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Abstract: Dimension reduction provides a useful tool for analyzing high-dimensional

data. The recently developed envelope method is a parsimonious version of the

classical multivariate regression model that identifies a minimal reducing subspace

of the responses. However, existing envelope methods assume an independent error

structure in the model. While the assumption of independence is convenient, it

does not address the additional complications associated with spatial or temporal

correlations in the data. Therefore, we propose a Spatial Envelope method for

dimension reduction in the presence of dependencies across space. We study the

asymptotic properties of the proposed estimators and show that the asymptotic

variance of the estimated regression coefficients under the spatial envelope model is

smaller than that of the traditional maximum likelihood estimation. Furthermore,

we present a computationally efficient approach for inferences. The efficacy of

the proposed method is investigated through simulation studies and an analysis of

an Air Quality Standard data set provided by the US Environmental Protection

Agency.

Key words and phrases: Dimension reduction, grassmanian manifold, matern co-

variance function, spatial dependency.

1. Introduction

In many research areas, including health science (Lave and Seskin (1973);

Liang, Zeger and Qaqish (1992)), the environmental sciences (Guinness et al.

(2014)), and business (Cooper, Schindler and Sun (2003)), it is common to

observe multiple outcomes simultaneously. The traditional multivariate linear

model has proved useful in such cases in terms of understanding the relation-

ships between response variables and predictors. Mathematically, the model is

typically presented as:

Y = α + βX + ε, (1.1)
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where Y ∈ Rr is the response vector, X ∈ Rp is a predictor vector, α ∈ Rr

is a vector of intercepts, β ∈ R(r×p) is a matrix of regression coefficients, and

ε ∼ Nr(0,Σ) is an error vector, with Σ ≥ 0 indicating an unknown covariance

matrix (Christensen (2001)). In order to completely specify a multivariate linear

model, there are r unknown intercepts, p×r unknown parameters for the matrix

of regression coefficients, and r(r+1)/2 unknown parameters needed to specify an

unstructured covariance matrix. Therefore, one must estimate r+pr+r(r+1)/2

parameters, which becomes large as one or both of r or p increase.

Based on the observation that, in some cases, linear combinations of Y may

not depend on any of the predictors, Cook, Li and Chiaromonte (2010) proposed

the envelope method as a parsimonious version of the classical multivariate lin-

ear model. This approach separates Y into material and immaterial parts, which

improves the estimation efficiency over that of the usual maximum likelihood es-

timation. The envelope approach constructs a link between the mean function

and the covariance matrix using a minimal reducing subspace, such that the re-

sulting number of parameters is maximally reduced. Cook, Li and Chiaromonte

(2010) showed that the envelope estimator is at least as efficient as the standard

maximum likelihood estimator (MLE). In related works, the concept of an enve-

lope has been developed further from both theoretical and computational points

of view. Such works include, but not restricted to, those of Su and Cook (2011,

2012, 2013), Cook and Zhang (2015), and Cook, Forzani and Su (2016). Fur-

thermore, Li and Zhang (2017) and Zhang and Li (2017) extended the envelope

model to tensor responses and tensor coviariates, respectively.

The envelope methodology proposed by Cook, Li and Chiaromonte (2010)

assumes observations are taken under identical conditions, where independence

is assured. While models based on the independence assumption are extremely

useful, their use is limited in applications in which the data have inherent depen-

dency (Cressie (1993)). For example, in environment monitoring, each station

collects data on several pollutants, such as ozone, carbon monoxide, and ni-

trogen dioxide. These data have a special type of dependency, called spatial

correlation. Myers (1991) and Ver Hoef and Barry (1998) used a pseudo cross-

variogram to model the multivariate spatial cross-correlation. In addition, Chiles

and Delfiner (1999) and Wackernagel (2003) introduced several multivariate co-

variograms and cross-variograms that result in a nonnegative definite covariance

matrix (also called a valid spatial covariance function). Linear coregionalization

model (LCM) is popular in multivariate spatial data analyses. An LCM assumes

that the observed variables are linear combinations of sets of independent under-
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lying variables, and that they covary jointly over a region. Various methods have

been proposed for fitting LCM including the least squares approach (Goulard and

Voltz (1992)) and the expectation-maximization (EM) algorithm (Zhang (2007)),

among others. Gneiting, Kleiber and Schlather (2010) introduced a flexible and

interpretable Matern cross-covariance function for multivariate spatial random

fields. Genton and Kleiber (2015) provide a comprehensive review on the ap-

proaches commonly used to build a valid spatial cross-covariance model. In this

paper, we introduce a spatial envelope approach for spatially correlated data.

This new approach addresses the impact of spatial correlation between obser-

vations in the model and, thus, provides more efficient estimators than those

of the traditional multivariate linear model and linear coregionalization model.

Accounting for the intrinsic spatial correlation facilitates appropriate inferences

on the aforementioned data.

The rest of the paper is organized as follows. In Section 2, we briefly review

the envelope methodology. The spatial envelope method is discussed in Section 3.

Sections 4 and 5 provide the asymptotic variance and the prediction properties,

respectively, of the proposed method. Sections 6 and 7 present a simulation

study and an analysis of northeastern US air pollution data, respectively. We

conclude the paper in Section 8. All technical details are provided in the online

Supplementary Material.

2. Envelope Methodology

For model (1.1), suppose that we can find an orthogonal matrix (Γ1,Γ0) ∈
Rr×r that satisfies the following two conditions: (i) span(β) ⊆ span(Γ1), and (ii)

ΓT1 Y is conditionally independent of ΓT0 Y, given X. That is, ΓT0 Y is marginally

independent of X and conditionally independent of X, given ΓT1 Y. Then, we

can rewrite Σ as

Σ = PΓ1
ΣPΓ1

+ QΓ1
ΣQΓ1

, (2.1)

where P(·) represents an orthogonal projection operator with respect to the stan-

dard inner product, and Q(·) = Ir − P(·) is the projection onto its complement

space. Cook, Li and Chiaromonte (2010) used this idea to construct the unique

smallest subspace span(Γ1) that satisfies (2.1) and contains span(β). In sum-

mary, the goal is to find a subspace span(Γ1) ⊆ Rr, such that

QΓ1
Y|X ∼ QΓ1

Y, (2.2a)

QΓ1
Y PΓ1

Y|X. (2.2b)
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where denotes statistical independence. This minimal subspace is called the

Σ-envelope of span(β) or, simply, the envelope. Here, PΓ1
Y and QΓ1

Y are

referred to as the material and immaterial parts of Y, respectively, where u ≤ r
is the dimension of the envelope subspace.

Following the envelope idea, model (1.1) can be rewritten as

Y = α + Γ1ηX + ε, (2.3)

where β = Γ1η, η ∈ Ru×p. In addition, Σ = Σ0+Σ1, such that Σ0 = QΓ1
ΣQT

Γ1

is the variance of the immaterial part of the response, and Σ1 = PΓ1
ΣPT

Γ1
is

the variance of the material part of the response. Cook, Li and Chiaromonte

(2010) showed that Σ = Γ1Ω1Γ
T
1 +Γ0Ω0Γ

T
0 , where Ω1 = var(ΓT1 Y) ∈ Ru×u and

Ω0 = var(ΓT0 Y) ∈ R(r−u)×(r−u) are unknown positive definite matrices, with

0 < u ≤ r. Here, we need only estimate r + pu + r(r + 1)/2 parameters. The

difference in the number of parameters between the envelope and the classical

multivariate regression is p(r − u). For further information, see Cook, Li and

Chiaromonte (2010), and the references therein.

3. Spatial Envelope Method

In this section, we first review the spatial multivariate model. Then, we

derive the likelihood function of the spatial envelope model and show the com-

putational steps for the parameter estimation. Let Y (si) = (y1(si), . . . , yr(si))
T

be an r-variate stochastic spatial response vector, with p regressors X(si) =

(x1(si), . . . , xp(si))
T observed at locations s = {s1, s2, . . . , sn; si ∈ R2; i = 1, 2, . . . , n}.

The multivariate spatial regression model can be written as

Y (si) = α + βX(si) + ε(si), (3.1)

where Y (s) denotes the r × 1 response vector at location si, for i = 1, . . . , n,

and X(s) is a p× 1 vector of fixed and nonstochastic covariates. Furthermore, α

denotes an r×1 vector of intercepts, β is an r×p matrix of regression coefficients,

and ε is a multivariate spatial process with mean zero. We assume that the data-

generating process is second-order stationary, and that the covariance of the

response vectors Y (si) and Y (sj) at sites si and sj is a function of the distance

between the two sites. That is, the covariance can be written as

Cov(Y (si), Y (sj)) = Cij(h), h = ||si − sj ||, (3.2)
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where || · || denotes the Euclidean distance. The function C(h) = {Cij(h)} is

the multivariate covariogram, and Cij(·) is the direct covariogram for i = j and

the cross-covariogram for i 6= j. By adopting the proportional correlation model

(Chiles and Delfiner (1999)), the spatial covariance function can be written as

Cij(h) = Vρij(h), (3.3)

where V is an r × r positive-definite matrix, and ρij(h) is the spatial correla-

tion between sites si and sj (Wackernagel (2003)). Estimating the correlation

function solely from the data, without any structural assumptions, is difficult and

sometimes infeasible. Usually, it is assumed that the form of the correlation func-

tion is a known function, but with unknown parameters θ that control the range,

smoothness, and other characteristics of the correlation function. Thus, instead

of ρ(h), we use ρ(h,θ) to represent the unknown parameters θ in the correlation

function. For simplicity of notation, ρ(h,θ) is denoted by ρ(θ) throughout the

rest of the paper.

The matrix form of model (3.1) is

Y(s) = αT ⊗ 1n + X(s)βT + ε(s), (3.4)

where Y(s) = (Y T (s1), . . . , Y
T (sn))′ is an n× r response matrix, and X(s) is an

n × p matrix of covariates. Furthermore, ⊗ denotes the Kronecker product and

1n is an n × 1 column vector with one at each entry. From the envelope idea,

V can be written as V0 + V1, where V0 = QΓ1
VQΓ1

denotes the covariance

matrix associated with the immaterial part of the response, and V1 = PΓ1
VPΓ1

denotes the covariance matrix associated with the material part, where Γ1 is

the semi-orthogonal basis of span(V1). Hence, the spatial covariance matrix of

Cij(h) can be written as follows:

Cij(h) = Vρij(θ) = (V0 + V1)ρij(θ). (3.5)

Let 0 < u ≤ r denote the structural dimension of the envelope. Here, u can

be selected using a modified information criterion, such as the modified BIC (Li

and Zhang (2017)), model-free dimension selection, such as the full Grassmanian

(FG; Zhang and Mai (2017)), and the 1-D algorithm (Cook and Zhang (2016)), or

cross-validation. For further information, see Zhang and Mai (2017) and Zhang,

Wang and Wu (2018) and the references therein.

To illustrate the estimation, we use a vec operator on the response matrix.



1588 REKABDARKOLAEE ET AL.

That is, let Y(s) = vec(Y(s)) be an nr × 1 vector for the vectorized response

variable, and let X(s) = Ir ⊗ X(s) be an nr × pr block diagonal matrix, with

Xi(s) as blocks. Thus, the vectorized version of the multivariate spatial linear

model can be written as

Y(s) = α⊗ 1n + X(s)β∗ + ε∗(s), (3.6)

where α is an r × 1 vector of intercepts, β∗ = vec(βT ) is a pr × 1 vector of

regression coefficients, and ε∗(s) is an nr × 1 vector of spatial errors with mean

zero. Using the proportional covariance model and the vectorization of the re-

sponse matrix, the nr× nr covariance matrix of the response variables, ΣY, can

be written as V⊗ ρ(θ).

The likelihood function of model (3.6) is

L(α,β∗,V,θ) = [det(V⊗ ρ(θ))]−1/2

× exp
{
−1

2
(Y(s)−α⊗ 1n−X(s)β∗)T (V⊗ρ(θ))−1(Y(s)−α⊗ 1n−X(s)β∗)

}
,

(3.7)

where det(·) denotes the determinant of the matrix. Suppose the response vector

can be decomposed into material and immaterial parts, Y1 = (Ir⊗PΓ1
)Y(s) and

Y0 = (Ir⊗QΓ1
)Y(s), respectively. From (3.5), the covariance matrix of Y(s) can

be written as follows:

ΣY = V⊗ ρ(θ)

= V0 ⊗ ρ(θ) + V1 ⊗ ρ(θ).
(3.8)

Combining (3.7) and (3.8), we have

Lu(α,β∗,V0,V1,θ) = Lu1(α,β∗,V1,θ)× Lu2(α,V0,θ), (3.9)

with

Lu1(α,β∗,V1,θ) = [det0(V1)]
−n/2[det(ρ(θ))]−r/2

× exp
{
−1

2
(Y(s)−α⊗1n−X(s)β∗)T

(
V†1⊗ρ

−1(θ)
)

(Y(s)−α⊗1n−X(s)β∗)

}
,

Lu2(α,V0,θ) = [det0(V0)]
−n/2[det(ρ(θ))]−r/2

× exp
{
−1

2
(Y(s)−α⊗ 1n)T

(
V†0 ⊗ ρ−1(θ)

)
(Y(s)−α⊗ 1n)

}
,

(3.10)
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where † denotes the Moore –Penrose inverse, and det0(A) denotes the product

of the nonzero eigenvalues of a nonzero symmetric matrix A. The likelihood

in equation (3.7) can be factorized as equation (3.9), from span(β) ⊆ span(V1)

and (V†0⊗ρ−1(θ))Xβ∗ = 0. This factorization is described in the Supplementary

Material, Section S2.

The objective is to maximize the likelihood in (3.9) over β∗,V0,V1, and θ,

subject to the following constraints:

span(β) ⊆ span(V1),

V0V1 = 0.
(3.11)

Thus, the multivariate spatial model in (3.6) can be written as

Y(s) = α⊗ 1n + X(s)vec(ηTΓT1 ) + ε∗(s),

Σ =
(
Γ1Ω1Γ

T
1 + Γ0Ω0Γ

T
0

)
⊗ ρ(θ),

(3.12)

where Γ1 denotes the semi-orthogonal basis for span(V1), Γ0 denotes the semi-

orthogonal basis for the orthogonal complement space of span(V1), Ω1 denotes

the covariance of the material part of the response, Ω2 denotes the covariance

of the immaterial part of the response, and η ∈ Ru×r is chosen such that β∗ =

vec(ηTΓT1 ).

As mentioned by Cook, Li and Chiaromonte (2010), the gradient-based algo-

rithms for Grassmann optimization (Edelman, Arias and Smith (1998)) require

a coordinate version of the objective function, which must have continuous di-

rectional derivatives. The optimization depends on minimizing the logarithm of

D over the Grassmann manifold Gr×u, where

D = det(PV1
Σ̂resPV1

+ QV1
Σ̂YQV1

),

and D is the partially maximized likelihood function. The derivation of D is dis-

cussed in the Supplementary Material, Section S3. Let Γ̂1 be the semi-orthogonal

basis for span(V1), and let Γ̂0 be the semi-orthogonal basis for span(V0). Then,

η̂ = Γ̂T1 β̂, Ω̂1 = Γ̂T1 Σ̂resΓ̂1, and Ω̂0 = Γ̂T0 Σ̂YΓ̂0, where Σ̂Y and Σ̂res are the

marginal covariance matrix of Y and the residual covariance matrix, respectively.

Let log det(·) denote the composite function log ◦det(·). Then, the coordinate

form of the log D is as follows:
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log D = log det
(
ΓT1

(
HT ρ̂−1(θ)H−HT ρ̂−1(θ)G

(
GT ρ̂−1(θ)G

)−1
GT ρ̂−1(θ)H

)
Γ1 + ΓT0 (HT ρ̂−1(θ)H)Γ0

)
,

(3.13)

where H = Y− Ȳ⊗ 1n, and G = X− X̄⊗ 1n.

In order to obtain the parameters of the spatial envelope model, the objec-

tive function in (3.13) can be minimized using the gradient-based Grassmann

optimization. To do this, first obtain initial values for Σ̂0
Y, Σ̂0

res, and β̂MLE , the

marginal covariance matrix of Y, the residual covariance matrix, and the maxi-

mum likelihood estimate for β from the fit of the full model given in (3.6). Set

Θ1 = Θ0, where Θ = {θ,V0,V1}. Here, V0 and V1 can be obtained using the

traditional envelope model, and θ can be obtained using the linear coregionaliza-

tion model. Then, we estimate PVm
1

by minimizing the objective function (3.13)

over the Grassmann manifold G(r×u), and estimate PVm
0

by P̂Vm
0

= I− P̂Vm
1

. In

order to update the covariance function of the material and immaterial parts of

the spatial envelope, fix θm and estimate Vm
0 and Vm

1 by V̂m
0 = P̂Vm

0
Σ̂m

YP̂Vm
0

and V̂m
1 = P̂Vm

1
Σ̂m

resP̂Vm
1

, respectively. Then, fix Vm
0 and Vm

1 and maximize

L(u)(α,β,Vm
0 ,V

m
1 ,θ

m) over θ by solving the following minimization problem

using a numerical algorithm, such as the Newton –Raphson method:

θ̂m = argmin
θ

{
r det(ρ(θ))

+
1

2
tr

((
Q(ρ−1/2(θ)G)ρ

−1/2(θ)H

)
Vm†

1

(
Q(ρ−1/2(θ)G)ρ(θ)−1/2H

)T
+ ρ−1/2(θ)HVm†

0 HTρ−1/2(θ)

)}
.

(3.14)

Now, update Σ̂m
Y and Σ̂m

res using the new estimates for V0,V1, and θ. Then,

check the convergence. If ||Θm+1−Θm|| < δ, where δ is a prespecified tolerance

level, then stop the iteration, output the final spatial envelope estimators, and

estimate β by β̂ = P̂V1
β̂MLE ; otherwise, set m := m+1 and redo the procedure.

Finally, estimate the intercept by α̂ = Ȳ− X̄β̂T . When the problem reduces to

a standard envelope estimation problem, the fast algorithm for the envelope can

be applied, such as that of Cook, Forzani and Su (2016).
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4. Theoretical Properties

In what follows, we study the asymptotic properties of the spatial envelope

parameter estimates. The regression coefficients can be written as β = Γ1η.

Furthermore, V0 = Γ0Ω0Γ
T
0 and V1 = Γ1Ω1Γ

T
1 are the covariances of the

immaterial part and the material part of the regression, respectively. Therefore,

aside from the intercept, the parameters of the spatial envelope model in equation

(3.6) can be combined into a vector, as follows:

φ =


vec(η)

vec(Γ1)

vech(Ω1)

vech(Ω0)

 ≡

φ1
φ2
φ3
φ4

 , (4.1)

where vec(·) denotes a vector operator, and vech(·) denotes a vector half operator.

For background on these operators, see Seber (2008). Here, we focus on the

following parameters under the spatial envelope model:

ψ(φ) =

[
vec(β∗)

vech(V)

]
=

[
vec(ηTΓT1 )

vech
(
(Γ1Ω1Γ

T
1 + Γ0Ω0Γ

T
0 )
)] ≡ [ψ1(φ)

ψ2(φ)

]
. (4.2)

Let

Ψ =

[
∂ψ1

∂φT
1
. . . ∂ψ1

∂φT
4

∂ψ2

∂φT
1
. . . ∂ψ2

∂φT
4

]
(4.3)

denote the gradient matrix. Using this matrix and following Cook, Li and

Chiaromonte (2010), we present the following asymptotic properties of the pro-

posed estimators.

Lemma 1. Suppose X̄ = 0. Then, the Fisher information, J, for ψ(φ) in model

(3.6) is as follows:

J =

[
1
nX

T
(
V−1 ⊗ ρ−1(θ)

)
X 0

0 1
2E

T
r

(
V−1 ⊗V−1

)
Er

]

=

[
V−1 ⊗

(
XTρ−1(θ)X

n

)
0

0 1
2E

T
r

(
V−1 ⊗V−1

)
Er

]
,

(4.4)

where Er ∈ Rr
2×r(r+1)/2 is an expansion matrix, such that, for a matrix A,

vec(A) = Ervech(A), and diag(A) is a matrix of the diagonal elements of A.

The derivation of J is provided in the Supplementary Material, Section S4.
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Theorem 1. Suppose X̄ = 0 and J is the Fisher information defined in Lemma

1. Let Λ = J−1 be the asymptotic variance of the MLE under the full model.

Then, √
n(φ̂− φ)→ N(0,Λ0), (4.5)

where Λ0 = Ψ(ΨTΛΨ)†Ψ. Furthermore, Λ−1/2(Λ−Λ0)Λ
−1/2 ≥ 0, which means

the asymptotic variance of the parameter estimation under the spatial envelope

model is smaller than the estimate under the MLE. The proof for this theorem

can be found in the Supplementary Material, Section S5.

Corollary 1. The asymptotic variance (avar) of
√
nβ∗ can be written as

avar(
√
nβ∗)

= Krp

{(
XTρ(θ)−1X

n

)−1
⊗ Γ1Ω1Γ

T
1 + (ηT ⊗ Γ0)(Ψ

T
2 JΨ2)

†(η ⊗ ΓT0 )

}
KT
rp,

(4.6)

where Ψ2 = (∂ψ1/∂φ
T
2 , ∂ψ2/∂φ

T
2 )T , and Krp ∈ Rrp×rp is a unique matrix such

that for a matrix A, vec(AT ) = Krpvec(A); that is, Krp transforms the vec of a

matrix into the vec of its transpose. The proof is available in the Supplementary

Material, Section S6.

To gain further insight into the structure of the spatial envelope, we present

a simplified version of the asymptotic variance of β∗ for cases with one covariate,

Ω1 = σ21Iu and Ω0 = σ20Ir−u. Then, the asymptotic variance of β∗ can be shown

to be

avar(
√
nβ∗) =

nσ21
XTρ−1(θ)X

Γ1Γ
T
1 +

nσ20σ
2
1||β||2

XTρ−1(θ)Xσ21||β||2 + n(σ20 − σ21)2
Γ0Γ

T
0 .

(4.7)

For this simplified version, it can be shown that

V
−1/2
SPENVENV

−1/2
SPEN

XTρ−1(θ)X/nσ2X
= Ir +

(
(σ20 − σ21)2

(
nσ2X/(X

Tρ−1(θ)X)− 1
)

(σ20 − σ21)2 + σ21σ
2
X||β||2

)
Γ0Γ

T
0 ,

(4.8)

where VSPEN is the asymptotic variance of the spatial envelope model, VEN is

the asymptotic variance of the envelope model, and σ2X denotes the variance of

X, which is an n × 1 vector. The proof for equation (4.8) can be found in the

Supplementary Material, Section S7. This results indicates that when spatial
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correlation does not exist, that is, ρ(θ) = I, the two models have equal asymp-

totic variance. On the other hand, for cases in which spatial correlation exists,

drawing an analytical conclusion that can be used to compare the asymptotic

variances of the two models is very difficult. In this case, the comparison can

performed numerically.

5. Prediction

Prediction at an unsampled location is often a major objective of a spatial

analysis. Let Ynew be the vec(Ynew) of the new multivariate response and Xnew
be the predictor vector at an unsampled location. Then, the model can be written

as follows:(
Ynew
Y

)
=

(
α⊗ 1nnew

+ Xnewβ∗

α⊗ 1n + Xβ∗

)
+

(
εnew
ε

)
∼N

(
α⊗ 1N +

(
Xnew
X

)
β∗,Σ

)
,

(5.1)

where N = n+ nnew and Σ is given as follows:

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
=

(
(V0 + V1)⊗ ρnew,new(θ) (V0 + V1)⊗ ρnew,Y(θ)

(V0 + V1)⊗ ρY,new(θ) (V0 + V1)⊗ ρY,Y(θ)

)
.

(5.2)

The conditional distribution Ynew|Y is

Ynew|Y,α,η,V0,V1,θ ∼ N
(
µ1 + Σ12Σ

−1
22 (Y− µ2),Σ11 −Σ12Σ

−1
22 Σ21

)
,

(5.3)

where µ1 = α ⊗ 1nnew
+ Xnewβ∗ and µ2 = α ⊗ 1n + Xβ∗. Using the method

described in Section 3, we can estimate the parameters of the model, and then

estimate E(Ynew|Y) from the conditional distribution in (5.3).

6. Simulation

In this section, we carry out a simulation study to evaluate the finite-sample

performance of the proposed spatial envelope model. Then, we compare the result

with the performance of the traditional multivariate linear regression (MLR),

LCM (Zhang (2007)), and envelope model (Cook, Li and Chiaromonte (2010)).

The data {(X1,Y1), . . . , (Xn,Yn)} are generated from the model

Y = Xβ + ε, (6.1)

where Yi ∈ R5, Xi ∈ R6, and the structural dimension u = 2. The matrix
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(Γ1; Γ0) is obtained by orthogonalizing a 5 × 5 matrix generated from uniform

(0, 1) variables. The elements of η follow a standard normal distribution, and

β = Γ1η. We generate ΣY =
(
Γ1Ω1Γ

T
1 + 5Γ0Ω0Γ

T
0

)
⊗ ρ(θ), where Ω1 =

[{(−0.9)|i−j|} and Ω0 = {(−0.5)|i−j|}. For the spatial correlation function ρ(θ),

we use the following Matern covariance function:

ρ(h;θ) =
σ2m

2θ2−1Γ(θ2)

(
||h||
θ1

)θ1
κθ2

(
||h||
θ1

)
,

where θ = (θ1, θ2), θ1 > 0 is the range parameter, θ2 is the smoothness param-

eter, Γ(·) is the Gamma function, and κθ2 is the modified Bessel function of the

second kind of order θ2 (Abramowitz and Stegun (1964)). We assume ε follows

a normal distribution with mean zero and covariance Σ. Three cases for the

covariance ΣY are investigated. First, Σ =
(
Γ1Ω1Γ

T
1 + 5Γ0Ω0Γ

T
0

)
, which serves

as a benchmark in which the errors are independent of each other. For the sec-

ond scenario, let ρ(θ) be a Matern covariance function with σm = 3, θ1 = 1, and

θ2 = 0.5. This case represents spatial correlation in the data with a short range

of dependency. Finally, let ρ(θ) be a Matern covariance function with σm = 3,

θ1 = 5, and θ2 = 0.5. This case represents spatial correlation in the data with a

long range of dependency.

The sample sizes are 100, 225, and 400. There are two ways in which to

generate these samples. The first is based on 10 × 10, 15 × 15, and 20 × 20,

respectively, evenly spaced grids on [0, 1]2. The second is to randomly choose

100, 225, and 400 locations from a 101×101 grid on [0, 1]2. We use both sampling

procedures to check whether the spatial distribution of the observations has any

impact on the proposed estimation. All results reported here are based on 200

replications from the simulation model in each scenario. In order to compare the

estimators, we use the Leave-One-Out Cross-Validation (LOCV) method, which

provides a convenient approximation for the prediction error under a squared-

error loss:

LOCV =
1

n

n∑
i=1

(Ŷ
(−i)

(si)−Y(si,obs))
T (Ŷ

(−i)
(si)−Y(si,obs)), (6.2)

where Y(si,obs) is the observed value for the response in location si, and Ŷ
(−i)

(si)

contains the predicted values of Y(si), computed after removing the ith row of the

data. The Matlab package Envlp was used for all our simulation studies(Cook,

Su and Yang (2014)). Tables 1 and 2 summarize the results of these simula-
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Table 1. Prediction accuracy comparison based on the mean (standard deviation) of
leave-one-out cross-validation (LOCV) for all 200 data sets from equally spaced samples.
A smaller LOCV shows better performance.

ε n MLR LCM Envelope Spatial Envelope

1 100 19.02 ( 1.537) 20.01 (1.754) 13.71 ( 1.547) 14.28 (1.644)

225 18.49 ( 1.153) 19.75 (1.659) 11.49 ( 1.124) 12.51 (1.234)

400 18.27 ( 0.828) 19.02 (1.002) 10.37 ( 0.812) 10.87 (0.989)

2 100 102.79 (35.570) 22.54 (3.246) 91.98 (36.379) 20.21 (1.988)

225 101.57 (32.495) 20.46 (2.897) 89.24 (33.083) 18.34 (1.450)

400 99.98 (32.185) 18.89 (2.051) 88.95 (31.855) 17.68 (1.056)

3 100 117.79 (48.834) 24.19 (4.125) 119.08 (47.852) 21.36 (2.353)

225 103.22 (39.065) 21.78 (3.278) 104.73 (39.023) 20.76 (2.012)

400 99.08 (37.718) 19.45 (3.001) 100.39 (36.896) 18.10 (1.651)

Table 2. Prediction accuracy comparison based on the mean (standard deviation) of
leave-one-out cross-validation (LOCV) for all 200 data sets from random location sam-
ples. A smaller LOCV shows better performance.

ε n MLR LCM Envelope Spatial Envelope

1 100 20.12 ( 1.613) 21.01 (1.863) 14.32 ( 1.699) 14.98 (1.722)

225 19.34 ( 1.231) 19.68 (1.542) 13.12 ( 1.234) 13.19 (1.201)

400 17.83 ( 0.804) 18.22 (1.101) 11.73 ( 0.718) 12.37 (0.819)

2 100 104.02 (36.702) 23.32 (4.111) 93.02 (30.433) 19.21 (2.004)

225 102.41 (34.521) 21.41 (3.758) 91.34 (27.211) 17.34 (1.352)

400 100.39 (30.822) 19.20 (3.201) 89.21 (25.581) 16.68 (1.110)

3 100 116.34 (45.089) 25.21 (4.821) 97.01 (43.021) 20.79 (2.115)

225 108.15 (34.211) 22.35 (3.555) 95.52 (31.774) 18.92 (1.944)

400 101.54 (32.102) 20.44 (2.998) 90.94 (30.234) 17.03 (1.234)

tions. These tables provide the LOCV for different methods and different error

distributions.

From the summary of all three error distributions, for the standard normal

errors, where the observations are independent of each other, the spatial en-

velope provides comparable results to those of the envelope method, and both

outperforms the MLR and LCM. In error distributions 2 and 3, where spatial

dependency exists in the data, the spatial envelope method performs almost as

well as it did in those cases without spatial dependency. In contrast, the original

envelope method loses its efficiency. In addition, the spatial envelope outperforms
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the LCM in both the independent and the dependent cases. Because the spatial

envelope takes into account the spatial correlations between observations, its re-

sults are more accurate than those of the original envelope model. Furthermore,

the spatial envelope uses only the material part of the data. As a result, the re-

sults are more efficient than those of the LCM, which uses both the material and

the immaterial parts of the data. Therefore, we conclude that the proposed spa-

tial envelope model provides consistent estimates with good prediction accuracy

in all error distributions considered. This result is consistent for both sampling

methods, which indicates that the spatial distribution of the observations has a

minimal impact on the estimation.

As in Cook, Li and Chiaromonte (2010), it is possible for an objective func-

tion defined on Grassmann manifolds to have multiple local optimal points. One

way to check this is to run the simulation with different starting values, and then

to compare the results. In our numerical experiments, we did not find the local

optima to be problematic for our method.

In order to investigate the accuracy of the asymptotic variance of avar(
√
nβ∗),

presented in (4.7), we used the following simulation. The purpose of this simula-

tion is to show that the variation of the spatial envelope estimator approaches its

asymptotic variance derived in (4.7) when the sample size increases. The data

are generated following model (6.1), with five responses and one covariate; that

is, Yi ∈ R5, Xi ∈ R, and the structural dimension is u = 1. In addition, we

let Ω1 = 5Iu, Ω0 = I5−u, and η = 1. The sample size n is 100, 225, 400, and

900, randomly chosen from a 101× 101 grid on [0, 1]2. For each sample size, 100

replications are performed to compute the estimation variance for the elements

in β̂. For the spatial correlation, we used the Matern covariance function with

sigmam = 3, θ1 = 2, and θ2 = 0.5.

Figure 1 shows the simulation results of the asymptotic variance for a ran-

domly selected element of β̂. The left panel of Figure 1 shows the asymptotic

variance for the independent case, and the right panel shows the same results

for the spatially correlated data for the envelope and the spatial envelope. The

blue line shows the estimated standard deviation of the envelope estimator, and

the black line denotes the estimated standard deviation of the spatial envelope

estimator. Thus, for the standard normal errors, where the observations are in-

dependent of each other, the variances of the spatial envelope and the envelope

method are very similar. On the other hand, when spatial dependency exists in

the data, the spatial envelope method outperforms the envelope method.
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Figure 1. Simulation results of the asymptotic variance for a randomly selected element
of β̂ for the envelope and the spatial envelope for the independent case (left panel),
and for spatially correlated data (right panel). The blue solid line shows the estimated
standard deviation of the envelope estimator, and the black dashed line denotes the
estimated standard deviation of the spatial envelope estimator.

7. Application

In this section, we apply the proposed methodology to air pollution data

for the northeastern United States. Note that the main purpose of this data

analysis is to determine the proposed approach can be used to find the reduced

response space in a multivariate spatial data analysis. The data employed here

have garnered attention from both statisticians and scientists in other areas.

For example, researchers have used the data to examine climate change (Phelan

et al. (2016)), health science (Kioumourtzoglou et al. (2016)), and air quality

(Battye et al. (2016)). These studies showed that relationships exist between air

pollution and meteorological factors, such as wind, temperature, and humidity.

Most existing studies focus on one of these pollutants. However, because the

pollutants are correlated, it is worth studying them simultaneously.

The data on pollutants and weather include the average levels of the following

variables in January 2015. We choose a group of ambient air pollutants monitored

by the EPA, because these present a high threat to human health. Specifically, we

have eight response variables: ground level ozone, sulfur dioxide (SO2), carbon

monoxide (CO), nitrogen dioxide (NO2), nitrogen monoxide (NO), lead, PM 2.5,

and PM 10. PM 10 includes particles less than or equal to 10 micrometers in di-

ameter. Similarly, PM 2.5 includes particles less than or equal to 2.5 micrometers,
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Figure 2. Left: Study area in the United States. States of interest are shaded in red.
Right: Location of sites in the study area. Note that there are more sites in places with
larger populations.

also called fine particle pollution. These data also include the following meteoro-

logical variables as predictors: wind, temperature, and relative humidity. Along

with this information, the latitude and longitude of each monitoring location are

used to model the spatial structure in the data. Our study area consists of nine

states in the northeast of the United States: Connecticut, Maine, Massachusetts,

New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Ver-

mont. This data set is available at http://aqsdr1.epa.gov/aqsweb/aqstmp/

airdata/download_files.html#Daily. Figure 2 shows the study area and the

location of 270 air monitoring sites.

The preliminary analysis using Moran’s I and plots of the empirical vari-

ogram determined that spatial correlation does exist in these data. The results

of the preliminary analysis can be found in the Supplementary Material, Section

S8. Cross-validation shows that the best choice for the structural dimension is

three. The Matern’s covariance parameters, θ1 and θ2, are estimated to be 0.51

and 0.91, respectively, indicating the existence of spatial dependency in the data.

The corresponding direction estimates (Γ̂1) from the spatial envelope are given

in Table 3. Note that Γ̂1 is not unique, and can be any orthonormal basis of

the envelope subspace. The estimated regression coefficients and their standard

deviations are available in the Supplementary Material, Section S9.

By checking the estimated basis coefficients of the minimal subspace (direc-

tions) and the regression coefficients, we find that sulfur dioxide, nitrogen dioxide,

PM 10, and PM 2.5 dominate each of the three directions, respectively. Using

http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html#Daily
http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html#Daily
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Table 3. Direction estimates using the spatial envelope for air pollution data on the
northeastern United States.

Variable Direction 1 Direction 2 Direction 3

Ozone -0.0464 0.0432 -0.0080

Carbon monoxide 0.2840 -0.3717 -0.0179

Lead -0.0739 0.0872 0.0008

Nitrogen dioxide -0.5089 0.2612 -0.4639

Nitrogen monoxide -0.3056 -0.1137 0.2757

Sulfur dioxide -0.5335 0.0241 -0.2981

PM10 -0.3257 -0.8667 -0.0506

PM2.5 -0.4106 0.1394 0.7855
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Figure 3. Prediction plot for sulfur dioxide for the study area. Sulfur dioxide is mod-
erately high for most of the study area, and is extremely high in Johnstown, which is
characterized by defense manufacturing.

fossil fuels creates sulfur dioxide, nitrogen monoxide, and nitrogen dioxide. The

nitrogen monoxide will also become nitrogen dioxide in the atmosphere. The ex-

istence of particles in the air leads to a reduction in visibility and causes the air

to become hazy when levels are elevated. Furthermore, because these particles

can travel into human lungs, they can cause health problem such as lung cancer.

The main source of these particles in the air is pollutants emitted from power

plants, industries, and automobiles.

Figures 3 to 6 show the prediction plots for the three pollutants with the

largest impact. Figure 3 shows the prediction plot for sulfur dioxide for the study

area. Sulfur dioxide is moderately high for most of the study area. In addition,
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Plot of nitrogen dioxide
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Figure 4. Prediction plot for nitrogen dioxide for the study area. Nitrogen dioxide is high
in Newark, New York, Philadelphia, and Rhode Island, which are all highly populated
areas.

Plot of PM 10
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Figure 5. Prediction plot for PM 10 for the study area. PM 10 is high for most of the
study area, especially in Philadelphia and Augusta.

levels are extremely high in Johnstown, which is characterized by defense man-

ufacturing. Figure 4 shows the prediction plot for nitrogen dioxide for the study

area. Nitrogen dioxide is high in Newark, New York, Philadelphia, and Rhode

Island, which are all highly populated areas. Figure 5 shows the prediction plot

for PM 10 for the study area. PM 10 is high in most of the study area, especially

in Philadelphia and Augusta. Figure 6 shows the prediction plot for PM 2.5

for the study area. PM 2.5 is moderately high almost everywhere, especially in

Pennsylvania state, Augusta, and the middle of Vermont state. Prediction plots
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Plot of PM 2.5
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Figure 6. Prediction plot for PM 2.5 for the study area. PM 2.5 is moderately high
almost everywhere in the study area, especially in Pennsylvania state, Augusta, and the
middle of Vermont state.

of the other variables can be found in Supplementary Material, Section S10.

The square root of the leave-one-out cross-validation for the MLR, LCM, en-

velope, and spatial envelope are 7.537, 3.562, 4.876, and 1.978, respectively. This

result shows that, the spatial envelope outperforms other methods and provides

more accurate predictions. In summary, we find that the most important pollu-

tants in January are particulates, sulfur, and nitrogen, and that other pollutants

have minimal effect. These statistical conclusions support the environmental

chemical claim that in cold weather, owing to the burning of fossil fuels and

inversion, sulfur dioxide, nitrogen dioxide, and particulate matter are the most

important pollutants (Byers (1959); Lægreid, Bockman and Kaarstad (1999)).

8. Conclusion

Air pollution has a serious impact on human health. Research has greatly

improved our understanding of pollutants and their relationship with weather

conditions. However, relatively few studies examine the effects of meteorological

variables on several pollutants together. Motivated by an analysis of air pollu-

tion in the northeastern United States, we have proposed a new parsimonious

multivariate spatial model. Here, we focused on inferences and on construct-

ing a method that can provide estimations for the parameters of interest more

efficiently than traditional maximum likelihood estimators are able to do, by

capturing the spatial structure in the data.
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Our model is flexible enough to characterize complex dependency and cross-

dependency structures of different pollutants. The results of a simulation study

and a real-data analysis showed that the proposed spatial envelope model out-

performs the multivariate linear regression, envelope, and linear coregionalization

models. This new approach provides a more efficient estimation for regression

coefficients than that of the traditional maximum likelihood approach.

The method presented in this paper is for a multivariate spatial response

with a separable covariance matrix. This framework can be extended to cases

in which the covariance matrix is nonseparable. Furthermore, the current work

assumes normality in the derivations of the estimators. Confirming that the nor-

mality assumption is satisfied is more important for spatial random fields than

when working with envelope models. The violation of the normality assump-

tion brings computational and theoretical challenges Diggle, Tawn and Moyeed

(1998); Liu et al. ((2017). Incorporating the notation of an envelope with a mul-

tivariate nonGaussian spatial random field, which is beyond the scope of this

paper, is a very interesting and challenging topic, as is the misspecification of

the spatial structure. Investigating the potential cost of such a misspecifying is

important, because it can affect the estimation of the coefficient and the predic-

tion. Another possible extension of the proposed methodology is to include cases

with spatiotemporal responses. These topics are left to future research.

Supplementary Material

The online Supplementary Material contains a brief description of the linear

coregionalization model (LCM), as well the derivations and proof of the likelihood

factorization, theorem, and corollaries presented in the main manuscript.
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