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Supplementary Material

In this Supplementary File, we provide the proof of theorems in the main paper, additional

simulation results and LFP data analysis.

S1. Proof of Theorem 1

Our proof is based on the MLE consistency results for the general hidden Markov models in

Douc et al. (2011), hereafter D11. More specifically, Theorem 1 and Section 3.1 in D11 are

directly applicable to our model. Therefore it is good enough to verify Conditions (L1)–(L4)

on Page 12 in D11. Based on D11’s notation, their model is formulated as

Xt = AθXt−1 +RθUt−1,

Yt = BθXt + SθVt,
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with Ut and Vt being i.i.d. Gaussian vectors with zero means and identity covariance matrices.

Under our framework,

Aθ =



Φ
(1)
1 Φ

(1)
2

Iq 0

. . .

Φ
(R)
1 Φ

(R)
2

Iq 0


, Bθ =

(
M 0

)
, Rθ = I, Sθ = I.

Therefore the conditions (L3) and (L4) on Page 12 in D11 trivially hold. Moreover, since both

Φ
(k)
1 and Φ

(k)
2 are diagonal matrices with different AR(2) coefficients and M is assumed to be of

full column rank, Condition (L1) in D11 is also satisfied. To verify Condition (L2), we need to

show that the eigenvalues of Aθ all lie in the open unit circle. This can done by considering the

non-zero eigenvalue λ and eigenvector γ of Aθ such that Aθγ = λγ. Without loss of generality,

we can let R = 1 since Aθ is block-diagonal, and partition γT = (γT1 , γ
T
2 ), we have γ1 = λγ2,

which leads to a quadratic equation λ2 = λΦ
(1)
1 + Φ

(2)
2 . It can be seen that the solution of λ to

equation λ2− λΦ
(1)
1 −Φ

(1)
2 = 0 corresponds to the reciprocal of the roots for the AR(2) process

defined by the coefficients of Φ
(1)
1 and Φ

(2)
2 . By the assumption that these AR(2) processes are

causal, their roots lie outside the unit circle, which implies that the solutions of λ are inside the

unit circle. Therefore the conditions on Page 12 in D11 are all satisfied, which concludes the

proof.

S2. Proof of Theorem 2

We first present a lemma that gives an explicit form of the autocovariance function of an AR(2)

process. Such results will be helpful for proving the main theorem.
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Lemma 1. Given a (weakly) stationary zero mean AR(2) process St, the autocovariance func-

tion γS(h) takes the form

γS(h) = A1(ρeψi)−h +A2(ρe−ψi)−h, (S2.1)

where A1, A2 can be determined by solving the linear equation A1+A2 =
(1−φ2)σ

2
w

(1+φ2)(1−φ1−φ2)(1+φ1−φ2)

and A1(ρeψi)−1 +A2(ρe−ψi)−1 =
φ1σ

2
w

(1+φ2)(1−φ1−φ2)(1+φ1−φ2)
.

The proof is due to the fact that γS(h) = φ1γS(h− 1) + φ2γS(h− 2).

To prove Theorem 1, we first show that for any fixed J , {fS(j)(ω)}Jj=1 are linearly inde-

pendent. In fact, suppose there exists some constants b1, · · · , bJ such that
∑J
j=1 bjfS(j)(ω) = 0,

then we must have
∑J
j=1 bj

∑∞
h=−∞ γS(j)(h)e2πiωh =

∑∞
h=−∞

∑J
j=1 bjγS(j)(h)e2πiωh = 0. As

a direct result from Fourier theorem, we have
∑J
j=1 bjγS(j)(h) = 0 for any h. Thus for any

positive integer H, b1, · · · , bJ are solutions of the linear equation

Γb = 0, (S2.2)

where Γ =



γS(1)(0) γS(2)(0) . . . γS(J)(0)

γS(1)(1) γS(2)(1) . . . γS(J)(1)

...
...

...
...

γS(1)(H) γS(2)(H) . . . γS(J)(H)


(H+1)∗J

and b = (b1, · · · , bJ)′. From Lemma 1,

it is easy to show that γS(j)(h) = (ρ(j))−h(A
(j)
1 + A

(j)
2 ) cos(hψ(j)). Note that due to the condi-

tion that max{|ω1 − ω0|, · · · , |ωJ − ωJ−1|} → 0 and A
(j)
1 , A

(j)
2 are nonlinear functions of j, we

have rank(Γ) = min{H + 1, J}. It implies b = 0 and {fS(j)(ω)}Mj=1 are linearly independent.

Then we can implement the Gram-Schmidt process on the family of functions {fS(j)(ω)}∞j=1 to

obtain a family of orthonormal functions {f̃S(j)(ω)}∞j=1 in L2(0, 1
2
). It follows that for any non-

negative coefficients a1, · · · , aJ , there exist ã1, · · · , ãJ such that ||fY (ω)−
∑J
j=1 a

2
jfS(j)(ω)||2 =
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||fY (ω)−
∑J
i=1 ã

2
j f̃S(j)(ω)||2. If we can show {f̃S(j)(ω)}∞j=1 is also complete in L2(0, 1

2
), by Par-

seval equality, we can obtain that ||fY (ω)−
∑J
j=1 ã

2
j f̃S(j)(ω)||2 → 0 as J →∞ and equivalently,

||fY (ω)− fQ̂t,J
(ω)||2 → 0 as J →∞.

To show that {f̃S(j)(ω)}∞j=1 is complete in L2(0, 1
2
), it suffices to show {fS(j)(ω)}∞j=1 is

complete. Let us define B = {fS(j)(ω)}∞j=1. For any function g(ω) in L2(0, 1
2
), if g(ω) ⊥ B, then

we have
∫ 1

2
0
g(ω)fS(j)(ω)dω = 0 for any j. It is equivalent to

∑∞
h=∞

∫ 1
2
0
g(ω)γS(j)(h)e2πiωhdω =∑∞

h=−∞ γg(h)γS(j)(h) = 0 for any j. It boils down to the problem of solving for the linear

equation Γ′γ = 0, where Γ is defined in Equation (S2.2) and γ = (γg(0), · · · , γg(H)) for any

J and H. We have proved that Γ is of full row rank and thus γg(h) = 0 for any h. Thus

{fS(j)(ω)}∞j=1 is complete in L2(0, 1
2
).

For the proof of the second part of the theorem, note that the basis of FJ is equivalent with

the Fouriers series basis {e2πiωkh}Jk=1. Therefore by the Jackson inequality, the result follows.

S3. Computation algorithms: E-SSM estimation for a single epoch

Here we present the algorithms for E-SSM model parameter estimation when there is only a

single epoch, as described in Section 3.1 of the main paper. We propose an iterative algorithm

that comprises of Kalman filter and least squares for parameter estimation purpose. We start

with initial values M̃ = M̃0, X0
0 and P 0

0 . The estimation procedure takes iterations between

Algorithms 1 and 2 (shown below) until convergence. In this study, since we are interested

in the power of particular frequency bands, we will introduce box constraints to the modulus

ρ1, · · · , ρq to control the spread of the spectra curves. Hence in A.2 of Algorithm 1, we implement

an optimization approach with box constraints on modulus ρ1, · · · , ρq and no constraints on

σ2, τ2.

When choosing the initial values for M̃0, X0
0 , P

0
0 in Algorithm 1, we follow the same
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Algorithm 1 Kalman Filter and Maximum Likelihood
1: procedure Given M̃,X0

0 , P
0
0 , estimate ρ, σ

2, τ2 by Kalman filter and maximum likelihood

of innovations εt

2: A.1 Kalman filter and Kalman gain step

3: Φ1 ← diag(2ρ−1
1 cos(ψ1), · · · , 2ρ−1

q cos(ψq))

4: Φ2 ← diag(−ρ−2
1 , · · · ,−ρ−2

q )

5: Φ̃←

Φ1 Φ2

Iq 0


6: for t = 0, . . . , T do

7: Xt−1
t ← Φ̃Xt−1

t−1

8: P t−1
t ← Φ̃P t−1

t−1 Φ̃′ + σ2

Iq 0

0 0


9: Kt ← P t−1

t M̃ ′[M̃P t−1
t M̃ ′ + τ2Ip]−1 . The Kalman gain

10: Xt
t ←Xt−1

t +Kt(Yt − M̃Xt−1
t )

11: P tt ← (I2q −KtM̃)P t−1
t

12: A.2 Maximum likelihood estimation

13: for t = 0, . . . , T do

14: εt ← Yt − M̃Xt−1
t

15: Σt ← M̃P t−1
t M̃ ′ + τ2Ip

16: lY (ρ, σ2, τ2)← 1
2

∑T
t=1 log |Σt|+ 1

2

∑T
t=1 ε

′
tΣ
−1
t εt . The negative loglikelihood

17: (ρ̂, σ̂2, τ̂2)← argmin
(ρ,σ2,τ2)

lY (ρ, σ2, τ2) . Maximizing the likelihood of innovations

return ρ̂, σ̂2, τ̂2
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strategy in Harvey (1990). We let X0
0 = 0 and P 0

0 = κI, where I is the identify matrix and κ

is large such that (κI)−1 ≈ 0. We also allow M̃0 = 0 or take values from a uniform distribution

U(0, 1).

Algorithm 2 Kalman Filter and Least Squares Estimation
1: procedure Given the current estimates of ρ, σ2, τ2, we can obtain the estimates of M̃ by

Kalman filter and least squares estimation.

2: B.1 Kalman filter and Kalman gain step

3: Φ1 ← diag(2ρ−1
1 cos(ψ1), · · · , 2ρ−1

q cos(ψq))

4: Φ2 ← diag(−ρ−2
1 , · · · ,−ρ−2

q )

5: Φ̃←

Φ1 Φ2

Iq 0


6: for t = 0, . . . , T do

7: Xt−1
t ← Φ̃Xt−1

t−1

8: P t−1
t ← Φ̃P t−1

t−1 Φ̃′ + σ2

Iq 0

0 0


9: Kt ← P t−1

t M̃ ′[M̃P t−1
t M̃ ′ + τ2Ip]−1 . The Kalman gain

10: Xt
t ←Xt−1

t +Kt(Yt − M̃Xt−1
t )

11: Xt
t ←Xt

t/sd(Xt
t ) . sd(Xt

t ) denotes the standard deviation of Xt
t

12: //Remark: We scale Xt
t to unit variance for identifiability issues discussed before.

13: P tt ← (I2q −KtM̃)P t−1
t

14: B.2 Least square estimation from Equation (??)

15: Y ← (Y1, · · · ,YT ) . Y ∈ Rp×T

16: X ← (X1
1 , · · · ,XTT ) . X ∈ Rq×T

17: for w = 1, . . . , p do

18: M̃w ← (X ∗X′)−1 ∗X ∗ Y ′
(w)

. Y(w) denotes the wth row of Y

19: M̃ ← (M̃1, · · · , M̃w)′

return M̃
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S4. Sensitivity analysis

We also conduct sensitivity analysis for the proposed E-SSM via simulation studies under mul-

tiple epochs setting.

In Scenario 1, we assumed that the underlying latent sources followed autoregressive mov-

ing average (ARMA) processes with the same AR coefficients in Section 6.2 of the main paper.

In terms of the MA parameters, we allowed the order (mvorder) and coefficients (mvcoef ) vary

to some extent. We then applied the proposed E-SSM method and calculated the sum of square

errors (SSE) of the “mixing” matrix. As a benchmark, we also applied the proposed E-SSM

to the “true” AR(2) generated sources and obtained an SSE of 0.068. From the results shown

in Table 1, the SSE increases as we increase the order of mv and the value of mv coefficients.

However, we can still observe reasonable SSE when the mv order and coefficients go below 5.

In Scenario 2, we added random noise into the underlying AR(2) processes. Similar to

Scenario 1, we fixed the AR coefficients at the same values with those in Section 6.2 of the

main paper. The noise was generated from uniform and Gaussian distribution separately. The

uniform distribution was supported from −u to u, where u took values in {.01, .1, 1, 5, 10}. For

the Gaussian distribution N(0, σ2
n), we let σn take values in {.01, .1, 1, 5, 10}. We summarized

the SSE in Table 2.

In Scenario 3, we increased the order of underlying AR processes. To be specific, we gener-

ated AR(10) processes with FIVE peaks at 2, 12, 22, 32, 42 Hertz. The modulus were similar to

those in Section 6.2 of the main paper. Web Figure 18 shows the true and the estimated “mix-

ing” matrices. It can be easily found that the proposed E-SSM captures the structure directly

even though the sources deviate from AR(2) processes. To further investigate the performance

of E-SSM, we “reconstructed” the observed signals using the estimated “mixing” matrix and

“uncovered” latent sources. Web Figure 19 presents the periodograms of true and estimated
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signals from channel 16. It shows that the estimated signals mainly recover the true processes

with only some slight discrepancies. The dynamics across epochs are Allen et al. (2016) perfectly

captured.

In Scenario 4, we generated 5 latent independent AR(2) signals corresponding to delta

(δ: 0 - 4 Hertz), theta (θ: 4 - 8 Hertz), alpha (α: 8 - 12 Hertz), lower beta (β: 12 - 18

Hertz) and gamma (γ: > 32 Hertz). To generate the observed signals, we only choose 3 latent

independent AR(2) processes (delta, theta and lower beta bands) and 20 electrodes. SWe allow

the modulus (ρ
(r)
1 , ρ

(r)
2 , ρ

(r)
3 ) to increase from (1.001, 1.001, 1.001) with an increment of 0.00005

as the epoch r propagates. All the remaining parameters are the same as in Section 6.1 of the

main paper. To evaluate the robustness of the proposed method, we also fit FIVE frequency

bands into the observed signals. Web Figure 4 shows the periodogram of the generated signals

from electrode 1. We fit the proposed model with FIVE frequency bands. Web Figure 5 shows

the true mixing matrix (left) and its estimation (right). From the true matrix, we can observe

zero columns corresponding to “alpha” and “gamma” bands that indicate the observed signals

are generated only by the three remaining bands (delta, theta and lower beta bands). From the

estimation result, it is clear that the columns of “alpha” and “gamma” bands are roughly zero,

which shows the proposed E-SSM successfully capture the three latent sources (delta, theta

and lower beta bands) while neglecting the impacts from alpha and gamma bands. Web Figure

6 shows the periodograms of the true and estimated signals from the three underlying AR(2)

processes. Similar to the results in Section 6.2 of the main paper, we can see the pattern of the

periodograms from the reconstructed AR(2) process is consistent with that of the true AR(2)

process.
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S5. Figures
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Figure 1: The periodograms of the true (black) and estimated (red) latent

processes.
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Figure 2: The periodogram of generated signals from electrode 1 computed
over all 100 epochs. From the heat map, we are observing the powers are
evolving across epochs. At early stage, three dominating frequency bands
can be identified clearly. As epoch evolves, such pattern is getting less clear.
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Figure 3: The periodograms of the true (left) and estimated (right) latent
AR(2) processes corresponding to delta (top), alpha (middle) and beta
(bottom) frequency band.
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Figure 4: The periodogram of generated signals from electrode 1 computed
over all 30 epochs.

5
1

0
1

5
2

0

Source Signals

E
le

c
tr

o
d

e
s

Delta Theta Alpha Beta Gamma

5
1

0
1

5
2

0

Source Signals

E
le

c
tr

o
d

e
s

Delta Theta Alpha Beta Gamma

0.2

0.4

0.6

0.8

1.0

Figure 5: The true mixing matrix (left) and estimated mixing matrix
(right). Darker color indicates heavier weight given by the corresponding
latent processes. Columns corresponding to “alpha” and “gamma” bands
are zero in the true mixing matrix (left). In the estimated mixing matrix
(right), those two columns are also close to zero.
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Figure 6: The periodograms of the true (left) and estimated (right) la-
tent AR(2) processes corresponding to delta (top), theta (middle) and beta
(bottom) frequency band.
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Figure 7: The boxplots of variance accounted by different components
across different stages during the experiment. The results were obtained
by conducting principal component analysis on frequency domain. Epochs
in the entire experiment have been classified as 6 stages with each consisting
of 40 epochs (Stage I: 1-40, II: 41-80, III: 81-120, IV: 121-160, V: 161-200,
VI: 201-247). The first component is shown on top and the first three cu-
mulative components is at the bottom. We could observe that about 90%
of variance can be explained by three components.
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Figure 8: The time series plots of modulus corresponding to delta (above),
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Figure 9: Top: Auto-correlation function (ACF) of the residual plots from
electrode 1. Bottom: Partial auto-correlation function (PACF) of the resid-
ual plots from electrode 1. The dashed lines indicate the threshold for non-
zero correlation. These plots, along with the Ljung-Box test for white noise
(p− value ≈ 0.75) suggest that the residuals are white noise and hence the
E-SSM model fits the data well. These same plots were observed in all the
other electrodes but we do not report them here due to space constraints.
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Figure 10: Schematic illustration of the estimation methods that summarize
II.A, II.B and II.C in Section 3.
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Figure 11: The periodograms of the latent processes obtained from the true
signals (in black), the estimated signals from E-SSM (in red) and the ICA
(in green).
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Figure 12: The periodograms of the true (left) and estimated (right) latent
AR(2) processes obtained from E-SSM corresponding to delta (top), alpha
(middle) and beta (bottom) frequency band.
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Figure 13: The periodograms of the true (left) processes corresponding
to delta (top), alpha (middle) and beta (bottom) frequency band vs the
“uncovered” sources obtained from ICA (right).
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Figure 14: The true mixing matrix (left) and estimated mixing matrix
(right) obtained from the proposed E-SSM. Darker color indicates heavier
weight given by the corresponding latent processes. Columns corresponding
to “alpha” and “gamma” bands are zero in the true mixing matrix (left).
In the estimated mixing matrix (right), those two columns are also close to
zero.
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Figure 15: The true mixing matrix (left) and estimated mixing matrix
(right) obtained from ICA. The weights corresponding to “alpha” and
“gamma” bands are zero while ICA does not provide similar results.
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Figure 16: The periodograms of the true (left) and estimated (right) la-
tent AR(2) processes corresponding to delta (top), theta (middle) and beta
(bottom) frequency band obtained from E-SSM.
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Figure 17: The periodograms of the true (left) process corresponding to
delta (top), theta (middle) and beta (bottom) frequency band vs the “un-
covered” sources obtained from ICA.
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Figure 18: Sensitivity analysis Scenario 3: the true mixing matrix (left)
and estimated mixing matrix (right) obtained from E-SSM.
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Figure 19: The periodograms of true (left) and estimated (right) signals
from channel 16. Note that five peaks are present and the modulus are
progressing across epochs.
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Figure 21: The evolution of the relative periodogram (summing up to 1 for
each frequency) across the duration of experiment. Each plot displays the
estimated power spectrum during the 3 phases: Phase 1 (epoch 1 - 80),
Phase 2 (epoch 81 - 160) and Phase 3 (epoch 161 - 247). Frequency bands
around particular hertz are present, which can be modeled by an AR(2).

S6. Tables

Table 1: Sensitivity analysis Scenario 1 – SSE (compared at 0.068).

mvorder = 1 mvorder = 3 mvorder = 5 mvorder = 10 mvorder = 50 mvorder = 100

mvcoef = 1 0.103 0.122 0.121 0.137 0.689 0.757

mvcoef = 5 0.115 0.128 0.199 0.377 0.581 0.808

mvcoef = 10 0.123 0.179 0.374 0.489 0.493 0.943
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Table 2: Sensitivity analysis Scenario 2 – SSE (compared at 0.068).

Uniform u = 0.01 u = 0.1 u = 1 u = 5 u = 10

0.267 0.405 0.436 0.442 0.682

Gaussian σn = 0.01 σn = 0.1 σn = 1 σn = 5 σn = 10

0.761 0.797 0.831 0.898 1.867
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