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Abstract: Matching and weighting methods are widely used to estimate causal ef-

fects when needing to adjust for a set of observables. Matching is appealing for its

nonparametric nature, but with continuous variables, is not guaranteed to remove

bias. Weighting techniques choose weights on units to ensure that prespecified

functions of the covariates have equal (weighted) means for the treated and control

groups. This ensures an unbiased effect estimate only when the potential outcomes

are linear in those prespecified functions of the observables. Kernel balancing be-

gins by assuming that the expectation of the nontreatment potential outcome,

conditional on the covariates, falls in a large, flexible space of functions associated

with a kernel. It then constructs linear bases for this function space, and achieves

approximate balance on these bases. A worst-case bound on the bias due to this ap-

proximation is given and minimized. Relative to current practice, kernel balancing

offers a reasonable solution to the long-standing question of which functions of the

covariates investigators should balance. Furthermore, these weights are also those

that would make the estimated multivariate density of covariates approximately the

same for the treated and control groups, when the same choice of kernel is used to

estimate those densities. The approach is fully automated, given the user’s choice

of kernel and smoothing parameter, for which default options and guidelines are

provided. An R package, kbal, implements this approach.

Key words and phrases: Causal inference, covariate balance, matching, statistical

learning, weighting.

1. Introduction

It is often necessary to adjust for covariates when making causal inferences

from observational data under an assumption of no unobserved confounding or

conditional ignorability. Matching and weighting techniques seek to adjust for

covariates, making the distribution of these covariates similar in the treated and

control groups. However, when exact matching is not possible (e.g. when con-

tinuous variables are included), these methods can fail to implement the condi-

tioning or adjustment for which they are intended. For concreteness, suppose an
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investigator matches or weights on continuous, pretreatment covariates X1 and

X2, but it is the ratio, X1/X2, that is critical. Specifically, suppose that both

the potential outcomes and the probability of taking the treatment are mono-

tonically increasing in X1/X2. Though matching has a desirable nonparametric

nature, the failure to find exact matches with multiple continuous variables is

problematic in finite samples: among treated and control units matched to each

other, the treated unit will, on average, be higher on X1/X2 than the control

unit will be. The control unit will, thus, also be higher in its expected potential

outcome than the control unit. This “matching discrepancy” causes a lack of√
N -consistency in matching estimators (Abadie and Imbens (2006)).

By comparison, standard weighting approaches can (when feasible) achieve

exact or approximate balance on desired moments, such as the means of X1 and

X2, and so may seem to avoid this problem. However, they do so by sacrificing

the nonparametric quality of matching. If a weighting estimator obtains equal

means for the treated and control groups on both X1 and X2 (referred to here as

“mean balance”), this does not, in general, imply that X1/X2 or other nonlinear

functions of X1 and X2 will have equal means for the two groups, potentially

resulting in bias. In short, both weighting and matching, as described thus far,

would fail to make the treated and control groups “comparable” on the observ-

ables for this simple example. The desired adjustment for the observables is thus

simply not performed. Such bias can be avoided if the investigator knows that

X1/X2 is the critical function of the observables on which to match or weight.

However, rarely can we expect investigators to have sufficient theoretical knowl-

edge to unfailingly guess these functional forms. Worse, allowing the investigator

to guess at the functional form creates opportunities for selective reporting. Sim-

ulations in Section 3.1 further examine this hypothetical example, showing how

simple nonlinear functions of the observables can generate large biases when using

state-of-the-art matching and weighting estimators, even when bias-adjustment

procedures (Abadie and Imbens (2011)) are applied. Kernel balancing mitigates

this problem, achieving nearly equal means on X1/X2, without the investigator

knowing of its importance.

Delaying the technical details until later, the idea behind kernel balancing is

straightforward. We first assume that the regression surface for the nontreatment

potential outcome (Y0i), conditional on the adjustment covariates, falls in the

(reproducing kernel Hilbert) space associated with a choice of kernel. Here, I

propose using a Gaussian kernel because the corresponding function space for

many smoothly varying outcomes. The practical meaning of this assumption
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and an interpretation of the resulting function space is provided in this paper.

Next, the empirical kernel matrix K, with rows Ki, forms a basis set for the

regression function, E[Y0i|Xi]. This amounts simply to a change of bases, from

Xi ∈ RP to Ki ∈ RN , allowing for highly flexible and complex functions, rather

than those simply linear in Xi. Having chosen these bases, kernel balancing finds

weights on the control units, such that the weighted average Ki among the control

units is approximately equal to the (unweighted) average Ki among the treated

units. This is the key step: because the regression surface for Y0i is linear in

Ki, achieving (approximately) equal means on Ki ensures (approximately) equal

means on Y0i for the treated and weighted control groups, without having to fit

a model. Weights are chosen by an approximation that minimizes the worst-

case bound on the remaining bias due to that approximation. Finally, a simple

difference in (weighted) means can then be used to estimate the average treatment

effect on the treated (ATT). The remainder of the paper expands upon this logic.

In principal, if one could obtain equal multivariate covariate densities for the

treated and control groups, this would nonparametrically and fully adjust for

the covariates. In the absence of confounders, this would ensure E[Y0i|Di = 1] =

E[Y0i|Di = 0], which ensures unbiasedness of the difference in means for the ATT,

regardless of the form of E[Y0i|Xi]. The difficulties with such a “full multivariate

density equality” approach are practical: setting aside estimation challenges, this

equality cannot even be verified, except when where we have a small number of

discrete covariates, each with a small numbers of categorical levels. The simple

alternative approach taken here is to first assume that E[Y0i|Xi] is linear in some

set of bases, φ(Xi). Weights achieving approximately equal means for the treated

and control groups on φ(Xi) then ensure approximately equal means on Y0i

between these groups. The analytical framework for kernel balancing elaborates

upon this idea, and proposes a particular implementation. Further, while full

multivariate density equality is not the aim of kernel balancing, an illuminating

connection emerges between that approach and the “balance on kernel-derived

bases” approach adopted here. The weights chosen by kernel balancing to achieve

mean balance on the chosen bases are exactly those that would equalize the

estimated empirical multivariate distributions of the covariates for the treated

and control groups, when the same kernel is used for the density estimation.

This reveals a direct link between (1) the assumption one is willing to make

about the space of outcome models, and (2) a choice of a smoother, such that

the smoothed multivariate covariate distribution is made equal in the treated

and control groups.
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To briefly place kernel balancing in context, similar to approaches that de-

pend on fitting outcome models (e.g. regression), kernel balancing relies on an

assumed outcome model space, although no outcome model ever needs to be

fitted. In contrast, as in matching, the dependence on such an outcome model

is reduced, because the (weighted) densities of the treated and control groups

are made similar in order to compare the two samples on their outcomes, rather

than relying on strong modeling assumptions to bridge potentially large gaps

between the locations of control and treated observations. On the other hand,

kernel balancing also differs from existing matching and weighting approaches.

Even when matching methods achieve perfect balance, according to whichever

imbalance measures they employ, these balance metrics typically check only for

equal means on the covariates, or other moments, as specified by the user. Un-

fortunately, as in the brief example above, matching discrepancies can give rise

to imbalances on unchecked functions of the covariates, leading to biased ATT

estimates. Though debiasing methods have been proposed (Abadie and Imbens

(2011)), they require a functional form assumption and, thus, ,are not always

effective (see Section 3). Kernel balancing also differs from propensity score ap-

proaches (Rosenbaum and Rubin (1983)), in that it requires no functional form

assumption for the probability of receiving the treatment, given the covariates.

This avoids the severe bias that can occur due to possible misspecification of the

propensity score (see e.g., Smith and Todd (2005); Kang and Schafer (2007)).

Finally, the method is most similar to weighting or calibration procedures that

do not model treatment assignment, but instead achieve balance on covariates

(such as Hainmueller (2012); Zubizarreta (2015)), as well as to analogous survey

weighting procedures (e.g. Deming and Stephan (1940)). The main contribution

of kernel balancing relative to these procedures is that it makes explicit, then

weakens, the linear functional form assumption inherent in these weighting and

calibration approaches. From an investigator’s perspective, the most immediate

and practical contribution of kernel balancing is that it provides practioners with

a principled and automated answer to the question of what functions of the co-

variates should be made to have approximately equal means, assuming that the

outcome lies in a flexible, smooth space of models.1

In what follows, Section 2 provides our analytical framework and develops

the method. Section 3 provides a basic simulation, highlighting the dangers in-

1Outside the causal inference framework, the same procedure can be used to reweight survey data
to match a population of interest, not only on the means of the covariates but on a large space of smooth
functions of those covariates.
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herent in other methods under reasonable conditions and demonstrating kernel

balancing as a potential solution. Section 4 provides an empirical demonstration

of the method’s effectiveness in recovering an experimental benchmark from ob-

servational data, using the National Supported Work demonstration (LaLonde

(1986)). Section 5 presents the implications of this procedure, additional de-

tails, and further comparisons to existing matching, weighting, regression, and

propensity score approaches. Section 6 concludes the paper. Additional remarks,

guidelines, proofs, and empirical examples can be found in the online Supplemen-

tary Material.

2. Framework for Kernel Balancing

2.1. Notation

This section sets up the problem of ATT estimation, then describes the

main ideas of the kernel balancing approach. Using the Neyman–Rubin potential

outcomes framework (Splawa-Neyman et al. (1923); Rubin (1990)), let Y1i and

Y0i be the treatment and nontreatment potential outcomes, respectively, for units

i = 1, 2, . . . , N , and let Di ∈ {0, 1} be the treatment assignment for unit i, such

that Di = 1 for treated units, and Di = 0 for control units. The observed

outcome for each unit is thus Yi = DiY1i + (1 −Di)Y0i. Suppose each unit has

a vector of observed covariates, Xi, taking values x ∈ X , where support X lies

in RP . For all i, assume that draws of the random variables {Y1i, Y0i, Xi, Di}
are taken independently from the common joint density p(Y1, Y0, X,D). The

set of covariates in {X} is assumed to be the set that the investigator must

condition upon in order to achieve a causal estimate by ensuring that treatment

assignment is ignorable with respect to the potential outcomes, conditionally on

the covariates, as assumed under “conditional ignorability,”2

Assumption 1 (Conditional Ignorability). The potential outcomes are condi-

tionally ignorable if

{Y0i, Y1i} ⊥⊥ Di | Xi,

where Y0i and Y1i are the nontreatment and treatment potential outcomes, re-

spectively, Di is the treatment status, and Xi is a vector of observed pretreatment

covariates.
2Throughout, we assume that the investigator has correctly chosen the set of covariates that must

be conditioned on, and is not conditioning on covariates that would only increase bias, such as post-
treatment variables or colliders (Pearl (2009)). Once the set {X} of conditioning variables has been
chosen to satisfy the “adjustment criteria” in a graphical causal model, it can also be said that conditional
ignorability holds, given {X}, i.e., Y (d) ⊥⊥ D|X (Elwert (2013)).
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Next, assume X ∈ RP is a set of covariates or characteristics satisfying

Assumption 1, and φ(X) : RP 7→ RQ, where Q may be (much) larger than P (or

N), giving an expanded set of characteristics or features to be used as a set of

basis functions.3 The specific nature of φ(·) used in kernel balancing will relate

to the choice of kernel. For the moment, the key feature of φ(·) needed is that

it is a sufficiently rich, nonlinear expansion such that E[Y0i|Xi = x] can be well

fitted as a linear function of φ(x):4

Assumption 2 (Linearity of Expected Nontreatment Outcome). We assume

that the conditional expectation of Y0i is linear in the expanded features of Xi,

φ(Xi); that is, there exists θ ∈ RQ and φ(·) : RP 7→ RQ, such that

E[Y0i|Xi = x] = φ(x)>θ.

2.2. Population ATT and DIM

Let the population ATT, E[Y1i − Y0i|Di = 1] be our quantity of interest,

expressed as

ATT = E[Y1i|Di = 1]− E[Y0i|Di = 1]

= E[Y1i|Di = 1]−
∫

E[Y0i|x,Di = 1]p(x|Di = 1)dx

= E[Y1i|Di = 1]−
∫
φ(x)>θp(x|Di = 1)dx,

where E[Y0i|x,Di = 1] = E[Y0i|x], from Assumption 1, and p(x|Di = 1) is the

density of Xi, conditional on Di = 1. We examine the (population) difference in

means estimand (DIM) to determine the conditions under which it is equal to

the ATT. The DIM is given by

DIM ≡ E[Y1i|Di = 1]− E[Y0i|Di = 0], (2.1)

3Two details are worth noting with regard to Assumption 1. First, for purposes of ATT estimation
alone, it could be weakened to Y0i ⊥⊥ Di | Xi. This is effectively because the Y1i values needed in
ATT estimation are observed; assumptions need not be made about how they can be proxied by other
values. Second, the conditional ignorability argument is usually paired with a “positivity” or “common
support” assumption, requiring that 0 < Pr(Di|Xi) < 1, ∀ Xi ∈ X . Such a requirement is especially
evident for propensity score estimators. However, it is not required here, because we instead make an
assumption about the regression surface of Y0i in terms of basis functions (see Assumption 2).

4Note that a similar assumption can be made on E[Y1i|Xi], and is required for anlayzing the average
treatment effect (ATE) or average treatment effect on controls (ATC). This paper focuses first on the
ATT, for ease of exposition.
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which replaces the unobservable second term in the ATT expression (E[Y0i|Di =

1]) with its identifiable counterpart, E[Y0i|Di = 0]. Rewriting this term using

Assumption 2, we have

DIM = E[Y1i|Di = 1]−
∫

E[Y0i|x,Di = 0]p(x|Di = 0)dx

= E[Y1i|Di = 1]−
∫
φ(x)>θp(x|Di = 0)dx.

We can now see that without, further adjustment, the DIM would equal the

ATT only when∫
φ(x)>θp(x|Di = 0)dx =

∫
φ(x)>θp(x|Di = 1)dx, (2.2)

which holds for any θ if∫
φ(x)p(x|Di = 0)dx =

∫
φ(x)p(x|Di = 1)dx,

E[φ(Xi)|Di = 0] = E[φ(Xi)|Di = 1]. (2.3)

The equality in (2.2) can be interpreted as requiring E[Y0i|Di = 1] = E[Y0i|Di

= 0] in order for the population DIM to be the same as the ATT. Indeed, this

mean independence can be used instead of the stronger full independence as-

sumption (Assumption 1) when only the average treatment effect is required.

Moreover, Equation (2.3) suggests a natural estimation strategy: owing to the

linearity of the assumed function space for E[Y0i|Xi] (Assumption 2), we obtain

E[Y0i|Di = 1] = E[Y0i|Di = 0] whenever E[φ(Xi)|Di = 0] = E[φ(Xi)|Di = 1],

regardless of θ, and without need of estimating it. We exploit this fact in the

next section.

2.3. Achieving mean balance on φ(Xi) by weighting: the ideal case

Consider an adjustment procedure involving a function of the covariates

g̃(Xi), with the following property:∫
φ(x)>θg̃(x)p(x|Di = 0)dx =

∫
φ(x)>θp(x|Di = 1)dx,∫

φ(x)[g̃(x)p(x|Di = 0)]dx =

∫
φ(x)p(x|Di = 1)dx,∫

φ(x)g(x)dx =

∫
φ(x)p(x|Di = 1)dx,
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Eg[φ(Xi)|Di = 0] = E[φ(Xi)|Di = 1], (2.4)

where g(x) = g̃(x)p(x|Di = 0) is scaled such that
∫
g(x)d(x) = 1. This effectively

gives us a new density, which we integrate over to obtain a “g-weighted” expec-

tation of φ(Xi) among the controls. Setting g̃(x) = p(x|Di = 1)/p(x|Di = 0) is

a natural choice that satisfies this, leading directly to g(x) = p(x|Di = 1) (see

Section 5 for the equivalence to inverse propensity score weighting). However,

any choice g(x) satisfying Equation (2.4) makes the expectation of φ(Xi) the

same for the treated and control groups.

In summary, the ATT is identified by a DIM estimator, modified by the

following weights:

DIMw = E[Y1i|Di = 1]− Eg[Y0i|Di = 0]. (2.5)

Thus far, we have established that, in the absence of unobserved confounders

(Assumption 1) and the linearity of the conditional expectation of Y0i in φ(Xi)

(Assumption 2), the DIM is equal to the ATT in the population when a g(x) can

be found such that the g-weighted expectation of φ(Xi) among the controls is

equal to the unweighted expectation of φ(Xi) among the treated. We have chosen

bases for the expected nontreatment potential outcome, and ensured equal ex-

pectations on each of these bases. Henceforth, we refer to this condition as “mean

balance on φ(Xi).” This, in turn, ensures equal expected nontreatment potential

outcomes for the treated and control groups, E[Y0i|Di = 1] = Eg[Y0i|Di = 0],

which ensures that the weighted DIM is equal to the ATT.

2.4. Sample DIM and weights

We now turn to the sample and the corresponding choice of weights for a

plug-in estimator. Let N0 equal the number of control observations, and N1 be

the number of treated observations. We estimate E[φ(Xi)|Di = 1] in Equation

(2.4) using its sample analog, (1/N1)
∑

i:Di=1 φ(Xi). For the g-weighted expected

nontreatment outcome among the controls, we also replace the expectation with

the sample mean, and the “g-weights” with the finite-sample weights w1, . . . , wN0

that solve the sample moment constraints, for all wi ≥ 0 and
∑

iwi = 1. Taken

together, the sample conditions are given by∑
i:Di=0

φ(Xi)wi =
1

N1

∑
i:Di=1

φ(Xi),
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subject to the conditions wi ≥ 0, and
∑
wi = 1. With w chosen this way (see

Section 2.8), we can construct the sample estimator for the DIM, D̂IM . From

Equation (2.5), we replace each expectation in the DIM with the corresponding

empirical mean in order to define our estimator,

D̂IMw =
1

N1

∑
i:Di=1

Yi −
∑
i:Di=0

wiYi. (2.6)

This brings us to the main result under exact mean balance,

Theorem 1 (Unbiasedness of Weighted Difference in Means for the ATT). Con-

sider the weighted difference in means estimator,

D̂IMw =
1

N

∑
i:Di=1

Yi −
∑
i:Di=0

wiYi,

where w satisfies
∑
i:Di=0

φ(Xi)wi =
1

N1

∑
i:Di=1

φ(Xi),

subject to
∑
i

wi = 1 and wi > 0,∀i.

Under assumptions of conditional ignorability for the nontreatment outcome (As-

sumption 1) and linearity of E[Y0i|Xi] in φ(Xi) (Assumption 2), D̂IMw is un-

biased for the ATT, taken over the common joint density p(X,Y1, Y0, D).

An alternative derivation begins with a given sample, showing that this

weighted difference in means is unbiased for the sample average treatment ef-

fect (SATT), which in turn is unbiased for the population ATT under random

sampling (see the online Supplementary Material, S3). That approach also leads

to an analysis of the finite-sample bias under a failure of Assumption 2, that

is, when E[Y0i|Xi] is not fully linear in φ(X). The result indicates that bias is

introduced only when the component of the regression surface (E[Y0i|Xi]) that

is not linear in φ(X) is correlated with the treatment assignment (see the online

Supplementary Material, S3.1).

2.5. Kernel-based construction of φ(·)

A wide range of basis expansions φ(·) can be chosen under this estimation

framework. Here, rather than choosing φ(·) directly, we propose doing so implic-

itly through the choice of kernel, which will generate an N -dimensional vector of

features on which equal means can be achieved.
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2.5.1. Kernel notation

For Xi ∈ RP , a kernel function, k(·, ·) : RP × RP 7→ R, takes as input

the covariate vectors from any two observations, and produces a single, real-

valued output, interpretable as a measure of similarity between the two vectors.

Although numerous kernels can be used in this procedure, for reasons discussed

below, we use the Gaussian kernel:

k(Xj , Xi) = e−||Xj−Xi||2/b. (2.7)

Note that k(Xi, Xj) produces values between zero and one, interpretable as a

(symmetric) similarity measure, achieving a value close to one when Xi and Xj

are most similar, and approaching zero as Xi and Xj become dissimilar. The

choice parameter b might be called “scale,” because it governs how close Xi and

Xj must be, in a Euclidean sense, to be deemed similar (see S12 on the choice of

b). It is common to rescale each covariate to have variance 1 prior to computing

k(Xi, Xj). This ensures results will be invariant to unit-of-measure decisions.

Let the symmetric matrix K be an N -by-N positive semi-definite (PSD) kernel

matrix, with elements Ki,j = k(Xi, Xj). Finally, let the ith row (or column) of

K be written as Ki = [k(Xi, X1), k(Xi, X2), . . . , k(Xi, XN )].

2.5.2. Kernel as inner product

For any kernel function k(·, ·) producing a PSD kernel matrix K, there ex-

ists a choice of basis functions φ(·), such that 〈φ(Xi), φ(Xj)〉 = k(Xi, Xj).
5

The nature of φ(X) depends on the choice of kernel. For example, suppose

Xi = [X
(1)
i , X

(2)
i ], and we choose the kernel (1 + 〈Xi, Xj〉)2. This choice corre-

sponds to φ(X) = [1,
√

2X(1),
√

2X(2), X(1)X(1),
√

2X(1)X(2), X(2)X(2)]; we can

confirm that k(Xi, Xj) = 〈φ(Xi), φ(Xj)〉 for this choice of kernel and φ(·). Using

the Gaussian kernel, the corresponding φ(X) is infinite-dimensional. The func-

tion space that is linear in these features can be understood in various ways, as

discussed in Section 5.3.

2.6. Mean balance on K

This section defines mean balance in terms of K and introduces useful no-

tation. We order the observations such that the N1 treated units appear first,

5This is the result of the equivalence between PSD matrices and the Gram matrices formed by the
inner products of vectors: a PSD matrix K has spectral decomposition K = V ΛV >, and so ki,j =

(Λ
1
2 V[·,i])

>(Λ
1
2 V[·,j]). Defining φ(Xi) = Λ

1
2 V[·,i], we obtain ki,j = φ(Xi)

>φ(Xj). The generalization
of this to infinite-dimensional eigenfunctions is given by Mercer’s Theorem (Mercer (1909)).
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followed by the N0 control units. Then, K can be partitioned into two rectangular

matrices,

K =

[
Kt

Kc

]
,

where Kt is N1×N and Kc is N0×N . The average row of K among the treated

can thus be denoted as Kt = (1/N1)Kt
>1N1

. Kernel balancing seeks weights

to ensure that the average row Ki of the treated group is equal to the weighted

mean Ki of the control group, which we term “mean balance on K.”

Definition 1 (Mean balance on K). The weights wi achieve mean balance on

K when

Kt =
∑
i:D=0

wiKi,

such that
∑

iwi = 1 and wi ≥ 0, for all i, where Kt is the average row of K

among the controls.

2.7. Replacing φ(Xi) with Ki

This section describes how the goal of achieving equal means on φ(Xi) for

the treated and control groups can be replaced by the goal of achieving equal

means only on the N -dimensional vectors Ki. Consider fitting E[Yi0|Xi] using

models linear in φ(Xi), or equivalently, estimating θ in Y0i = φ(Xi)
>θ + εi with

E[εi|Xi] = 0. One might fit such a model using the regularized squared loss:

min
θ∈RD

∑
i

(Y0i − φ(Xi)
>θ)2 + λ||θ||2.

For any λ>0, the resulting coefficients admit to the representation θ=
∑

i ciφ(Xi).

This is proven either by directly seeking to minimize the regularized loss (see,

e.g., Hainmueller and Hazlett (2014)) or more generally, by appealing to the Rep-

resenter Theorem (Kimeldorf and Wahba (1970)). Thus, accepting any nonzero

degree of regularization, the model will always produce predictions of the form

φ(Xi)
>θ = φ(Xi)

>
∑
j

cjφ(Xj)

=
∑
j

cj〈φ(Xj), φ(Xi)〉 =
∑
j

cjk(Xj , Xi) = Kic.

In the case of E[Y0i|φ(Xi)] = Kic, we can instead use Ki as bases for the condi-

tional expectation function rather than φ(Xi); furthermore, these bases do not
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need to be constructed.

2.8. Choice of weights: approximate balance and resulting bias

What remains is to choose the weights wi to obtain balance on K. Because

exact balance on all N dimensions of K is typically infeasible, we instead seek

approximate balance. The approximate balancing approach employed here can

be motivated in two different ways: (i) by constructing a worst-case bound on

the bias that persists owing to the approximate nature of balance, and mini-

mizing this bound; or (ii) by imagining that we seek balance on a lower-rank

approximation of K. While the two are closely related, we take the former as the

motivation here. The latter is discussed in the online Supplementary Material,

S5.

To derive the worst case bound due to remaining imbalances, by Assumption

2, we can write E[Y0i|Xi] = Kc = VAV>c = Vd, where V is the matrix of

eigenvectors of K, A is the matrix whose diagonal contains the eigenvalues of K,

and d is a rewritten form of the “coefficients”, c, that operate in the eigenvector

space, with d = AV>c. Note too that the (Hilbert space) norm of this function is

c>Kc = c>Vd = d>A−1Vd. Further, let V1 be rows of V corresponding to the

treated units, and let V0 be the rows of V corresponding to the control units.

Then, suppose we choose a vector of weights w0 on the control units, and w1

on the treated units. Here, because we target the ATT, every element of w1 is

simply 1/N1. The bias of the ATT due to the approximation, denoted as biasw,

is then

biasw = E[Y0i|Di = 1]− E[Y0i|Di = 0] (2.8)

= (w>1 V1 − w>0 V0)d (2.9)

= (w>1 V1 − w>0 V0)AV>c. (2.10)

To obtain a worst-case bound on this bias when we do not know c (or d), we must

instead control some related quantity. In particular, I propose imposing control

only over the Hilbert norm of the regression function, c>Kc, as this controls how

wildly the regression function is allowed to vary. Suppose we restrict the function

to those with norm c>Kc ≤ γ. We are then interested in the worst-case bias,

due to the approximation, biasbound, given by

sup
c>Kc≤γ

|(w>1 V1 − w>0 V0)AV>c|.
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Letting z = c>K1/2γ−1, this can be rewritten as

√
γ sup
z>z≤1

|(w>1 V1 − w>0 V0)AV>K−1/2z|

which, by Cauchy-Schwarz, gives

biasbound ≤ √γ||(w>1 V1 − w>0 V0)AV>K−1/2||2 (2.11)

≤ √γ||(w>1 V1 − w>0 V0)A1/2||2. (2.12)

The form of this worst-case bound is informative. First, the L2-norm of the

regression function (γ) controls the overall scale of the potential bias. Second,

the imbalance on each of the eigenvectors of K after weighting, (w>1 V1−w>0 V0),

enters directly. The contribution of each eigenvector to the bias bound is the

product of that eigenvector’s imbalance and the square root its eigenvalue. Given

this scaling, we choose to achieve near exact balance on the first r eigenvectors,

such that the imbalanced eigenvectors are only those with very small eigenvalues,

and, thus are of little consequence. Because the matrix K typically has a few large

eigenvalues, followed by many very small ones (if the choice of b is appropriate),

it is usually possible to achieve fine balance on eigenvectors that the remaining

eigenvalues carry a tiny fraction of the total variation in K.

This is exactly the approach taken here. We chose r so as to minimize

biasbound, where the norm involved (
√
γ) is dropped, because it does not vary

across r. Specifically, the weights are found to achieve exact, or nearly exact

balance on r dimensions, and the resulting bias bound is computed.6 Then, r is

increased until biasbound is minimized. This leaves major imbalances on the rela-

tively inconsequential eigenvectors only, i.e., those with small eigenvalues. While

this method minimizes the worst-case bias and appears to be effective in our

simulations and applications, future work may fruitfully propose procedures to

minimize ||(w>1 V1−w>0 V0)A1/2||2 using alternative approximate weight-selection

methods. The typical behavior of biasbound as r increases is illustrated, together

with other properties, by the simulations in Section 3.2.

2.8.1. Weight selection, given r

Thus far, we have described the constraints that a set of weights must satisfy

(i.e. balance on the first r eigenvectors of K), but not how the weights are cho-

6The balance on the first r eigenvectors is often exact up to machine precision, but owing to numeri-
cal tolerances, small imbalances on these features may persist. The bias bound is written and computed
so as to incorporate these residual imbalances, however minor, together with the more substantial im-
balances on the remaining eigenvectors.
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sen. We have great flexiblity in the choice of weights to achieve such constraints

and, in particular, a measure of divergence from the uniform weights we wish to

keep minimize subject to achieving the balance constraints. The Supplementary

Material S1 describes the implementation options consistent with the approach

outlined here, including the particular choice implemented in the package kbal,

which maximizes the entropy measure
∑

iwilog(wi), as suggested by Hainmueller

(2012). A second choice (also implemented in the kbal package) is to use weights

that maximize the empirical likelihood, subject to the balance constraints (Owen

(2001)). This effectively maximizes
∑

i log(wi), subject to the constraints. Both

methods work well here; choosing between them is beyond the scope of this study.

Alternative choices also include the minimum-variance weights described in Zu-

bizarreta (2015), or the nonparametric covariate balancing weights described in

Fong et al. (2018).

2.9. Alternative interpretation: smoothed multivariate balance

The principal motivation for kernel balancing is that it is a reliable and

hands-off method for estimating the ATT (or ATC or ATE; see Section 5.4) by

obtaining equal means Y0i for the treated and control groups, under reasonable

assumptions on E[Y0i|Xi]. However, the use of kernels for the choice of φ(Xi)

produces a very useful equivalence: kernel balancing using the kernel k(·, ·) im-

plies that the multivariate density of the covariates, as estimated by the same

smoothing kernel k(·, ·), will be equal for the treated and control groups, at all

covariate locations in the data. Thus, in a finite sample it approximates the goal

of “multivariate balance” normally targeted by matching and weighting proce-

dures, but only insofar as those densities are well estimated using that choice of

kernel.

These multivariate density estimators may not be satisfactory, particularly

for high-dimensional data. However, methods seeking multivariate density bal-

ance can typically only hope to achieve or verify that balance with respect to

some density estimator or sample statistics, making this a very useful equiva-

lence. As a corollary, a researcher seeking multivariate density balance could

first commit to a kernel smoother she would be willing to use to estimate the

multivariate density in each group. Then, kernel balancing produces weights that

result in the equality of these estimated densities.

Proposition 1 (Balance in K implies equality of smoothed multivariate densi-

ties). Consider a density estimator for the treated, p̂X|D=1 and for the (weighted)
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controls, p̂X|D=0,w, each constructed using the kernel k(·, ·) of bandwidth b. The

choice of weights that ensures mean balance in the kernel matrix K ensures that

p̂X|D=1 = p̂X|D=0,w at every position in X where an observation is found.

The proof of Proposition 1 is given in the Supplement Material S7. Here, I

briefly describe the intuition behind this result, because it leads to further insights

and tools. First, the typical Parzen–Rosenblatt window approach estimates a

density function according to:

p̂(x) =
1

N
√

4πb

N∑
i=1

k(x,Xi), (2.13)

for the kernel function k(·, ·), with bandwidth b. The Gaussian kernel is among

the most commonly used for this task. While typically considered in a univariate

context, Expression (2.13), utilizing a Gaussian kernel, generalizes to a multi-

variate density estimator based on Euclidean distances.

The link between obtaining mean balance on Y0i and obtaining multivari-

ate density balance emerges from the fact that both involve the superposition

of rescaled kernels placed over each observation. For a sample consisting of

X1, . . . , XN , construct the kernel matrix K using the Gaussian kernel, and right-

multiply it by a column vector, 1/(N
√

4πb). This produces values numerically

equal to first constructing such an estimator based on all observations repre-

sented in the columns of K, and then evaluating the resulting density estimates

at all positions represented by the rows of K. To see this, consider that the value

of Ka at a given point Xj is
∑

i aik(Xi, Xj). Note that k(Xi, Xj) is the value

that would be obtained by placing a Gaussian over Xi and evaluating its height

at Xj . Thus,
∑

i aik(Xi, Xj) is the value that would be obtained by placing a

Gaussian kernel over each observation, Xi, and evaluating the height of the re-

sulting summated surface at Xj . Similarly, the expression (1/(N1

√
4πb))Kt

>1N1
,

where 1N1
is an N1-vector of ones, returns a vector of estimates for the density

of the treated, as measured at all observations. Finally, (1/(N0

√
4πb))Kc

>1N0

returns estimates for the density of the control units at every datapoint in the

sample, and (1/
√

4πb)Kc
>w gives the w-weighted density of the controls, again

as measured at every observation.

We can analogously rewrite the estimated density of the treated as (1/(N1√
4πb))

∑
iKi and the weighted estimated density of the controls as (1/

√
4πb)∑

iKiwi. Setting these equal to each other gives (1/N1)
∑

iKi =
∑

iKiwi,

which is the same condition (mean balance on Ki, Definition 1) pursued by
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kernel balancing. This reveals the deep connection between (i) the assumption

we make on the space of models for the outcome, and (ii) the choice of smoother,

for which estimated multivariate density balance is achieved.

Of practical relevance to investigators, this suggests a measure of imbalance

relating to the difference between the kernel-estimated distribution of the covari-

ates in the treated and for the control groups, both before and after weighting.

We first consider the goal of achieving mean balance on Ki. To minimize the

smoothed multivariate imbalance under this kernel, we minimize a p-norm pro-

portional to ||Kt −
∑

i:D=0wiKi||p. On the other hand, we can calculate a norm

over the “difference in heights” between the implied density estimates for the

treated group and control group, at every observation’s covariate location. This

is given by (1/2)||p̂D=1(X) − p̂w,D=0(X)||p. Fortunately, we need not choose,

because the latter is equal to (1/2)||(1/(N1

√
4πb))Kt

>1N1
− (1/

√
4πb)Kc

>w||p,
and is thus the same as the first. See the Supplementary Material S2 for details.

The L1-norm, (1/2)||(1/(N1

√
4πb))Kt

>1N1
−(1/

√
4πb)Kc

>w||1, is a natural

choice of norm because it is interpertable as an average of the gap between the

kernel-estimated density of the treated and control at every observation. This is

analogous to the L1 norm proposed by (Iacus, King and Porro (2011)) for use

with coarsened exact matching, but does not require coarsening the covariates

into discrete bins. However, because this interpretation holds only insofar as

the implied kernel density estimator is a good estimator, it should be used with

caution. Note that the L1-norm is closely related to biasbound, and exhibits

extremely similar behavior as a function of r (see Section 3.2).

Figure 1 illustrates the density-equalizing property of the kernel balancing

weights for a one-dimensional problem. This density equalizing view connects

kernel balancing more directly to other approaches, such as matching, but note

that it is mean balance in Y0i, achieved through mean balance on a suitable set

of bases (Ki), that kernel balancing targets, that is essential for unbiasedness of

the ATT, and that gives rise to the bias bound and other analytical results.

3. Simulation Examples and Evidence

3.1. An illustration: imbalance on a ratio

Building on the simple example given in Section 1, this simulation highlights

the practical challenges of existing methods and demonstrates the effectiveness

of kernel balancing against these challenges. For realism, suppose we are inter-

ested in the question of whether peacekeeping missions deployed after civil wars
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Left: Density estimates for treated and (unweighted) controls. Red dots show the lo-
cation of 10 treated units. Dashed lines show the appropriately scaled Gaussian over
each observation, which sum to form the density estimator for the treated (red line) and
control (black line). The L1 imbalance is measured to be 0.32. Right: Weights chosen by
kernel balancing effectively rescale the height of the Gaussian over each control observa-
tion (dashed blue lines). The new density estimate for the weighted controls (solid blue
line) now closely matches the density of the treated at each point. The L1 imbalance is
now measured to be 0.002

Figure 1. Density equalizing property of the kbal weights.

are effective in lengthening the duration of peace (peace years) after the war’s

conclusion (e.g., Fortna (2004); Doyle and Sambanis (2000)). However, within

the set of civil war cases constituting our sample, the “treatment” — peacekeep-

ing missions (peacekeeping) — is not randomly assigned. Rather, missions are

more likely to be deployed in certain situations, which may differ systematically

in their expected peace years, even in the absence of a peacekeeping mission.

Suppose the investigator therefore collects four pre-treatment covariates: the du-

ration of the preceding war (war duration), the number of fatalities (fatalities),

the democracy level prior to the peacekeeping mission (democracy), and a mea-

sure of the number of factions or sides in the civil war (factionalism). We are

interested in estimating an ATT, defined as the expected number of peace years

experienced by countries that received peacekeeping, minus the expected number

of peace years for this group, had they not experienced peacekeeping missions.

Further, suppose there are no unobserved confounders, and that peacekeep-

ing missions are deployed only on the basis of these observables. Specifically,
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consider a conflict’s intensity, given by (fatalities/war duration), and suppose

that missions are more likely to be deployed in higher-intensity conflicts,

peacekeepingi ∼ Bern
(
logit−1

(
intensity

5, 000
− 1

))
,

with war duration distributed as max(1, N(7, 9)), and intensity in fatalities per

year distributed as Unif(102, 104). The observed covariate fatalities is con-

structed according to intensity · war duration.

Further, suppose the outcome of interest, peace years, is also a function of

intensity, with more intense conflicts leading to longer duration of peace years

on average:

peace years = 5 + 2
intensity

5, 000
− (0.5)peacekeepingi + εi,

where and εi is an error term drawn from N(0, 4). This arrangement generates

a fixed treatment effect of -0.5 years.7

How well do existing techniques achieve equal means for the treated and

control groups (“mean balance”), both on the original four covariates and on

intensity, a (nonlinear) function of the observables? In Figure 2, the top panel

shows the covariate imbalance on the horizontal axis (the standardized difference

in means between treated and control), for each of the covariates and the key

function of the covariates, intensity. All results are taken over 500 simulations,

with the same data-generating process and N = 500. First, matching (simple

Mahalanobis distance matching with replacement) leaves a substantial imbalance

on war duration, and more troubling, on intensity. A careful researcher may

realize the need to match on more functions of the covariates, and instead match

on the original covariates, their squares, and their pairwise multiplicative inter-

actions. While few researchers go this far in practice, the results for matching+

show that even this approach would not generate balance on intensity. In fact,

balance on both war duration and intensity has worsened. Next, coarsened exact

matching (CEM ) coarsens the variables so that exact matching on the resulting

data is possible (Iacus, King and Porro (2011)). However, this does not solve

the problem: imbalances remain on the original, uncoarsened variables. Fourth,

(mean balance) employs entropy balancing (Hainmueller (2012)) to achieve equal

7Such a confounding scenario may occur if, for example, more intense wars are more likely to
attract the attention of the international community and result in deployment of a mission, but may
also indicate greater dominance by one party to the conflict, leading to a lower likelihood of resurgence
in each subsequent year.
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Results from 500 simulations of the peacekeeping example described in the text. The
methods employed are: (matching), one-to-one Mahalonobis distance matching with bias
adjustment; (matching+), matching on the full second-order expansion of the covariate
(14 terms in total) with bias adjustment; (CEM ), coarsened exact matching at default
values; (mean balance), entropy balancing weights for equal means on the observed co-
variates; and (kbal), kernel balancing at the default settings. Top: Standardized covariate
imbalance by method. All methods except kernel balancing (kbal) achieve poor balance
on the unknown, but important function of observables, intensity. Bottom: box plots
illustrating the distribution of average treatment effect on the treated (ATT) estimates.
The actual effect is -0.5 peace years. All methods except for kernel balance show large
biases in the ATT estimates, which arise owing to the persistent imbalance on intensity.

Figure 2. Simulation: Imbalance on a ratio.
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means in the original covariates. As expected, this produces excellent balance on

the original covariates, but only a modest improvement in balance on intensity.

Finally, kernel balance achieves vastly improved balance on intensity.

These imbalances are worrying, because they indicate a failure to condition

on the covariates as intended. Because an imbalanced covariate directly influences

the potential outcomes, this imbalance leads to biased ATT estimates. To show

this, the ATT estimate for each method is shown in the bottom panel of Figure

2. Large biases occur for each estimator, with the exception of kernel balancing.

Note that for both matching and matching+, bias adjustment Abadie and Imbens

(2011) is employed in an effort to make up for matching discrepancies on the

observed covariates. However, this does not account for the nonlinear effects of

the observables on the potential outcomes. Kernel balancing shows the lowest

bias among the methods attempted. Its advantages in terms of the RMSE are

more modest, but it still has an RMSE 22% lower than that of the next best

estimator, mean balance.

Although kernel balancing is largely automated, given a choice of Gaussian

kernel, we still need to choose the bandwidth parameter, b. Section S12 describes

the substantive meaning of this parameter, but it is useful to examine the sen-

sitivity of results to choices of b. Figure 4 in the online Supplementary Material

shows that estimates are stable across choices of b ranging from one quarter to

four times the default choice of dim(X) = 4 (see Section S12 for discussion of

this default value).

This illustration demonstrates the ease with which existing methods may fail:

when a confounder is a nonlinear function of two observed covariates — even a

simple ratio — existing matching and weighting methods risk large biases. An

investigator’s theoretical knowledge is rarely sufficient to which functions of the

observables may impact the outcome. Kernel balancing provides a principled

approach for choosing the functions of covariates on which to achieve balance

to ensure unbiased estimation in a wide range of plausible scenarios, specifically

those where the non-treatment potential outcome is a smooth function of Xi. An

illustration of the effectiveness of the worst-case bound in bounding biases under

this simulation is given in the online Supplementary Material S4.

3.2. Behavior of bias bound and L1 imbalance across r

In another simulation, we illustrate the behavior of the L1 imbalance and the

biasbound across levels of r, while examining whether minimizing these quantities

is an effective way to minimize the imbalance on important, but unknown func-
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tions of the covariates. Let x1i, . . . , x5i be covariate data, each drawn N(0, 1),

for i ∈ 1, . . . , 500, and let zi =
√
x2

1i + x2
2i. This function impacts the treatment

assignment, with the probability of treatment given by logit−1(zi−2), producing

approximately two control units for each treated unit. In Figure 3, the number

of factors of K retained for purposes of balancing (given by r) is increased from

1 up to 100. The bias bound shown here is not scaled – i.e. it is computed as

if γ = 1 to illustrate how it changes across r given a constant choice of γ. As

expected, the bias bound, the L1 score, and the imbalance on z (as a percentage

of the original imbalance) after weighting improve rapidly as r increases, with the

most important eigenvectors coming into balance. It then plateaus, and even-

tually worsens beyond some choice of r. Most importantly, while the balance

on z is unknown to the investigator, the bias bound and L1 are observable, and

improvements in balance on z are strongly correlated with improvements in the

other two. Accordingly, selecting r to minimize the bias bound appears to be a

viable strategy for selecting the value that also minimizes imbalance on unseen

functions of the data. As expected, the bias bound and L1 are very similar, up

to a scaling factor; in fact, all three quantities in Figure 3 correlate with each

other above 0.96. Note too that there is a wide range of r values (approximately

20 to 50) that produce similar levels of imbalance, making the exact choice less

critical.

4. Example: National Supported Work Demonstration

It is useful to know whether kernel balancing accurately recovers average

treatment effects in observational data under conditions in which an experimen-

tal benchmark is available for comparison. This can be approximated using the

approach and data of LaLonde (1986) and Dehejia and Wahba (1999), now a rou-

tine benchmark for matching and weighting approaches in disciplines as diverse

as statistics, econometrics, political science, psychology, and epidemiology (see,

e.g., Diamond and Sekhon (2013); Iacus, King and Porro (2011); Hainmueller

(2012); McCaffrey, Ridgeway and Morral (2004); Little and Rubin (2000)). The

aim of these studies is to recover an experimental estimate of the effect of a

job training program, the National Supported Work (NSW) program. Following

LaLonde (1986), the treated sample from the experimental study is compared to

a control sample drawn from a separate, observational sample. Methods of ad-

justment are tested to determine whether they accurately recover the treatment

effect, despite large observable differences between the control sample and the
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Imbalance measures over values of r, the number of dimensions balanced. The L1-
imbalance score is interpretable as the L1 measure of the gap between the estimated
densities of the treated and control covariates, when that approximation is made by the
same kernel function used to form K. biasbound is the derived worst-case bound on
the bias due to the approximate nature of balance. The actual bias bound would be
rescaled by the choice of Hilbert norm for the outcome function, but this is irrelevant to
the choice of r. Finally, z =

√
x21 + x22 is a function of the observable covariates, which,

unknown to the investigator, may be confounding. Both L1 and biasbound closely follow
the imbalance on z, such that choosing r to minimize either L1 or biasbound is a sensible
strategy for achieving minimum imbalance on z.

Figure 3. Choice of r: Bias bound, L1 imbalance, and imbalance on an unknown function
of the observables.

treated sample. See Diamond and Sekhon (2013) for an extensive description of

these data and various subsets that have been drawn from it. Here, I use 185

treated units from NSW, originally selected by Dehejia and Wahba (1999), for

the treated sample. For this group, the experimental estimate of the ATT is

$1,794, which gives us a benchmark. For the observational version of the study,

we keep these treated units, but draw the control sample from the Panel Study

of Income Dynamics (PSID-1), containing 2,490 individuals.

The pretreatment covariates are age, years of education, an indicator for

no high school degree, real earnings in 1974, real earnings in 1975, indicators

for zero income (taken to mean unemployment) in 1974 and 1975, and a se-

ries of demographic indicator variables: black, hispanic, and married. As found

by Dehejia and Wahba (1999), propensity score matching can be effective in

recovering reasonable estimates of the ATT, but these results are highly sensi-
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tive to the specification choice used for propensity score estimation (Smith and

Todd (2001)). Diamond and Sekhon (2013) use genetic matching to estimate the

treatment effect with the same treated sample. While matching solutions with

the highest degree of balance produced estimates very close to the experimental

benchmark, these models included squared terms and two-way interactions, as

well as constructed indicators for zero income in 1974 and 1975. Similarly, en-

tropy balancing (Hainmueller (2012)) has been shown to recover good estimates

using a similar setup, using a control dataset based on the Current Population

Survey (CPS-1), employing all pairwise interactions and squared terms for con-

tinuous variables, amounting to 52 covariates. The general supposition of kernel

balancing, however, is that investigators would not typically know (or be ex-

pected to know) what nonlinear transformations are required to obtain a good

estimate.

In this re-analysis, three estimation approaches are compared, with three

specifications attempted for each. The first procedure is a simple linear regression

(OLS ), which is not an effective competitor, but serves to show that assuming

a simple outcome model can produce highly problematic results. Second, Ma-

halanobis distance matching (match) is employed, with bias adjustment. Third,

kernel balancing (kbal) is used, with b set to the default value of P (the number

of covariates). For comparability, all three approaches use simple standard errors

that take the weights as fixed.

For each method, three specifications are attempted, chosen on the grounds

that they are reasonable choices we might expect investigators to make and justify

in their analyses. First, we include the “standard” set of 10 covariates described

above. Second, an investigator might reasonably propose that log income is a

better choice than raw income for determining who should be considered similar

and, thus, be matched together. Therefore, incomes in 1974 and 1975 are replaced

with their logs (plus one). Third, a thoughtful investigator may be concerned

about flexible functional forms and try an expanded set of covariates including the

10 standard covariates, plus the squared terms for the three that are continuous.

Note that all three of these approaches appear to be arguably justifiable.

Figure 4 shows that OLS estimates do poorly and vary widely by specifi-

cation. This reflects the large differences between the distributions of treated

and control units in the covariate space, and that using a linear model to ac-

count for these imbalances fails. Matching performs much better, though remains

somewhat specification-dependent, with its best estimate (match-squares) falling

within $581 of the benchmark. Finally, kernel balancing (kbal) performs well
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Re-analysis of Dehejia and Wahba (1999), estimating the effect of a job training program
on income. Three procedures are used: linear regression (OLS ), Mahalanobis distance
matching (match) with bias adjustment, and kernel balancing (kbal). For each, three
sets of covariates are attempted: the standard set of 10 covariates described in the text,
a version replacing income in 1974 and 1975 with log income (log), and an expanded
set (squares) including the 10 standard covariates plus squares of the three continu-
ous variables. The experimental benchmark of $1,794 is indicated by the vertical line.
While both match and kbal produce reasonable results, kbal results are closest to the
benchmark, showing the least sensitivity to the specification.

Figure 4. Estimating the effect of a job training program from partially observational
data.

across all three specifications, with no estimate more than $490 from the bench-

mark, and the average estimate only $27 off. Whether constructing additional

squared terms or taking the log of income, the space of functions represented in

the span of K is large and flexible, so the resulting solutions change little. The

resulting ATT estimates are also very stable to the choice of b, once it exceeds a

minimum value (see Figure 5 in the online Supplementary Material).

Examining additional outputs from the kernel balancing procedure, we fur-

ther see the that the initial sample was badly imbalanced, with an L1 distance of

78%. Fortunately, weights can be found to eliminate much of this, because the

L1 distance drops to 4.7% after weighting. At the solution achieved by kernel
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balancing using the default value of b = 10, 90% of the weight for controls is

taken from just 66 units.

5. Discussion

Having described the basic logic and procedure for kernel balancing, I now

remark further on its relationship with existing procedures, some additional prop-

erties and implications of this approach, and implementation details.

5.1. Relation to existing approaches

The most widespread tools to which kernel balancing can be compared in-

clude matching, covariate balancing or calibration weights, and propensity score

methods. I also briefly contrast the approach with the more traditional strategy

of simply fitting an outcome model in a suitable space of functions.

5.1.1. Matching

Under conditional ignorability (as in Assumption 1), sub-classification and

exact matching estimators for the average treatment effect X implement con-

ditioning very literally: take difference-in-means estimates within each stratum

of X, then average these over the empirical distribution of X for the treated.

However, conditioning on X in this way is impossible when X is continuous

or contains indicators for many categories. Matching approaches (e.g., Rubin

(1973)) mimic this conditioning, taking each treated unit in turn, finding the

nearest one or more control units, and retaining only these control units in the

sample. A difference-in-means on the outcomes in the resulting matched data

is the same as an average over the differences within each pairing. The method

works when multivariate balance is achieved through the matching procedure;

that is, when the distribution of X for the control units becomes the same as

the distribution for the treated units. The nonparametric nature of matching

is appealing as a multivariate balancing technique, but its accuracy is limited

by the problem of matching discrepancies. Specifically, in a given pairing, the

treated unit may be systematically different on X than the control unit(s) it is

paired with when exact matches cannot be found. Thus, the conditioning on X

can remain incomplete, and the distribution of X for the treated and controls

will not be made identical. The resulting bias in (S)ATT estimates dissipates

very slowly as N increases, so that the resulting estimates are not generally
√
N -

consistent (Abadie and Imbens (2006)). To minimize the bias due to remain-

ing matching discrepancies, investigators are sometimes instructed to attempt
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different matching specifications and procedures until they achieve satisfactory

multivariate balance (see, e.g., Stuart (2010)). However in practice, tests for

this balance are usually limited to univariate tests that compare the marginal

distribution of each covariate under treatment and control. As the simulation

example in Section 3.1 illustrates, many matching approaches can thus fail to

obtain a sufficient similarity of distributions, even when investigators attempt to

match on higher-order terms. Relatedly, a class of methods referred to as opti-

mal matching minimizes a global measure of distance between the distributions

of treated and control units. Kallus (2016) considers a generalization of optimal

matching methods, considering a bias-variance tradeoff and choosing the point

that minimizes the worst-case conditional mean squared error. The study pro-

posed kernel optimal matching, which solves a minimization problem involving

a Gaussian or other kernel representation of the data in the minimization objec-

tive. This proves to have many useful properties, especially when paired with

an outcome regression model, suggesting another route by which kernels may be

useful for estimating treatment effects.

5.1.2. Covariate balancing weights

Covariate balancing weighting approaches use probability-like weights on the

control units to achieve a set of prescribed moment conditions on the distribution

of the covariates (e.g., univariate means and variances). Examples from the

causal inference literature include entropy balancing (Hainmueller (2012)) and

the covariate balancing propensity score (Imai and Ratkovic (2014); Fong et al.

(2018)), as well as relate procedures noted in earlier work on survey sampling,

such as raking (Kalton (1983)). Once these moment conditions are satisfied, it

is assumed that the multivariate densities for the treated and control are alike

enough to complete the adjustment. These weights can be used in a difference-

in-means estimation or other procedure. The advantage of this procedure over

matching is that the prescribed moments of the control distribution can often be

made exactly equal to those of the treated, avoiding the matching discrepancy

problem. The disadvantage is that it sacrifices the nonparametric quality of

matching, providing balance only on enumerated moments. In general it is not

possible to know what moments of the distribution must be balanced to ensure

unbiasedness, because we do not know which functions of the covariates might

influence the (nontreatment) outcome. Kernel balancing can be understood as an

extension of these covariate balancing weighting methods that chooses moments

to ensure balance on by constructing bases that span a flexible space for the
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outcome model.

5.1.3. Propensity score weighting

Propensity score methods, such as inverse propensity score weighting, can

similarly be understood as an attempt to find the weights that make the distri-

bution of the covariates for the controls and the treated similar (in expectation)

only by adjusting for estimated treatment probabilities.

For the purposes of ATT estimation, the stabilized inverse propensity score

weights applied only to the control units would be wIPW = (p(Di)/p(Di|Xi)[1−
p(Di|Xi)/(1−p(Di))]. The Supplement Material S10 shows how these weights are

derived to change the distribution of the controls to match that of the treated

during the ATT estimation. Moreover, these weights can be rewritten using

Bayes’ rule as a ratio of class densities for the treated and controls,

wIPW =
p(x|Di = 1)

p(x|Di = 0)
. (5.1)

Written in this way, it becomes clear that whenever the class densities are

equal for the two groups, the IPW weights on the controls for ATT estimation

are constant. Given the multivariate balancing property discussed above, kernel

balancing weights approximately achieve this equality, but with the estimated

class densities corresponding to the kernel density estimator (Section 2.9). Al-

ternatively, suppose that we estimate the propensity score using a generative

classifier, in which the class densities for the treated and controls are estimated

using kernel k as a smoother. If the resulting inverse propensity score weights

are constructed so as to estimate the ATT, the result will equal that from kernel

balancing, up to the approximation based on r.

5.1.4. Comparison with outcome models

An alternative and common estimation route is simply to regress the ob-

served Yi on some (possibly augmented) set of covariates Xi and the treatment

Di. Combining the power and flexibility of machine learning or high-dimensional

models with an outcome model that efficiently and unbiasedly returns estimates

of causal effects remains an active area of research. Regularized regression models

are employed to accomodate high-dimensional covariates. However the shrinkage

imposed by these models leads to substantial bias and poor inferential prop-

erties (Belloni, Chernozhukov and Hansen (2014)). A series of doubly-robust

or debiasing methods utilizing a (consistent) estimator of the propensity-score
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to adjust these models have been proposed, following Robins, Rotnitzky and

Zhao (1994) (see, e.g., Van der Laan and Rose (2011); Farrell (2015); Belloni

et al. (2017); Chernozhukov et al. (2018)). Further recent efforts have sought

to avoid the requirement of a consistently estimated propensity score model to

make such adjustments. For example, Ratkovic and Tingley (2017) propose a

Bayesian sparse model for variable selection that, combined with feature expan-

sions such as a tensor-spline, performs well and can be easily extended to other

approaches. Athey, Imbens and Wager (2016) effectively combine the outcome

model approach with weights that seek covariate balance, by using the covariate

balancing weights to re-weight residuals from a linear outcome model. Like these

methods, kernel balancing adopts insights from machine learning, relying on the

properties of kernels. However, unlike other studies that import machine learning

methods, it does not use them to solve a classification or regression problem, such

as fitting the outcome or a propensity score. Rather, it uses kernels to establish

a high-dimensional choice of bases, which tell us what functions of the covariates

must be balanced.

Two important distinctions can be made between assuming an outcome

model for the purpose of choosing “what to balance on,” as done here, and fitting

an outcome model. First, kernel balancing works regardless of which function in

the function space is the correct one (i.e., the value of θ or c). We do not need to

rely on the accuracy of any estimate of these coefficients. We require only that

such a model exists, and even then, violations of the model are bias-inducing

only in certain cases (see Supplementary Material S3.1). Second, employing a

weighting approach justified by a choice of outcome models is not equivalent to

using the outcome model alone, because when estimating the ATT, the former

changes the distribution of the control group to be more similar to that of the

treated, prior to estimation of an effect. This “pre-processing” approach reduces

model-dependency, avoiding strong modeling assumptions to bridge the gap be-

tween treated and control units that may lie far apart in the covariate space (see,

e.g., Ho et al. (2007) for analogous arguments in the matching literature). That

said, future work could usefully combine the kernel balancing technique with a

suitable outcome model in an augmented regression or doubly-robust procedure.

5.2. Uncertainty estimation

In most contexts, investigators require a measure of uncertainty, such as a

standard error or confidence interval, around their effect estimates. With match-

ing estimators, one approach is to ignore the uncertainty due to the matching



KERNEL BALANCING 1183

procedure itself. For example, Ho et al. (2007) argue that because the variance

estimators for parametric models typically take the data as fixed anyway, when

data are preprocessed by a matching procedure, the matched data set can be

taken as fixed for subsequent analyses. Thus, the variance can be estimated for

parametric outcome models on the matched data in the usual way: construct-

ing weights that reflect the selection of matched control-units, then estimating

the outcome model with these weights to obtain the associated standard errors.

Similarly, weighting estimators such as entropy balancing may also take this pre-

processing view and treat the resulting weights as fixed (Hainmueller (2012))

when computing uncertainty estimates in subsequent analyses.

In contrast, Abadie and Imbens (2008) consider the uncertainty due to the

matching process, noting that the bootstrap fails in this case owing to the “ex-

treme nonsmoothness” of matching. Abadie and Imbens (2006) develop asymp-

totic standard errors that account for uncertainty in the matching procedure.

Others have argued that an m-out-of-n bootstrap may be appropriate (see Poli-

tis and Romano (1994)). One benefit of kernel balancing and other weighting

methods is that, because the weights are continuous and observations are not

wholly dropped, as in matching, the simple bootstrap may be valid. However,

the development of more computationally attractive alternatives remains an area

for ongoing research.

5.3. Gaussian kernel and intuition for φ(Xi)

One reason to use the Gaussian kernel is that it is the workhorse kernel in

machine learning regression and classification tasks, and so the feature space it

implies is likely to be an appropriate one. Though kernel balancing does not

actually fit an outcome model here, the function space invoked, φ(Xi)
>θ, is the

same as that in which kernel methods, such as kernelized regression, support

vector machines with kernels, and Gaussian processes, operate. Moreover, the

Gaussian kernel has the universal representation property: as N → ∞, φ(X)>θ

it encompasses any continuous function of X (Micchelli, Xu and Zhang (2006)).

While asymptotically appealing, this universality as N approaches ∞ is less

reassuring in finite samples. Nevertheless, smoother functions can be well fitted

with fewer observations, making this an excellent choice to model E[Y0i|Xi] when

little is known about the nature of the relationship, except that it is continuous

and likely to be smooth. In many settings, such smoothness is reasonable: we

typically expect that small changes in Xi should lead to small changes in Y0i.

One approach to better understanding this function space is to analyze
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the features, φ(·), consistent with the Gaussian kernel, that is, those for which

〈φ(Xi), φ(Xj)〉 = k(Xi, Xj) holds true. Because the choice of φ(Xi) implied by

the Gaussian kernel is infinite-dimensional, it may seem difficult to imagine what

this function space looks like. A valid choice for φ(X) in the case of the Gaussian

kernel (with one-dimensional X) is {
√

2d/d! exp(−X2
i )(Xi)

d} for d = 0, 1, . . . ,∞.

The Supplementary Material S8 describes this in greater detail, but fortunately a

more intuitive understanding of this function space is available. As shown above,

the functions linear in φ(Xi) are also those linear in Ki. Accordingly, k(Xi, ·) is

sometimes called the “canonical feature mapping” corresponding to φ(x), (e.g.,

Minh, Niyogi and Yao (2006)). Because k(Xi, x) evaluates at x the height of a

Gaussian that had been centered at Xi, this function space is that which can

be built a by superposition of Gaussians placed over each observation and arbi-

trarily rescaled. That is, in the original covariates space RP , suppose we place a

p-dimensional Gaussian kernel over each observation in the data set, rescale each

of these by a scalar ci, and then sum these rescaled Gaussians to form a single

surface. By varying the values of ci, a wide variety of smooth functions can be

formed, approximating many nonlinear functions of the covariates. This view is

described and illustrated at length in Hainmueller and Hazlett (2014), where the

same function space is used to model smooth, highly nonlinear functions.

Another key question in determining what kernel to use is the choice of

bandwidth, b. A useful default value for b is given by the column rank of X

(see the Supplementary Material S12). An easy and transparent guideline for

investigators is to show results using a range of choices for b, starting from one

half of the default value (dim(Xi)) up to several times that value. Further de-

tails on the choice of b and its implications are discussed in the Supplementary

Material S12. The stability of our results over choices of b in both the simulation

and the applied example are illustrated in Supplementary Material S13.

5.4. Other quantities: ATE, ATC

This study has focused on the ATT, for simplicity of exposition and compa-

rability with matching and weighting approaches, which often focus on the ATT

as well. With minor adjustment, this method can also be used to identify the

average treatment effect on the controls (ATC), and the average treatment effect

(ATE).

To estimate the ATC, we wish to “move the treated to the control loca-

tions” rather than the other way around. Accordingly, we seek weights on the

treated units such that the weighted sum of Ki among the treated is equal to the
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(unweighted) average among the controls. That is, rather than seeking the non-

negative weights to achieve Kt =
∑

i:D=0wiKi, we would instead seek weights

that ensure

Kc =
∑
i:D=1

wiKi,
∑
i

wi = 1 and wi > 0,

where Kc is the empirical average Ki, taken over the controls only.

Similarly, for the ATE, the goal is to transport both the treated and the

control to the same location and (more importantly) to have the same expectation

o.f Y0i. Thus, we seek the weights w
(1)
i on the treated, and w

(0)
i on the controls,

such that ∑
i:D=0

w
(0)
i Ki =

∑
i:D=1

w
(1)
i Ki = K,

where K is the empirical average of Ki, taken over all observations, treated and

control alike. The KBAL package estimates the ATT by default, but optionally

estimates the ATC and ATE as well.

6. Conclusion

In order to reliably infer causal quantities from observational data, the pri-

mary challenge is often ensuring that we observe a set of variables that are

collectively sufficient for achieving conditional ignorability. However, even then,

performing the required conditioning on observables, particularly with multi-

ple, continuous covariates, remains nontrivial. Matching, covariate balancing

weighting, and propensity score weighting each seek to make the multivariate

distribution of covariates for the untreated more similar to that of the treated. If

any function of the observables that systematically influences the nontreatment

outcome persists in having a different mean for the treated and controls, the

resulting estimates may be biased. Unfortunately, the investigator is not usually

aware of all the functions of the covariates that may influence the outcome, mak-

ing it difficult to guard against this possibility. As illustrated here, when even

a simple nonlinear function of observables is confounding, existing methods can

fail to complete the desired adjustment.

Fortunately, the unbiased estimation of the ATT requires only that the ex-

pected nontreatment potential outcome is equal in the treated and control groups

after adjustment. Kernel balancing seeks to achieve this by first assuming that

E[Y0i|X] falls in a large space of smooth functions, which is, in turn, linear in the

columns of the kernel matrix, K, rather than the original covariates, X. It finds
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weights on the controls to make the weighted average row of K for the controls

approximately equal to the average row of K for the treated. This ensures that

the expected nontreatment outcome is approximately equal in the two groups.

Bias owing to the approximate nature of the weights can be bounded, and the

weights are chosen using a method that minimizes this worst-case bias. An al-

ternative interpretation of the procedure is that kernel balancing implies that a

particular kernel-based smoother for the multivariate densities is approximately

equal for the treated and control groups, as evaluated at every observation.

Numerous extensions remain for future work. First, K has dimensionality

N × N , which becomes unwieldy as N grows large, posing a practical limit of

tens of thousands of observations. Second, while the bootstrap may provide con-

fidence intervals that include uncertainty due to weight selection, further work is

needed, particularly on approximations that may not be as computationally bur-

densome when N is large. Finally, improvements may be possible on a number

of implementation details, such as the choice of the kernel and its parameters,

the optimization procedure and choice of methods for achieving approximate bal-

ance, and understanding the potential for bias owing to imperfect balance, using

metrics that are less extreme than the worst-case bound. An implementation

of this procedure using the choices described here is available in the R package

kbal.

Supplementary Material

The online Supplementary Material provides proofs, remarks, additional sim-

ulations and illustrations, and additional empirical applications.
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