditioning on the event {ni ≤ Mε}. We

also condition on such an event when calculating the exception probabilities in

Theorem 1 and the additional lemmas in the Supplementary Material.

Our main theoretical result considers the variable selection property of our

method. Specifically, we show that the estimator β̂(t) = (β̂1(t), . . . , β̂p(t))
T pos-

sesses the “weak oracle property”, as discussed in Fan and Lv (2011) for the

generalized linear model; that is, it is variable selection consistent and it consis-

tently estimates the nonzero components of β∗(t), the component functions that

are not identically equal to zero.

Theorem 1. Suppose conditions 1 to 11 hold, and

n2h8
n(νn
√
qn − πn)2

log(pnqn)
→∞,

(nh2
n)1/2(νn

√
qn − πn)

log(pnqn)
→∞, (3.2)

nh2
n(rnqn)−1

log(pnrnq2
n)
→∞, dn > 2Mνnqn. (3.3)

There exist universal positive constants C1, C2, C3, C4, C5, and C6 such that,

for any ε > 0, with probability at least

1− ε− C1pnqn exp{−C2n
2h8
n(νn
√
qn − πn)2}

− C3pnqn exp{−C4(nh2
n)1/2(νn

√
qn − πn)} − C5pnrnq

2
n exp{−C6nh

2
n(rnqn)−1},

(3.4)

there is a solution to (2.5) that yields β̂(t), satisfying

(a)(variable selection consistency): {j : β̂j(t) 6≡ 0} = {j : β∗j (t) 6≡ 0};
(b)(L∞ error): maxj∈M sup0≤t≤τ |β̂j(t)− β∗j (t)| ≤M(νnq

3/2
n + q−αn ), where M is

a positive constant.

The result in (a) guarantees the variable selection consistency with a high

probability. The term Mνnq
3/2
n in statement (b) gives the upper bound of
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maxjl∈A |γ̂jl − γ∗jl |, and the term Mq−αn corresponds to the approximation er-

ror of γ∗Tj φ(t) to β∗j (t). The first assumption in (3.3) provides a constraint on

the divergence rates of pn, rn, and qn. They are allowed to diverge, as long as

rnqn log(pnrnq
2
n) = o(nh2

n). The minimal signal strength dn is allowed to converge

to zero, given that the second term in (3.3) holds.

The conditions in Theorem 1 also restrict the choice of the tuning param-

eter νn in the penalty function and the bandwidth hn in the kernel smoothing.

Specifically, by (3.2) and (3.3), the tuning parameter νn needs to satisfy

πnq
−1/2
n ∨ log(pnqn)

n1/2hnq
1/2
n

∨
√

log(pnqn)

nh4
nqn

� νn <
dn

2Mqn
.

Moreover, the lower bound for hn is given by

hn �
log(pnrnq

2
n)

n(rnqn)−1
∨ {log(pnqn)}2

nqnν2
n

∨ {log(pnqn)}1/4
√
nqnνn

.

For example, suppose that rn and dn are fixed and independent of n and

α ≥ 2. Then, for pn = exp{O(n1/8)}, once we choose qn � n1/8, hn � n−1/8,

and n−5/16 � νn � n−3/16, all requirements in Theorem 1 are met such that

the probability in (3.4) becomes arbitrarily close to one and the upper bound in

Theorem 1(b) converges to zero.

4. Incorporating the Network Structure

In many applications, biomarkers such as structural/functional brain mea-

sures (He, Chen and Evans (2008); Alexander-Bloch, Giedd and Bullmore (2013))

and co-expression of genes (Stuart et al. (2003)) exhibit network structures and,

hence, can be naturally described by a graph G = (V,E,W), where V is the set

of vertices corresponding to the biomarkers, E = {j ∼ k} is the set of edges that

indicate connected vertices, and W = {wjk > 0 : (j, k) ∈ E} is the set of edge

weights. Note that W is a pn × pn matrix with zero diagonal entries; that is,

wjj = 0, for j = 1, . . . , pn.

When two biomarkers are highly linked, that is wjk is large, they are likely

to be involved in similar disease pathways, which means the corresponding βj
and βk are similar. Our proposed method can be extended easily to incorporate

such network information in order to encourage this pattern in the analysis.

Specifically, we add to (2.5) a Laplacian quadratic penalty on the effect size using

the `2-norm vector |γ|G =
(
‖γ1‖2, . . . , ‖γpn‖2

)T
to encourage smoothness of the
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functions over the network graph. Such a penalty takes the form of |γ
T
|GL
∗
n |γ|G ,

where L∗n is a positive semidefinite matrix associated with the graph G. We can

choose L∗n = D−W, where D = diag(d1, . . . , dpn) with dj =
∑

l:(j,l)∈E wjl, or its

normalized version given by L∗n = I −D−1/2WD−1/2. The former choice of L∗n
yields the penalty term ∑

(j,l)∈E

wjl
(
‖γj‖2 − ‖γl‖2

)2
, (4.1)

whereas the latter gives

∑
(j,l)∈E

wjl

(
‖γj‖2√
dj
− ‖γl‖2√

dl

)2

.

With this additional penalty, the previous algorithm in Section 2.2 is still

applicable. In particular, the first step of each iteration solves

γ̂ = arg minγ

{
− ln(γ) + λ1

∑pn
j=1

√
qn‖γj − θj‖2

+(λ2/2)
∑

(j,l)∈E wjl

(
‖γj‖2√
dj
− ‖γl‖2√

dl

)2 }
.

(4.2)

When the dimension pn is large, it is not straightforward to directly find the min-

imum of the objective function (4.2), so we propose a majorization-minimization

(MM) approach (Lange (2013)), and employ a groupwise descent algorithm to

solve (4.2). The minimization is achieved by a cyclic descent over each group,

where we choose a target group γj to minimize and consider other group coeffi-

cients γk = γ̂k, for k 6= j, as fixed from the previous iteration. The details are

given as follows.

Denote by ∇jln(γj) the gradient taken over γj . Using a second-order Taylor

expansion on γj centered at a point γ̃j , and replacing the Hessian matrix with a

suitable matrixH, we first majorize−ln(γj) using a surrogate functionM(γj |γ̃j),
as follows:

M(γj |γ̃j) = −
{
ln(γ̃j) + (γj − γ̃j)T∇jln(γ̃j) +

1

2
(γj − γ̃j)TH(γj − γ̃j)

}
,

with −ln(γj) ≤ M(γj |γ̃j) and −ln(γ̃j) = M(γ̃j |γ̃j). We further assume that

the matrix H has the form −H = t−1Iqn , where Iqn is an identity matrix with

dimension qn, and t is sufficiently small such that the quadratic term (2t)−1‖γj−
γ̃j‖22 dominates the negative Hessian matrix of ln(γj). Thus, in each gradient
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step to update γ̂j , we solve

arg min
γj

{
1

2t

∥∥γj − (γ̃j + t∇jln(γ̃j))
∥∥2

2
+ λ1

√
qn‖γj − θj‖2

+
λ2

2

∑
l:(j,l)∈E

wjl

(
‖γj‖2√
dj
− ‖γ̂l‖2√

dl

)2}
,

(4.3)

which can be carried out easily using the Newton–Raphson method. Note that a

similar approach is used in Meier, Van De Geer and Bühlmann (2008) and Simon

et al. (2013).

Finally, we propose using a K-fold cross-validation to choose all tuning pa-

rameters simultaneously. For each fixed bandwidth, the cross-validation criterion

is the summation of the change in the log-partial likelihood function after omit-

ting one fold. To choose the bandwidth, we let hn = Cn−1/8, start from a

small positive constant C, and increase by a step size until the increment of

the cross-validation is below a prespecified threshold. All algorithms have been

implemented in an R package, which is available upon request.

5. Simulation Studies

In this section, we report on the extensive simulations we used to evaluate

the performance of the proposed method. We set the study duration to τ = 1.

First, we considered pn time-dependent covariates, each with piecewise constant

trajectories given by

Xij(t) =

20∑
l=1

I

{
(l − 1)

20
≤ t < l

20

}
Zijl,

where {Zijl : l = 1, . . . , 20} are from a multivariate normal distribution with

mean zero and covariance Cov(Zijl, Zijl′) = e−|l−l
′|/20, for l, l′ = 1, . . . , 20. We

also imposed a network structure on these covariates by assuming that there are

links only within each block of four consecutive covariates, {Xi1, Xi2, Xi3, Xi4},
{Xi5, Xi6, Xi7, Xi8}, and so on. Furthermore, within each block of four covariates,

the edge weight for each linked pair is set to be 0.5. Next, conditional on all

covariates, the survival time Ti was generated from model (1) with λ0(t) = 2,

and β(t) is given for either of the following two scenarios:

(a) β1(t) = · · · = β4(t) = 2 exp{−10(t − 0.1)2}, β5(t) = · · · = β8(t) = −1 and

β9(t) = · · · = βpn(t) = 0;
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(b) βi(t) = (−1)i+12 exp{−10(t−i/10)2} for i = 1, . . . , 4, βi(t) = (−1)i+1(i−4)/2

for i = 5, . . . , 8 and β9(t) = · · · = βpn(t) = 0.

Therefore, for either scenario, only the first eight covariates are informative.

Additionally, in scenario (a), the linked important covariates have the same time-

varying effects, but this is not the case in scenario (b).

To simulate irregular measurements of the covariates, for each subject, we

generated measurement times ti1, . . . , tini
as ordered uniform distributed times

in [0, τ ], where ni is from a Poisson distribution with mean eight. Thus, the

average number of measurements per subject is eight. Furthermore, to generate

right-censored observations, we generated Ci from a uniform distribution in [0, c],

where c was chosen to yield about a 30% censoring rate.

In the simulation studies, we set pn = 20, 50, 1, 000 and n = 100, 200. When

applying the proposed method to the simulated data, we used the Epanechnikov

kernel function and quadratic B-splines, with two interior knots fixed at sample

quantiles of the observed failure times; therefore, qn = 5. When using the penalty

form in (4.2), we re-parameterized λ1 = λnα and λ2 = λn(1 − α). We set

α = 0.2, 0.5, 0.8, 1.0, and for each α, we selected a path for λn, as in Friedman,

Hastie and Tibshirani (2010). Specifically, λn decreases from λmax, which ensures

all parameters are zero, to a portion of λmax (i.e., 0.01 × λmax), with a length

of 10 values. For the bandwidth, we chose from hn = 0.05, 0.1, 0.15, 0.2. To

select the tuning parameters and bandwidth, five-fold cross-validation was used.

Simulations were repeated 100 times.

To evaluate the estimation performance, we computed the sum of squared

errors (SSE) for the estimated β. The numbers of true positive covariates (TP)

and false positive (FP) covariates are used as measures of the variable selection

performance. Moreover, we compared the performance of the proposed method

(DB-hazard) with that of the LVCF. We also compared different penalty func-

tions, including the group LASSO penalty (gLasso), group LASSO with network

penalty (gNet), and `0-regularization (2.10) with network penalty (`0Net). We

also compared the performance with that of the LVCF (imputing missing covari-

ates using the last observed values) under various penalty functions.

Tables 1 and 2 summarize the simulation results for both settings of β(t). In

all cases, DB-hazard, using all available longitudinal measurements, significantly

improves the estimation relative to that of the LVCF in terms of yielding a

much smaller SSE. This implies that the kernel smoothing method that uses all

available measurements of the covariates exhibits less finite sample bias and is

more efficient than using the last observed value to impute the covariate values
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Table 1. Setting (a): Comparison of estimation and selection performance of the pro-
posed DB-hazard method with that of the LVCF under various penalty functions.

DB-hazard LVCF
gLasso† gNet‡ `0Net∗ gLasso gNet `0Net

n = 100, pn = 20
SSE1 4.38 3.76 3.06 5.43 5.19 4.30
TP2 8.0 8.0 8.0 8.0 8.0 7.9
FP3 6.3 9.2 1.1 5.9 8.3 0.8

n = 100, pn = 50
SSE 5.19 4.30 3.12 6.58 5.74 4.28
TP 8.0 8.0 8.0 8.0 8.0 7.9
FP 14.2 23.9 1.5 11.4 21.9 1.4

n = 100, pn = 1, 000
SSE 8.34 6.25 4.57 9.23 7.53 5.25
TP 7.7 8.0 8.0 7.7 8.0 7.8
FP 33.2 127.2 1.6 29.5 137.6 1.2

n = 200, pn = 20
SSE 2.69 2.55 1.92 4.26 4.17 3.40
TP 8.0 8.0 8.0 8.0 8.0 8.0
FP 7.7 9.4 0.8 6.1 8.1 0.8

n = 200, pn = 50
SSE 3.51 3.10 2.16 4.92 4.70 3.39
TP 8.0 8.0 8.0 8.0 8.0 8.0
FP 16.3 24.8 1.1 14.2 22.2 0.9

n = 200, pn = 1, 000
SSE 5.04 4.17 2.83 6.52 5.73 4.06
TP 8.0 8.0 8.0 8.0 8.0 8.0
FP 57.1 149.0 1.7 41.8 137.6 1.4

†: group Lasso; ‡: group Lasso with a Laplacian penalty; ∗: `0-regularization penalty (2.10); [1]: sum

of squared errors; [2]: number of true positives; [3]: number of false positives.

at the observed event times. Using the `0-penalty in our method is superior to

using either the group LASSO or network regularization, indicated by a smaller

SSE, much better FP, and comparable TP in all cases. The results indicate the

benefits of iteratively performing hard thresholding and considering the network

structure among the variables. A comparison between gLasso and gNet without

hard thresholding shows that gNet has a slightly better SSE and TP, but much

worse FP, which could be explained by the grouping effect of using the Laplacian

penalty: selecting a noninformative covariate makes it more likely that, other

highly linked covariates will as well, resulting in many more covariates being

identified and poor performance in terms of variable selection.

Table 3 summarizes the performance of the bandwidth selection. We spec-

ified a range of candidate bandwidths and performed five-fold cross-validation
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Table 2. Setting (b): Comparison of estimation and selection performance of the pro-
posed DB-hazard method with that of the LVCF under various penalty functions.

DB-hazard LVCF
gLasso† gNet‡ `0Net∗ gLasso gNet `0Net

n = 100, pn = 20
SSE1 6.12 5.96 4.96 8.93 8.65 7.49
TP2 7.6 7.9 7.4 7.3 7.8 7.0
FP3 7.5 9.2 0.8 6.0 8.0 0.8

n = 100, pn = 50
SSE 8.67 8.00 6.08 10.76 10.33 8.26
TP 6.8 7.7 7.2 6.4 7.3 6.6
FP 14.4 24.2 1.2 11.3 18.9 1.1

n = 100, pn = 1, 000
SSE 14.14 13.91 12.59 14.51 14.27 13.05
TP 2.1 3.3 3.5 1.9 3.4 3.4
FP 14.8 38.9 5.2 8.0 31.0 3.7

n = 200, pn = 20
SSE 4.04 3.94 3.22 6.61 6.67 5.61
TP 7.9 8.0 7.8 7.9 7.9 7.6
FP 8.5 9.5 0.8 7.9 8.7 0.6

n = 200, pn = 50
SSE 5.62 5.53 3.78 8.30 8.25 6.21
TP 7.8 7.9 7.7 7.7 7.8 7.4
FP 18.8 24.9 0.4 16.4 20.7 0.6

n = 200, pn = 1, 000
SSE 10.43 10.02 8.06 12.33 11.77 9.21
TP 5.9 7.1 7.4 5.6 7.3 7.1
FP 48.2 133.6 1.0 26.8 75.3 0.7

†: group Lasso; ‡: group Lasso with a Laplacian penalty; ∗: `0-regularization penalty (2.10); [1]: sum
of squared errors; [2]: number of true positives; [3]: number of false positives.

to select the optimal bandwidth. We compared our selection approach to the

method with the smallest SSE among all candidates, denoted as “Best” in Table

3. The results show that our selected bandwidths are very close to the “Best”

bandwidth, indicating satisfactory performance of our data-driven procedure.

To ease the computational burden, we implemented several techniques to

speed up our algorithms. We use warm starts to estimate β(t) along a regu-

larization path, and use a sparse data structure to save memory and to reduce

the time taken to search for the nonzero coefficients in a sparse β. Thus, the

computing time for our method is highly manageable. Figure S1 in the Sup-

plementary Materials shows the running time of the proposed method with the

`0-regularization penalty, based on λ with length ten and fixed α and h. Overall,

the computation time increased linearly with the number of covariates. When
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Table 3. Performance of the bandwidth selection procedure for DB-hazard.

Setting (a) Setting (b) Setting (a) Setting (b)
Selected Best1 Selected Best Selected Best Selected Best

n = 100, pn = 20 n = 200, pn = 20
Bandwidth 0.080 0.096 0.093 0.100 0.090 0.081 0.093 0.071
SSE2 3.06 2.67 4.96 4.37 1.92 1.66 3.22 2.83

n = 100, pn = 50 n = 200, pn = 50
Bandwidth 0.080 0.089 0.081 0.095 0.089 0.080 0.088 0.084
SSE 3.12 2.65 6.08 5.24 2.16 1.73 3.78 3.25

n = 100, pn = 1, 000 n = 200, pn = 1, 000
Bandwidth 0.056 0.085 0.055 0.113 0.059 0.086 0.061 0.104
SSE 4.57 3.89 12.59 11.31 2.83 2.19 8.06 6.90

[1]: defined as the bandwidth leading to the smallest SSE; [2]: sum of squared errors.

pn = 1, 000 and n = 200, the running time is 634 seconds, with a total of

pnqn = 5, 000 parameters.

We also evaluated the performance of the proposed method based on a dif-

ferent kernel function, namely, a Gaussian kernel; similar results were obtained.

In addition, the impact of various numbers of basis functions was considered

by using quadratic B-splines with 5, 7, and 10 interior knots, corresponding to

qn = 8, 10, 13, respectively. We observed increases in the SSE and the number

of identified variables as the number of basis functions increased. Note that βj(t)

is a linear combination of basis functions. To obtain βj(t) = 0, all elements in

the coefficient vector γj = (γj1, . . . , γjqn)T have to be zero. Thus, it is more likely

that we will obtain nonzero estimates if we have a greater number of basis func-

tions. After increasing n to 200, the performance improved, which may suggest

we need greater sample sizes when describing a more complicated function βj(t)

with more basis functions. Details of the above numerical studies are given in

the Supplementary Material.

6. Application

Recent research has suggested that brain imaging biomarkers play an impor-

tant role in predicting the onset of neurodegenerative disorders, and particularly

HD (e.g., Feigin et al. (2007); Paulsen (2010)). A diagnosis of HD is made

based on a neurological examination that indicates with 99% confidence that the

extrapyramidal movement disorder is consistent with HD. By the time clinical

symptoms are apparent, subjects may already be in an advanced disease stage.

Therefore, identifying biomarkers that may be informative for the early predic-

tion of disease onset preceding clinical diagnosis has important implications for
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recruiting pre-symptomatic subjects for clinical trials related to early interven-

tion (Paulsen (2010)). Current research indicates that neuroimaging biomarkers

are among the most promising for predicting the time to HD onset (Paulsen et al.

(2014a,b)). In this work, we analyze data collected from a newly completed, large

natural history study on the disease progression, PREDICT-HD (Paulsen et al.

(2014b)), in individuals who carry expanded CAG repeats and are destined to

develop HD. CAG repeat length is inversely related to age at onset, but the exact

onset age varies. We aim to predict the time-to-onset of HD using structural MRI

region of interest (ROI) volumetric measures for subjects without a diagnosis at

the baseline, but with expanded CAG repeats. The regional summary volumetric

measures were created using a fully automated procedure and were preprocessed

using Freesurfer 5.2 (http://surfer.nmr.mgh.harvard.edu). Details on the

imaging biomarker preprocessing can be found in Paulsen et al. (2014a).

Our analysis data consist of 866 subjects who had expanded CAG repeats

at the huntingtin gene (MacDonald et al. (1993)) without a clinical diagnosis at

the baseline. These subjects will develop HD during their lifetime owing to the

expanded repeat length at the HD gene, but the exact age of onset is unknown.

The median follow-up time was 4.0 years, with an average of 1.9 follow-ups per

subject. Imaging biomarkers were measured approximately bi-annually, with

some random variation and, thus, were obtained less frequently than the clinical

measures of the time-to-diagnosis outcome (assessed annually). Figure S2 in the

Supplementary Materials displays the number of subjects with available clinical

measures (time-to-diagnosis outcome) and longitudinal imaging measurements

at follow ups, indicating the shows sparse measurements of imaging biomarkers

at times (e.g., 18 months after the baseline). The biomarkers and clinical assess-

ments included in the analyses are as follows: baseline CAP score (scaled product

of CAG repeats length at the HD gene and baseline age; Zhang et al. (2011)) eight

demographic or clinical measures (gender, baseline total motor score, TMS, from

the United Huntington’s Disease Rating Scale; and cognitive and functioning

measures); and whole-brain MRI volumetric biomarkers, including 58 subcorti-

cal region of interest (ROI) measures and 68 cortical ROIs.

Figure S3 in the Supplementary Materials shows the heatmaps of the 136

features measured at the baseline and at the last visit for 142 subjects diagnosed

with HD during the study (converters) and 390 subjects who remained free of HD

(nonconverters). The goal is to simultaneously select informative biomarkers, es-

timate their time-dependent effect profiles, and indentifying the combination that

tracks with HD conversion. In Figure S3, no single feature can definitively dis-

http://surfer.nmr.mgh.harvard.edu
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tinguish converters from nonconverters, suggesting that a multi-dimensional ap-

proach that considers all features will outperform univariate analyses. However,

covariation among features is also prevalent; thus, a multi-dimensional approach

needs to account for high dimensionality and covariation patterns through regu-

larization. Most biomarkers and subjects show a smooth trend between the first

and last visits. Appropriately smoothing over time and borrowing information

from nearby measurements is essential to predicting the conversion events, es-

pecially for time points where imaging measurements are sparse. Lastly, several

features show subtle differences in discriminating converters from nonconvert-

ers at the first and last visits, suggesting that their prognostic power may vary

over time (i.e., greater discriminant power when using recent imaging biomarker

measurements).

In the analysis, we applied DB-hazard with an `0-penalty and Laplacian

network regularization to the data. We constructed the imaging biomarkers’

covariation network (He, Chen and Evans (2008)) based on an independent con-

trol group (no expanded repeat length at the huntingtin gene) in PREDICT-HD.

The obtained covariation pattern was introduced in the Laplacian regularization.

For DB-hazard, the estimation follows the same procedure as that described in

Section 2, using all longitudinal imaging measurements over time. We used five-

fold cross-validation to select the bandwidth and tuning parameters. We com-

pared DB-hazard with using baseline data alone (“Baseline”), and with the last

value carried forward (“LVCF”). All features were standardized before fitting

the model. The running time of the proposed DB-hazard with the `0-penalty for

this analysis is 927 seconds.

Table S4 in Supplementary Material summarizes the area under the ROC

curve (AUC), time-dependent sensitivity (SEN), specificity (SPE), positive pre-

dictive value (PPV), and negative predictive value (NPV) at a given time, where

the threshold is obtained by optimizing Youden’s index. The results show that,

overall, DB-hazard outperforms the two alternatives. For example, the AUC of

DB-hazard is the highest of the three methods at all time points. DB-hazard

outperforms LVCF significantly, which may be due to the bias of LVCF. When

compared with using only baseline measurements, DB-hazard performs better,

especially at later years (e.g., year 6), demonstrating the advantages of using

current values of longitudinal biomarkers to update longer-term predictions. In

a recent independent study, Long et al. (2016) compared Harrell’s C-index (i.e.,

AUC) for ten models, including data from four studies on the progression of

HD: PREDICT-HD, TRACK (Tabrizi et al. (2013)), COHORT (Dorsey et al.
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(2012)), and REGISTRY (Handley et al. (2012)). The best model had a median

AUC of 0.87, which is similar to our baseline-only analyses, but lower than using

DB-hazard to incorporate all available longitudinal measures. This comparison

further supports the information from incorporating all available time-dependent

structural MRI biomarkers and clinical assessments. Our analysis is the first to

use longitudinal imaging biomarkers to track HD conversion.

With regard to other measures, the specificity for DB-hazard by year 6 is

0.873, whereas it is only 0.651 and 0.810 for Baseline and LVCF, respectively.

Similarly, the PPV estimated by DB-hazard by year 6 (0.540) is higher than

those of the other two methods (Baseline: 0.278; LVCF: 0.414). The high time-

dependent sensitivity and specificity of the DB-hazard combined HD biomarker

signature suggests that it is a valuable tool for tracking clinically defined disease

onset. The higher PPV at years 4 and 6 demonstrate the valuable information

gain from using longitudinal imaging measures to improve predictions. How-

ever, the moderate magnitude of the PPV implies that additional biomarkers

(e.g., genomic or proteomic biomarkers; Langfelder et al. (2016)) may need to be

identified to further improve the prediction performance.

From 136 features, DB-hazard identified six nonimaging covariates (i.e.,

CAP, total functional capacity (TFC), baseline total motor score (baseline TMS),

symbol digit modality test (SDMT), Stroop color naming total, and Stroop word

reading total), and six imaging biomarkers (i.e., left Caudate, left and right Puta-

men, left Pallidum, left Accumbens, left lateral occipital volume) as informative

for predicting time-to-onset of HD, including five subcortical measures and one

cortical measure (left lateral occipital volume). Figure S4 in the Supplementary

Material shows the heatmaps of the selected features, where they are seen to

better distinguish converters from nonconverts than the nonselected noise fea-

tures in Figure S3 do. In addition, through the use of network regularization,

redundancy among the features was removed, with 12 features achieves a high

AUC. The discriminant power of some features changes between the first and last

visits changes at the first and last visit (e.g., TFC). It is interesting that a greater

number of subcortical ROIs were selected and only one cortical ROI was selected

when both were included in DB-hazard as candidates. This result is consistent

with clinical research suggesting that regional atrophy of subcortical grey matter

is an important biological feature of HD progression (Ross et al. (2014)). All sub-

cortical ROIs identified have been ranked as top candidate biomarkers in existing

clinical research (Paulsen et al. (2014a)); however, the cortical measure has not

been reported previously. In Figure S5, we present the effects of top-ranked mea-
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sures, estimated by DB-hazard, and the corresponding 95% confidence intervals,

obtained by bootstrapping 100 times. The baseline TMS has the strongest effect

and a similar shape to that of the baseline CAP. The effects of TMS, TFC, and

SDMT increase in the first two years, with the largest effect recorded between

years 2 and 3. Two imaging biomarkers, left Caudate and left Putamen, show a

similar effect size to that of the baseline CAP, TFC, and SDMT. The measure

with the largest effect is the baseline TMS.

7. Discussion

We have proposed methods for fitting a time-varying hazards model using

sparsely measured time-dependent covariates. In contrast to existing methods

(e.g., Paulsen et al. (2014b); Long et al. (2016)), we use all longitudinal mea-

sures (both imaging biomarkers and clinical measures at follow-ups) to perform

analyses, which was not possible previously owing to imbalanced assessments of

imaging measures. Our simulation studies show that smoothing over longitudinal

measurements across subjects improves performance over that of the commonly

used LVCF and baseline-only analysis. In addition, the proposed DB-hazard with

`0-penalty, solved using a two-step procedure, substantially outperforms meth-

ods without the hard-thresholding or when using the group LASSO alone, in

terms of both estimation and selection accuracy. We prove the theoretical oracle

property under local kernel smoothing, which has not been investigated in the

literature previously. We also demonstrate substantial improvement compared

with current standards by applying our method to data from a real-world study

(PREDICT-HD).

Here, we assume a constant network structure in equation (4.1). It would be

interesting and challenging to explore a time-varying network L∗n(t). One method

of doing so would be to incorporate a time-varying Gaussian graphical model

(Zhou, Lafferty and Wasserman (2010); Razavian et al. (2010)), where the time-

varying network L̂n
∗
(t) can be obtained from L̂n

∗
(t)−1 = arg maxΘ log |Θ(t)| −

tr(R(t)Θ(t))− ρ‖Θ(t)‖1, where R(t) is the weighted correlation matrix and can

be calculated from the weighted covariance matrix

R′(t) =

∑n
i=1

∑ni

v=1Khn
(tiv − t)Xi(tiv)Xi(tiv)

T∑n
i=1

∑ni

v=1Khn
(tiv − t)

.

Another extension would be to study the effect of a time-varying network on

the disease outcome, and to distinguish between the effects of the longitudinal
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measurements and those of their time-varying network.

Lastly, we focus on time-to-event data. However, the proposed approach

can be extended easily to other types of outcomes. For example, we cold would

replace the log-partial likelihood function with the least squares loss function for a

continuous outcome, or with an appropriate likelihood for generalized outcomes.

Supplementary Material

The online Supplementary Material includes proofs of Lemma 1 and Theorem

1, and additional information related to the simulation and real-data analysis.
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