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Abstract: We propose a ranking-based variable selection (RBVS) technique that

identifies important variables influencing the response in high-dimensional data.

RBVS uses subsampling to identify the covariates that appear nonspuriously at

the top of a chosen variable ranking. We study the conditions under which such a

set is unique, and show that it can be recovered successfully from the data by our

procedure. Unlike many existing high-dimensional variable selection techniques,

among all relevant variables, RBVS distinguishes between important and unim-

portant variables, and aims to recover only the important ones. Moreover, RBVS

does not require model restrictions on the relationship between the response and

the covariates, and, thus, is widely applicable in both parametric and nonparamet-

ric contexts. Lastly, we illustrate the good practical performance of the proposed

technique by means of a comparative simulation study. The RBVS algorithm is

implemented in rbvs, a publicly available R package.

Key words and phrases: Bootstrap, stability selection, subset selection, variable

screening.

1. Introduction

Suppose Y is a response, the covariates X1, . . . , Xp constitute the set of ran-

dom variables that potentially influence Y , and we observe Zi = (Yi, Xi1, . . . , Xip),

for i=1, . . . , n, independent copies of Z=(Y,X1, . . . , Xp). In modern statistical

applications, where p could be very large, even in tens or hundreds of thousands,

it is often assumed that many variables have no impact on the response. It is

then of interest to use the observed data to identify a subset of X1, . . . , Xp that

affects Y . This so-called variable selection or subset selection problem plays an

important role in statistical modeling for the following reasons. First, the number

of parameters in a model, including all covariates, can exceed the number of ob-

servations when n < p, which means precise statistical inferences are not possible

using traditional methods. Even when n ≥ p, constructing a model with a small

subset of initial covariates can boost the estimation and prediction accuracy.

Second, parsimonious models are often more interpretable. Third, identifying
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the set of important variables can be the main goal of statistical analysis, which

precedes further scientific investigations.

Our aim is to identify a subset of {X1, . . . , Xp} that contributes to Y , under

scenarios in which p is potentially much larger than n. To model this phe-

nomenon, we work in a framework in which p diverges with n. Therefore, both

p and the distribution of Z depend on n, and we work with a triangular array,

rather than a sequence. To facilitate interpretability, for each j, what the variable

Xj represents does not change as p (and n) increases. Our framework includes,

for instance, high-dimensional linear and nonlinear regression models. Our pro-

posed ranking-based variable selection (RBVS) can be applied to any technique

that allows the ranking of covariates according to their impact on the response.

Therefore, we do not impose any particular model structure on the relationship

between Y and X1, . . . , Xp. However, ω̂j = ω̂j(Z1, . . . ,Zn), for j = 1, . . . , p, a

measure used to assess the importance of covariates (either joint or marginal),

may require some assumptions on the model. The main component of the RBVS

methodology is the variable ranking, defined as follows.

Definition 1. The variable ranking Rn=(Rn1, . . . , Rnp) based on ω̂1, . . . , ω̂p is a

permutation of {1, . . . , p} satisfying ω̂Rn1
> · · · > ω̂Rnp

. Potential ties are broken

at random uniformly.

Numerous measures can be used to construct variable rankings. For lin-

ear models, the marginal correlation coefficient serves as an example of such a

measure, and is the main component of sure independence screening (SIS, Fan

and Lv (2008)). Hall and Miller (2009a) consider a generalized correlation co-

efficient, that can capture (possible) nonlinear dependence between Y and Xj .

Along the same lines, Fan, Feng and Song (2011) propose a procedure based on

the magnitudes of spline approximations of Y over each Xj , aiming to capture

dependencies in nonparametric additive models. Fan and Song (2010) extend SIS

to a class of generalized linear models (GLMs), using estimates of the maximum

marginal likelihood as the measure of association. Cho and Fryzlewicz (2012)

consider variable screening based on a tilted correlation, which accounts for high

correlations between the variables, when such are present. Li et al. (2012) use the

Kendall rank correlation coefficient, which is applicable when Y is, for example, a

monotonic function of the linear combination of X1, . . . , Xp. In addition, several

model-free variable ranking procedures have been advocated in the literature. Li,

Zhong and Zhu (2012) propose ranking the covariates according to their distance

correlation (Székely and Rizzo (2009)) to the response. Zhu et al. (2011) pro-
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pose using the covariance between Xj and the cumulative distribution function

of Y , conditioning on Xj at point Y , as the quantity estimated for screening

purposes. He, Wang and Hong (2013) suggest a ranking procedure that relies

on the marginal quantile utility, and Shao and Zhang (2014) introduce a ranking

based on the martingale difference correlation. An extensive overview of these

and other measures that can be used for variable screening can be found in Liu,

Zhong and Li (2015). In this work, we also consider variable rankings based on

measures that were not originally developed for this purpose, such as regression

coefficients estimated using penalized likelihood minimization procedures such

as the Lasso (Tibshirani (1996)), SCAD (Fan and Li (2001)), or MC+ (Zhang

(2010)).

Variable rankings are used for the purpose of so-called variable screening

(Fan and Lv (2008)). The main idea behind this concept is that important co-

variates are likely to be ranked ahead of irrelevant ones, which means variable

selection can be performed on the set of top-ranked variables. Variable screening

procedures have gained in popularity, owing to their simplicity and wide appli-

cability, as well as the computational gains they offer to practitioners. Hall and

Miller (2009a) suggest that variable rankings can be used for actual variable selec-

tion. They propose constructing bootstrap confidence intervals for the position

of each variable in the ranking, and then selecting the covariates for which the

right end of the confidence interval is lower than some cutoff, for example, p/2.

This principle, as its authors admit, may lead to an undesirable high rate of false

positives, and the choice of the ideal cutoff might be very difficult in practice, as

was the case in our real-data study (see the Supplementary Material). Hall and

Miller (2009b) show that various types of bootstrap estimate the distribution of

the ranks consistently. However, they do not prove that their procedure is able

to recover the set of important variables.

Another approach that involves subsampling is that of Meinshausen and

Bühlmann (2010), who propose stability selection (StabSel), a general method-

ology that aims to improve any variable selection procedure. In the first stage

of the StabSel algorithm, a variable selection technique is applied to randomly

chosen subsamples of data of size bn/2c. Then, the variables most likely to

be selected by the initial procedure, that is, their selection probabilities exceed

a prespecified threshold, are taken as the final estimate of the set of important

variables. An appropriate choice of threshold leads to finite-sample control of the

rate of false discoveries of a certain type. Shah and Samworth (2013) propose a

variant of StabSel with improved error control.
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Our proposed method also incorporates subsampling to boost existing vari-

able selection techniques. Conceptually, it is different from StabSel. Informally,

RBVS sorts covariates from the most to the least important, whereas StabSel

treats variables as either relevant or irrelevant, and equally important in either

of the categories. This has several important consequences. First, RBVS is able

to simultaneously identify subsets of covariates that appear to be important,

consistently over subsamples. The same is not feasible for StabSel, which ana-

lyzes only the marginal distribution of the initial variable selection procedure.

The bootstrap ranking approach of Hall and Miller (2009a) relies on marginal

confidence intervals, and thus can also be regarded as a “marginal” technique.

Second, RBVS does not require that we choose a threshold. The main parameters

that RBVS require are those from the incorporated subsampling procedure (nat-

urally, these are also required by the approaches of Hall and Miller (2009a) and

Meinshausen and Bühlmann (2010)). Thus, RBVS appears to be more automatic

than either StabSel or the approach of Hall and Miller (2009a).

The key idea behind RBVS stems from the following observation: although

some subsets of {X1, . . . , Xp} that contain irrelevant covariates may appear to

have a high influence over Y , the probability that they will consistently exhibit

this relationship over many subsamples of observations is small. On the other

hand, truly important covariates will typically consistently appear to be related

to Y , both over the entire sample and over randomly chosen subsamples. This

motivates the following procedure. In the first stage, we repeatedly assess the

impact of each variable on the response, using randomly chosen subsamples of

the data. For each random draw, we sort the covariates in decreasing order

according to their impact on Y , obtaining a ranking of variables. In the next

step, we identify the sets of variables that appear frequently in the top of the

rankings, and record the corresponding frequencies. The final set of variables is

selected based on these frequencies.

RBVS is a general and widely applicable approach to variable selection,

and can be used with any measure of dependence between Xj and Y , whether

marginal or joint, in both parametric and nonparametric contexts. The frame-

work does not require that Y and Xj be scalar; they may, for example, be

multivariate or curves or graphs. Furthermore, covariates that are highly, but

spuriously related to the response are, intuitively, less likely to exhibit a consis-

tent relationship with Y over the subsamples; thus, our approach is “reluctant”

to select irrelevant variables. Finally, the RBVS algorithm is easily parallelizable

and adjustable to available computational resources, making it useful in anal-
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yses of extremely high-dimensional data sets. Its R implementation is publicly

available in the R package rbvs (Baranowski, Breheny and Turner (2015)).

The rest of the paper is organized as follows. In Section 2, we define the set

of important covariates for the variable rankings and introduce the RBVS algo-

rithm. We then show that RBVS is a consistent statistical procedure. We also

propose an iterative extension of RBVS that boosts its performance in the pres-

ence of strong dependencies between the covariates. The empirical performance

of RBVS is discussed in Section 3. All proofs are deferred to the Appendix.

Additional numerical experiments and real-data examples can be found in the

online Supplementary Material.

1.1. Motivating examples

To further motivate our methodology, we discuss the following examples.

Example 1 ( riboflavin production with Bacillus subtils ( Meinshausen and

Bühlmann (2010)). The data set consists of the response variable (the logarithm

of the riboflavin production rate) and transformed expression levels of p = 4, 088

genes for n = 111 observations. The aim is to identify those genes whose mutation

leads to a high concentration of riboflavin.

Example 2 (Fan and Lv (2008)). Consider a random sample generated from the

linear model Yi = 5Xi1+5Xi2+5Xi3+εi, for i = 1, . . . , n, where (Xi1, . . . , Xip) ∼
N (0,Σ) and εi ∼ N (0, 1) are independent, and Σjk = 0.75 for j 6= k, and Σjk = 1

otherwise. The number of covariates p = 4, 088 and the sample size n = 111 are

the same as in Example 1.

We consider the variable ranking defined in Definition 1, based on the sample

marginal correlation coefficient in both examples. This choice is particularly

reasonable in Example 2, where at the population level, the Pearson correlation

coefficient is largest for X1, X2, and X3, which are the only truly important

ones. The linear model has been used previously to analyze the riboflavin data

set (Meinshausen and Bühlmann (2010)). Therefore, the sample correlation may

be useful in identifying important variables in Example 1 as well.

Figure 1 shows the “paths” generated by Algorithm 1, which we introduce

in the next section. In both examples, the paths share common features, namely,

that the estimated probability is large for the first few values of k, but then

decreases afterwards. Interestingly, in Example 2, the curves reach levels very

close to zero shortly after k = 3, which is the number of important covariates here.

Crucially, the subset corresponding to k = 3 contains the first three covariates
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(b) Example 2

Figure 1. Estimated probabilities corresponding to the k-element sets that appear to
be the most highly correlated to the response based on subsamples. On the x-axis, k
denotes the number of elements in a set. On the y-axis we have the estimated probability
corresponding to the most frequently occurring subset of covariates of size k. The three
different lines in each example correspond to a different subsample size used to generate
paths (see Section 2).

(Xi1, Xi2, Xi3), which are relevant in this example. This observation suggests

that paths such as those presented in Figure 1 may be used to identify how

many and which variables are important, and, hence, may be used for variable

selection.

2. Methodology of RBVS

In this section, we introduce the RBVS algorithm and its extension. The

main purpose of RBVS is to find the set of top-ranked variables, which we define

formally here.

2.1. Notation

Hereafter, |A| denotes the number of elements in a set A. For every k =

0, . . . , p (where p grows with n), we denote Ωn,k={A ⊂ {1, . . . , p} : |A| = k}. In

the remainder of the paper, we suppress the dependence of Ωn,k on p (and thus

n) for notational convenience, and simply write Ωn,k ≡ Ωk. For any A ∈ Ωk,

k = 1, . . . , p, we define the probability of its being ranked at the top by a given

ranking method as

πn(A) = P
(
{Rn1(Z1, . . . ,Zn), . . . , Rn,|A|(Z1, . . . ,Zn)} = A

)
. (2.1)

For k = 0, we set πn(A) = πn(∅) = 1. Furthermore, for any integer m satisfying

1 ≤ m ≤ n, we define
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πm,n(A) = P
(
{Rn1(Z1, . . . ,Zm), . . . , Rn,|A|(Z1, . . . ,Zm)} = A

)
. (2.2)

Here, we are interested in the probability of being ranked at the top using partial

observations. Note that the random samples in our framework can be viewed

as forming a triangular array; thus, a double subscript is used in the definition

above.

2.2. Definition of k-top-ranked, locally top-ranked, and top-ranked sets

Given a ranking scheme, we define the set of important variables in the

context of variable rankings.

Definition 2. A ∈ Ωk (with k ∈ {0, . . . , p− 1}) is k-top-ranked if lim supn→∞
πn(A) > 0.

Definition 3. A ∈ Ωk is said to be locally top-ranked if it is k-top-ranked and a

k+1-top-ranked set does not exist; i.e., lim supn→∞ πn(A) = 0, for all A ∈ Ωk+1.

Definition 4. A ∈ Ωk is said to be top-ranked if it is locally top-ranked, and

there do not exist any other locally top-ranked sets A′ ∈ Ωk′ , for any k′ < k. It

is unique when the existence of another top-ranked set A′ ∈ Ωk implies A = A′.

Some remarks are in order. First, Definition 2 formalizes the statement that

A appears at the top of the ranking with non-negligible probability. We use

limit-supremum in the definitions above, because limn→∞ πn(A) might not exist

in general. Furthermore, we consider lim supn→∞ πn(A) > 0 in Definition 2,

because in some scenarios, it is strictly less than one. In Example 2, for instance,

X1, X2, and X3 have an equal impact on Y . Hence, under a reasonable ranking

scheme (e.g., via marginal correlations), limn→∞ πn(A) = 1/3, for k = 1 and

A = {1}, {2}, {3}.
Second, in carefully constructed examples, it can be shown that locally top-

ranked sets might exist for different values of k, where k is allowed to grow with

n. For instance, suppose that Yi =
∑bp/3c

j=1 2Xij +
∑b2p/3c

j=bp/3c+1Xij + εi, where

(Xi1, . . . , Xip) ∼ N (0, Ip) and εi ∼ N (0, 1). Then, using marginal correlations, it

is easy to see that both {1, . . . , bp/3c} and {1, . . . , b2p/3c} are locally top-ranked.

Nevertheless, this issue can be handled by selecting the smallest k in Definiton 4.

The appropriateness of this definition is demonstrated in Section 2.3.

Third, although the top-ranked set is unique under our assumptions (see

Section 2.3), this does not imply that other k-top-ranked sets are unique as well.
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In Example 2 again, we observe that {1}, {2}, and {3} are 1-top-ranked, and

{1, 2}, {1, 3}, and {2, 3} are 2-top-ranked. However, the top-ranked set is unique

and equal to {1, 2, 3}.
Finally, note that for any given {Zi}ni=1, 1 =

∑
A∈Ωk

1{Rn1(Z1,...,Zn),...,

Rnk(Z1,...,Zn)}=A}|{Zi}ni=1 =
∑
A∈Ωk

P({Rn1(Z1, . . . ,Zn), . . . , Rnk(Z1, . . . ,Zn)} =

A{Zi}ni=1). By taking the expection over {Zi}ni=1 on both sides, we have that∑
A∈Ωk

πn(A) = 1 for every k and n, and hence maxA∈Ωk
πn(A) ≥ 1/

(
p
k

)
, for

every k = 1, . . . , p. In particular, if p were bounded in n, the top-ranked set (as

well as the locally top-ranked sets) would not exist. Therefore, we restrict our-

selves to the case of p diverging with n (but allowing for both p ≤ n and p > n).

In Section 3, we show that RBVS works well empirically when p is comparable

to or much larger than n.

2.3. Top-ranked set for a class of variable rankings

The top-ranked set defined in Definition 4 exists for a wide class of variable

rankings, as we show in Proposition 1 below. Let ωj , for j = 1, . . . , p, be a

measure of the contribution of each Xj to the response at the population level.

Note that ωj could depend on the distribution of Z = (Y,X1, . . . , Xp) (and, thus,

on n, because p changes with n), and so could, in theory, change with n. However,

we suppress this dependence in the notation, for simplicity. Furthermore, let

ω̂j = ω̂j(Z1, . . . ,Zn) be an estimator of ωj . We make the following assumptions.

(C1) Z1, . . . ,Zn are independent. For some ϑ > 0 and any cϑ > 0, we have

max
j=1,...,p

P
(
|ω̂j − ωj | ≥ cϑn−ϑ

)
≤ Cϑ exp (−nγ) ,

where the constants Cϑ, γ > 0 do not depend on n.

(C2) The index set of important variables is denoted as S ⊂ {1, . . . , p}. S does

not depend on n or p, and could potentially be an empty set.

(C3) For every a /∈ S, there exists Ma ⊂ {1, . . . , p}\S, such that a ∈ Ma, the

distribution of {ω̂j}j∈Ma
is exchangeable, and |Ma| →

n
∞.

(C4) There exists η ∈ (0, ϑ], where ϑ is defined in (C1), and cη > 0, such that

minj∈S ωj −maxj /∈S ωj ≥ cηn−η uniformly in n.

(C5) The number of covariates p ≤ C1 exp
(
nb1
)
, where 0 < b1 < γ and γ is

defined in (C1).
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Condition (C1) is a concentration bound that holds for a wide range of measures.

A few examples are listed below. The sample correlation coefficient satisfies (C1)

when the data follow a multivariate normal distribution (Kalisch and Bühlmann

(2007, Lemma 1)), or when Y,X1, . . . , Xp are uniformly bounded (Delaigle and

Hall (2012, Thm. 1)), which follows from the Bernstein inequality. Li et al.

(2012), in their Theorem 2, demonstrate that Kendall’s τ meets (C1) under the

marginally symmetric condition and the multi-modal condition. Distance corre-

lation satisfies (C1) under regularity assumptions on the tails of the distributions

of Xj and Y (Li, Zhong and Zhu (2012, Thm. 1)). Both the Lasso and the Dantzig

selector (Candes and Tao (2007)) estimates of the regression coefficients in the

linear model meet (C1), with additional assumptions on the covariates, and on

the sparsity of the regression coefficients (Lounici (2008, Thm. 1)).

Condition (C2) implies that |S| is bounded in n, which, combined with di-

verging p, implies that the number of important covariates is small. This, to-

gether with Conditions (C3) and (C4), can be viewed as a variant of the well-

known “sparsity” assumption.

We are interested in scenarios in which a few variables have a large impact

on the response, and many variables have a similar impact on the response; in the

latter case, the variables can only have zero or a small impact on the response.

Here, the first part is characterized by Condition (C3), and the second part is

characterized by Condition (C4).

Condition (C3) can be linked to the sparsity assumption, which requires that

only a few covariates have a significant impact on the response. In our framework,

these are {Xj}j∈S . For all remaining covariates, the sparsity may require that

their corresponding regression coefficients be zero. On the other hand, in (C3),

each Xa, with a /∈ S, may contribute to Y . However, heuristically, it is difficult to

select a particular Xa, with a /∈ S, because many covariates have the same impact

on Y . As such, none of these would be included in our framework. We believe that

this assumption is likely to be met, at least approximately (in the sense that large

groups of covariates exhibit a similar small impact on the response), especially

for large dimensions p. In addition, note that Meinshausen and Bühlmann (2010)

use the exchangeability assumption on the selection of noise variables. However,

it concerns a variable selection procedure, whereas we impose restrictions on the

measure ω̂j . The main difference between their assumption and (C3) is that

they require that all covariates be equally likely to be selected, whereas we allow

for many groups, within which each variable has the same impact on Y . In

the remainder of the paper, we refer to the elements of set S as “relevant and
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important” (or just “important”) variables, the covariates with zero impact on

the response as “irrelevant” variables, and the rest as “relevant but unimportant”

variables.

Furthermore, in Condition (C4), we assume that there is a gap between

minj∈S ωj and maxj /∈S ωj , which separates the important variables from the re-

mainder (i.e., irrelevant, and relevant but unimportant). This gap is allowed

to decrease slowly to zero. Conditions (C1) and (C4) together imply that the

ranking based on ω̂j satisfies the SIS property (Fan and Lv (2008)).

Finally, Condition (C5) restricts the maximum number of covariates, but

allows an ultra high-dimensional setting where the number of covariates grows

exponentially with nb1 , for some b1 > 0.

Proposition 1. Let Rn be a variable ranking based on ω̂j, for j = 1, . . . , p, given

in Definition 1. Under conditions (C1)–(C5), the unique top-ranked set defined

in Definition 4 exists and is equal to S.

Proposition 1 can be applied to establish a link between the top-ranked

set and the set of important variables, understood in a classic way. Consider

the linear regression model Y =
∑p

j=1 βjXj + ε, where βj is an unknown re-

gression coefficient, Xj is a random predictor, and ε is an error term. In this

model, the top-ranked set could coincide with {k : βk 6= 0}. To see that, we

consider the variable ranking based on ω̂j = Ĉor (Y,Xj), which satisfies (C1)

when (Y,X1, . . . , Xp) is, for example, Gaussian (Kalisch and Bühlmann (2007)).

Condition (C3) is met when, for example, Ĉor (Y,Xj) = ρ, for some ρ ∈ (−1, 1)

and all j such that βj = 0, and p →
n
∞. Imposing some restrictions on the

correlations between the covariates, we also guarantee that (C4) holds. Finally,

provided that p→
n
∞ no faster than indicated in (C5), Proposition 1 implies that

{k : βk 6= 0} is the unique top-ranked set.

Nevertheless, note that the top-ranked set only contains relevant and impor-

tant variables with respect to the chosen measure. Relevant but unimportant

variables (unimportant via exchangeability, in the sense of (C3), so not nec-

essarily having small impact in the traditional sense) are not included in the

top-ranked set. For instance, in the setting of Example 2, but with Yi = 5Xi1 +

5Xi2 + 5Xi3 +
∑p

j=dp/2e+1 βXij + εi and |β| < 5, the top-ranked set via marginal

correlations is still {1, 2, 3}, even though for all j = 1, 2, 3, dp/2e+1 . . . , p, Xj has

a nonnegligible impact on Y . For other work on overcoming the issue of small

relevant covariates, see Barut, Fan and Verhasselt (2016). In particular, Barut,

Fan and Verhasselt (2016) also deal with the issue of marginally uncorrelated
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covariates, which we address by proposing an iterative approach in Section 2.7.

See also our simulation examples in this direction in Section 3.

2.4. Main idea of RBVS

Now, assume the existence and uniqueness of the top-ranked set S. To

construct an estimate of S, we introduce the estimators of πm,n(A) defined by

(2.2) using a variant of the m-out-of-n bootstrap (Bickel, Götze and van Zwet

(2012)).

Definition 5. Fix m ∈ {1, . . . , n} and B ∈ N, and set r = bn/mc. For any

b = 1, . . . , B, let Ib1, . . . , Ibr be mutually exclusive subsets of {1, . . . , n} of size

m, drawn uniformly from {1, . . . , n}, without replacement. Assume that the sets

of subsamples are independently drawn for each b. For any A ∈ Ωk, we estimate

πm,n(A) as the fraction of subsamples in which A appeared at the top of the

ranking; that is,

π̂m,n(A) = B−1
B∑
b=1

r−1
r∑
j=1

1{
A=
{
Rn,1({Zi}i∈Ibj ),...,Rn,|A|({Zi}i∈Ibj )

}}.
In general, πm,n(A) can differ from πn(A). However, we show in Section 2.6

that πm,n(A) and πn(A) are similar (in term of their magnitudes) for the same

subsets, provided that m is not too small. This, combined with some bounds

on the estimation accuracy of π̂m,n(A), imply that π̂m,n(A) can be used to find

the k-top-ranked sets from the data. In practice, the number of elements in

S is typically unknown. Thus, we need to consider subsets of any size in our

estimation procedure. From our argument above, for n sufficiently large, the

top-ranked set S, given its existence and uniqueness, will have to be one of the

following sets for a particular k ∈ {0, 1, . . . , p− 1}, where

Ak,m = argmaxA∈Ωk
πm,n(A). (2.3)

We define the corresponding sample version of Ak,m as

Âk,m = argmaxA∈Ωk
π̂m,n(A). (2.4)

To motivate the use of the resampling scheme, note that some irrelevant

covariates (i.e., those with zero impact on the response) can spuriously exhibit a

large empirical impact on the response, especially when p� n. The resampling-

based set probability estimation could provide estimates that are more stable,
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helping to identify variables that appear nonspuriously at the top of the ana-

lyzed rankings. Moreover, to understand the importance of the parameter B

introduced in Definition 5, note that maxA∈Ωk
π̂m,n(A) ≥ (Br)−1. For moder-

ate sample sizes, r may not be large, while we expect the majority of πm,n(A)

to be small, smaller even than 1/r. In this situation, the estimation error of

maxA∈Ωk
π̂m,n(A) with B = 1 is expected to be high, and the estimate of Âk,m

could be inaccurate. A moderate value of B aims to bring Âk,m closer to its

population counterpart Ak,m. The theoretical requirements on m and B are

given in Section 2.6; our suggestions for the choices of m and B are provided in

Section 3.3.

In practice, we do not know the size of the top-ranked set s = |S|; thus, it

should be estimated as well. One possibility is to apply the hard thresholding

rule and set

ŝζ = min
{
k : π̂m,n

(
Âk+1,m

)
≤ ζ
}
,

where ζ > 0 is a prespecified threshold. This approach could be justified by the

existence of the asymptotic gap between πm,n(As+1,m) and πm,n(As,m). However,

the magnitude of this difference is typically unknown, and can be rather small,

which makes the choice of ζ difficult. As an alternative, we propose estimating s

by

ŝ = argmink=0,...,kmax−1

π̂τm,n(Âk+1,m)

π̂m,n(Âk,m)
, (2.5)

for some prespecified τ ∈ (0, 1], and some prespecified large integer kmax. The

intuition of this choice is explained as follows. Note that

π̂τm,n(Âk+1,m)

π̂m,n(Âk,m)
=

(
π̂m,n(Âk+1,m)

π̂m,n(Âk,m)

)τ (
1

π̂m,n(Âk,m)

)1−τ

.

When τ = 1, we look for k, where π̂m,n(Âk+1,m) decreases in proportion the most

drastically. For a general τ , in essence, we look for k that is a trade-off between

the latter case and the hard thresholding rule (by not permitting π̂m,n(Âk,m)

to be too small). Furthermore, because we assume that |S| is much smaller

than p, it is computationally more efficient to optimize over {0, . . . , kmax} rather

than {0, . . . , p− 1} in (2.5). In Section 2.6, we show that this approach leads to

consistent estimations of S.
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2.5. The RBVS algorithm and its computational cost

The RBVS algorithm consists of four main steps. Its pseudocode is de-

scribed in Algorithm 1. In Step 1, we draw subsamples from the data using the

subsampling scheme introduced in Definition 5. In Step 2, for each subsample

drawn, we estimate ωj based on the subsamples Ibl, and sort the sample mea-

sures
{
ω̂j({Zi}i∈Ibl)

}p
j=1

in nonincreasing order to find Rn({Zi}i∈Ibl), as defined

in Definition 1. In Step 3, for each k = 1, . . . , kmax, we find Âk,m, the k-element

set that occurs most frequently at the top of Rn({Zi}i∈Ibl), for all b = 1, . . . , B

and l = 1, . . . , r. In Step 4, probabilities π̂m,n(Âk,m) are used to find ŝ, the esti-

mate of the size of the top-ranked set; Ŝ = Âŝ,m is returned as the final estimate

of S.

Algorithm 1 The RBVS algorithm

Require: Random sample Zi = (Yi, Xi1, . . . , Xip), i = 1, . . . , n, subsample size m with
1 ≤ m ≤ n, positive integers kmax, B, and τ ∈ (0, 1].

Ensure: The estimate of the set of important variables Ŝ.
procedure RBVS(Z1, . . . ,Zn,m,B, kmax, τ)

Step 1 Let r = bn/mc. For each b = 1, . . . , B, draw uniformly without replacement
m-element subsets Ib1, . . . , Ibr ⊂ {1, . . . , n}.
Step 2 Calculate ω̂j({Zi}i∈Ibl) and the corresponding variable ranking
Rn({Zi}i∈Ibl) for all b = 1, . . . , B, l = 1, . . . , r and j = 1, . . . , p.

Step 3 For k = 1, . . . , kmax, find Âk,m given by (2.4) and compute π̂m,n(Âk,m).

Step 4 Find ŝ = argmink=0,...,kmax−1 π̂
τ
m,n(Âk+1,m)/π̂m,n(Âk,m).

return Ŝ = Âŝ,m.
end procedure

We now investigate the computational complexity of Algorithm 1. Denote by

c(n, p) the computational cost of evaluating ω̂j , for all j = 1, . . . , p, using n obser-

vations. First, performing B random partitions of n observations into r subsets

(each of size m and dimension p) takes O(Bn) operations. Furthermore, finding

all ω̂j for all Br different subsets takes c(m, p)×Br manipulations. Next, evalu-

ating the rankings based on each subset (for the kmax highest only) takes O(p+

kmax log(kmax)) operations, using the selection algorithm and the QuickSort par-

tition scheme. Thus, doing so for all Br subsets takes O
(
(p+kmax log(kmax))Br

)
operations. Moreover, Step 3 can be performed in O(Brk2

max) basic operations

(see the Supplementary Material for more information). Finally, the remain-

ing step requires O(kmax) operations. Consequently, the total computational

complexity of Algorithm 1 is c(m, p)×Br+O(max{p, k2
max}Br). For our recom-

mended choices of kmax and m, see Section 3.3.
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2.6. Theoretical results

Under the theoretical framework below, we show that Algorithm 1 recovers

the top-ranked set given by Definition 4 with probability tending to 1 as n→∞.

We make the following assumptions.

(A1) Z1, . . . ,Zn are independent. For some ϑ > 0 and any cϑ > 0, we have that

for any n,

max
j=1,...,p

P
(
|ω̂j(Z1, . . . ,Zm)− ωj | ≥ cϑm−ϑ

)
≤ Cϑ exp (−mγ) ,

where constants Cϑ, γ > 0, and m (as a function of n) are specified in

Assumption (A3) below.

(A2) There exist constants C1 > 0 and 0 < b1 < γ, with γ as in (A1), s.t.

p ≤ C1 exp
(
nb1
)
.

(A3) The subsample size m goes to infinity at rate nb2 , with 0 < b2 < 1 and

γb2 − b1 > 0, where γ is defined in (A1) and b1 is defined in (A2).

(A4) The index set of important variables is denoted as S ⊂ {1, . . . , p}. S does

not depend on n (or p). Denote s = |S|. For every a /∈ S, there exists

Ma ⊂ {1, . . . , p}\S, such that a ∈ Ma, the distribution of {ω̂j,m}j∈Ma
is

exchangeable, and mina/∈S |Ma| ≥ C3n
b3 , with C3 > 0 and b3/2 < 1− b2 <

b3, where b2 is defined in (A3).

(A5) There exists η ∈ (0, ϑ], where ϑ is defined in (C1), and cη > 0, such that

minj∈S ωj − maxj /∈S ωj ≥ cηm
−η uniformly in n. (Here, m, as in (A3),

depends solely on n.)

(A6) The number of random draws B is bounded in n.

(A7) The maximum subset size kmax ∈ [s, C4n
b4 ], with C4 > 0 and b4 satisfying

b3 > b4, where b3 is defined in (A4).

Assumptions (A1), (A2), (A4), and (A5) can be viewed as natural extensions

or restatements of (C1)–(C5) to the case in which ω̂j is evaluated using m out

of n observations only. They are formally repeated here for the sake of clarity.

Note that the last part of (A4) implies a lower bound on p (≥ C3n
b3).

Assumption (A3) establishes the required size of the subsample, m, and

implies that both n/m →
n
∞ and m →

n
∞. Such conditions are common in
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the literature on bootstrap resampling and U-statistics; see, for instance, Bickel,

Götze and van Zwet (2012), Götze and Račkauskas (2001), or Hall and Miller

(2009b). Finally, (A6) and (A7) impose conditions on B and kmax, respectively.

Theorem 1. Suppose that assumptions (A1)-(A7) hold. Write Ŝ = Âŝ,m, where

Âŝ,m is given by (2.4) and (2.5). Then, for any τ ∈ (0, 1], there exist constants

β,Cβ > 0, such that P
(
Ŝ 6= S

)
= o

(
exp

(
−Cβnβ

))
→
n

0.

The above theorem states that Ŝ obtained by RBVS is a consistent estimator

of the top-ranked set S, where P
(
Ŝ = S

)
goes to one at an exponential rate.

The proof can be found in the Appendix, and empirical evidence is provided in

Section 3.

2.7. Iterative extension of RBVS (IRBVS)

In the presence of strong dependence between covariates, the measure ω̂j may

fail to detect some important variables. For instance, a covariate may be jointly

related, but marginally unrelated to the response (see Fan and Lv (2008), Barut

(2013), or Barut, Fan and Verhasselt (2016)). Under such a setting, the estimated

top-ranked set may only contain a subset of the important variables. To overcome

this problem, we propose IRBVS, an iterative extension of Algorithm 1. The

pseudocode of IRBVS is given in Algorithm 2. In each iteration, IRBVS removes

the linear effect on the response of the variables found at the previous iteration.

Therefore, it is applicable when the relationship between Y and Xj is at least

approximately linear. Nevertheless, it is possible to extend this methodology. For

instance, Barut (2013) and Barut, Fan and Verhasselt (2016) demonstrate how

to remove the impact of a given set of covariates on the response in generalized

linear models.

Iterative extensions of variable screening methodologies are frequently pro-

posed in the literature; see, for instance, Fan and Lv (2008), Zhu et al. (2011), or

Li et al. (2012). A practical advantage of the IRBVS algorithm over its competi-

tors is that it does not require that we specify of the number of variables added

at each iteration or the total number of iterations. Moreover, IRBVS appears

to offer better empirical performance than other iterative methods, such as ISIS

(Fan and Lv (2008)); see Section 3.

2.8. Relations to selected existing methodologies

In this section, we provide a brief overview of the differences between Al-

gorithm 1, StabSel of Meinshausen and Bühlmann (2010), and the bootstrap
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Algorithm 2 The IRBVS algorithm

Require: Random sample Zi = (Yi, Xi1, . . . , Xip), i = 1, . . . , n, subsample size m with
1 ≤ m ≤ n, positive integers kmax, B , and τ ∈ (0, 1].

Ensure: The estimate of the set of important variables Ŝ.
procedure IRBVS(Z1, . . . ,Zn,m,B, kmax, τ)

Initialise Ŝ = ∅.
repeat

Step 1 Let (Y ∗1 , . . . , Y
∗
n )′ and (X∗1j , . . . , X

∗
nj)
′ (for j = 1, . . . , p) be the residual

vectors left after projecting (Y1, . . . , Yn)′ and (X1j , . . . , Xnj)
′ onto the space spanned

by the covariates with indices in Ŝ. (NB. for any j′ ∈ S, (X∗1j′ , . . . , X
∗
nj′)
′ = 0.) Set

Z∗i = (Y ∗i , X
∗
i1, . . . , X

∗
ip) for i = 1, . . . , n.

Step 2 Calculate Ŝ∗ = RBVS(Z∗1, . . . ,Z
∗
n,m,B, kmax, τ).

Step 3 Set Ŝ := Ŝ∗ ∪ Ŝ.
until Ŝ∗ = ∅
return Ŝ.

end procedure

ranking approach of Hall and Miller (2009a).

2.8.1. StabSel

Denote the selection probabilities by πj = P
(
j ∈ Ŝλ

)
, for j = 1, . . . , p, where

Ŝλ is the set of variables selected by a chosen variable selection technique, with

its tuning parameter set to λ. StabSel has two aims: first, to select covariates

that the initial procedure selects with a high probability; and second, to bound

the average number of false positives (denoted by EV ) below some prespecified

level α > 0. For this purpose, Meinshausen and Bühlmann estimate πj and select

variables for which π̂j > π, where π ∈ (1/2, 1) is a prespecified threshold. To

control EV , one can set λ such that |Ŝλ| ≤ q, where q ∈ {1, . . . , p} depends on π,

and α is adjusted to ensure EV ≤ α. The exact formula for q and other possible

ways of controlling EV are given in Meinshausen and Bühlmann (2010).

In contrast to StabSel, which needs a variable selection procedure, RBVS

selects variables based on a variable ranking. In particular, in our approach,

we consider the joint probabilities πm,n(A), whereas StabSel uses only marginal

probabilities. The estimates of the joint probabilities can be used to determine

the number of important covariates at the top of the variable ranking, without

the specification of a threshold, as we demonstrate in Section 2.6. Consequently,

we believe that RBVS can be viewed as more automatic and “less marginal” than

StabSel.
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Table 1. Computational complexity of Algorithm 1 and its competitors. The cost of the
base learner in relation to the sample size n and the number of variables p is denoted by
c(n, p); B is the number of subsamples used in StabSel and RBVS. Parameters for SIS,
StabSel, and RBVS are set to the recommended values. For SIS, we assume that k-fold
CV is used after the screening step.

k-fold CV SIS StabSel RBVS

k × c
(

(k−1)n
k , p

)
O(np) + k × c

(
(k−1)n

k , n
log(n)

)
B × c

(
n
2 , p
)

+O(Bp) B × c(n2 , p) +O(max{n2, p}B)

2.8.2. The bootstrapped rankings

Let rnj be the position of the jth covariate in the variable ranking Rn =

(Rn1, . . . , Rnp). Mathematically, assuming there is no tie, rnj = l if and only if

Rnl = j. To identify important covariates based on Rn, Hall and Miller (2009a)

compute [r−nj , r
+
nj ], denoting two-sided, equal-tiled, percentile-method bootstrap

confidence intervals for rnj at a significance level α. A variable is considered

influential when r+
nj is lower than some prespecified cutoff level c, for instance,

c = p/2. The number of variables selected by the procedure of Hall and Miller

(2009a) depends therefore on α and c and the “marginal” confidence intervals

[r−nj , r
+
nj ]. By contrast, RBVS is based on the joint probabilities πm,n(A), and

does not require the specification of a threshold or a significance level.

2.8.3. Computational complexity of the related methods

Table 1 summarizes the computational complexity of Algorithm 1 (with

m = bn/2c) and its competitors, SIS (Fan and Lv (2008)) and StabSel (Mein-

shausen and Bühlmann (2010)). For reference, we include the computational

complexity of the k-fold cross-validation (k-fold CV), which is frequently used

to find optimal parameters for the Lasso, MC+, and SIS, among others. The

computational complexity of the method proposed by Hall and Miller (2009a) is

comparable to that of StabSel, and hence is omitted from this comparison. In

theory, SIS requires the least computational resources, especially in the case of

p� n. Simple k-fold cross-validation has the second lowest computational com-

plexity. For n >
√
p, StabSel is theoretically quicker than RBVS; however, the

common factorB×c (n/2, p) typically dominates bothO(Bp) andO(max{p, n2}),
and our experience suggests that StabSel and RBVS usually require similar com-

putational resources.
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3. Simulation Study

To facilitate a comparison of the different methods, we focus on linear models

in this section. We also provide two real-data examples in the Supplementary

Material.

3.1. Simulation models

Model (A) Taken from Fan and Lv (2008): Yi = 5Xi1 +5Xi2 +5Xi3 +εi, where

(Xi1, . . . , Xip) are independent and identically distributed (i.i.d.) observations

from N (0,Σ) and εi follow N (0, 1). The covariance matrix satisfies Σjj = 1, for

j = 1, . . . , p, and Σjk = ρ, |ρ| < 1 for k 6= j. This is a relatively easy setting,

where every important Xj is “visible” to any reasonable marginal approach,

because of the highest (absolute) correlation with Y at the population level.

Model (B) Factor model taken from Meinshausen and Bühlmann (2010): Yi =

β1Xi1+· · ·+βpXip+εi, where Xij follow the factor model Xij =
∑K

l=1 fijlϕil+θij ,

with fijl, ϕil, θij , εi i.i.d. N (0, 1). We set K = 2, 10. In addition, the number of

βj 6= 0 is set to s = 5, with their indices drawn uniformly without replacement,

and their values are i.i.d. uniformly distributed on [0, 5]. In this model, some of

the nonzero regression coefficients are potentially small; thus, the corresponding

covariates might be difficult to detect.

Model (C) Modified from Model (A): the same covariate and noise structure

as Model (A), but with Yi = 5Xi1 + 5Xi2 + 5Xi3 +
∑p

j=dp/2e+1 βXij + εi, where

we set β = 2−2, 2−1, 20, 21. Here, we have the important variables (i.e., the

top-ranked set is {1, 2, 3}), relevant but unimportant variables (i.e.,
{
dp/2e +

1, . . . , p
}

), and irrelevant variables (i.e.,
{

4, . . . , dp/2e
}

). The challenge is to

select only the important variables. Here, we are interested in the behavior of

RBVS as β gets closer to 5 (the problem becomes harder).

Model (D) Modified from Fan and Lv (2008):

Yi = 5Xi1 + 5Xi2 + 5Xi3 − 15
√
ρXi4 +

p∑
j=dp/2e+1

5p1/2Xij + εi,

where (Xi1, . . . , Xip) are i.i.d. observations from N (0,Σ), and εi follow N (0, 1).

The covariance Σ is defined in Model (A), except that Σ4,k = Σj,4 =
√
ρ for

k, j = 1, 2, 3, 5, . . . , p. This model has two challenges. First, Xi4 has a large

contribution to Yi, but is marginally unrelated to the response. Second, similarly
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to Model (C), there are both important and unimportant relevant variables,

and our aim is to recover only the former (i.e., those in the top-ranked set).

3.2. Simulation methods

We apply RBVS and IRBVS with the absolute values of the following mea-

sures: Pearson correlation coefficient (PC) (Fan and Lv (2008)), the regression

coefficients estimated via the Lasso (Tibshirani (1996)), and the regression coef-

ficients estimated via the MC+ algorithm (Zhang (2010)). The performance of

RBVS and IRBVS with the Lasso is typically slightly worse than that of MC+

in our numerical experiments, and so is not reported here. More comprehensive

numerical results can be found in Baranowski (2016).

For the competitors, we consider the standard MC+ estimator, defined as

β̂pen = argminβ(n−1
n∑
i=1

Yi − p∑
j=1

βjXij

2

+

p∑
j=1

pen(|βj |),

where pen(t) = λ
∫ t

0 max {0, (1− x/(γλ))} dx, and λ, γ > 0 are tuning parame-

ters. Here, λ is chosen via 10-fold cross-validation, and γ = 3, as in Breheny and

Huang (2011). We also consider StabSel, where we set the tuning parameters as

per the recommendation of Meinshausen and Bühlmann (2010).

The final group of the techniques included in our comparison consists of SIS

and its iterative extension ISIS (Fan and Lv (2008)) (and with MC+ after the

screening stage). For the SIS method, we consider both the standard version of

Fan and Lv (2008), based on the marginal sample correlations (MSC), and the

more recent version of Chang, Tang and Wu (2013), based on the marginal empir-

ical likelihood (MEL). Note that the standard ISIS procedure does not perform

well in our experiments, because it selects a very large number of false positives.

Therefore, we apply a modified version of ISIS that involves a randomization

mechanism (Saldana and Feng (2018)).

We use implementation of the MC+ algorithm from the R package ncvreg

(Breheny and Huang (2011)). For SIS-based methods, we use the R package SIS

(Saldana and Feng (2018)).

3.3. Choice of parameters of the (I)RBVS algorithm

RBVS involves choosing several parameters, namely B, m, kmax, and τ .

Their choices are discussed below.

The B parameter has been introduced to decrease the randomness of the
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method. Naturally, the larger the value of B, the less the algorithm depends

on a particular random draw. However, the computational complexity of RBVS

increases linearly with B. In the simulation study, we take B = 50. Our experi-

ence suggests that little will be gained in terms of the performance of RBVS for

a much larger B.

The problem of the choice of the subsample size m is more challenging. In

Section 2.6, we require m → ∞ at an appropriate rate, which is, however, un-

known. In the finite-sample case, m cannot be too small, because it is unlikely

that Rn based on a small sample could give a high priority to the important

variables. On the other hand, when m is too large (i.e., close to n), subsamples

largely overlap. In practical problems, we propose choosing m = bn/2c. See

also our additional simulation study in the Supplementary Material, which con-

firms that this choice results in good finite-sample properties of the RBVS-based

methods.

From our experience, kmax has limited impact on the outcome of RBVS,

as long as it is not too small. In all simulations conducted, π̂m,n(Âk,m), given

by (2.4), reaches and stays at the level of 1/(Br), for some k ≤ n; thus, we

recommend kmax = min{n, p}.
Finally, our experience also suggests that RBVS is not very sensitive to the

choice of τ , as long as it is not too close to zero. Here we simply take τ = 0.5.

3.4. Results

Our results are reported in Tables 2–5 in terms of the average number of

false positives (FP), false negatives (FN), total errors (FP+FN), and estimated

P(Ŝ = S), that is, the probability (Pr) of a correct estimation of the top-ranked

set.

Overall, in all settings considered here, RBVS and IRBVS, with a proper

choice of measurement (such as with MC+), typically offer similar, and sometimes

better performance than their competitors, such as StabSel. In general, RBVS

and IRBVS tend to improve the performance of the base learners (such as Lasso

or MC+). Moreover, the iterative extension, IRBVS, in many cases is able to

detect variables overlooked by the pure RBVS, especially with PC.

In Model (C), for fixed n and p, when |β| is small to moderate (i.e.,

β ∈ {0.25, 0.5}), both RBVS and IRBVS frequently recover the top-ranked set.

Nevertheless, as the value of |β| increases, the difference between the important

and unimportant relevant variables becomes smaller, making it more difficult to

estimate the top-ranked set. When β = 2, these algorithms (as well as their
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Table 2. Model (A): the average number of false positives (FP), false negatives (FN),
total errors (FP+FN), and estimated probability (Pr) of a correct selection of the top-
ranked set (i.e., P (Ŝ = S)), calculated over 200 realizations. Bold: within 10% of the
lowest value of FP+FN (or within 5% of the highest value of Pr).

SIS StabSel RBVS ISIS IRBVS

MC+ MSC EML PC MC+ PC MC+ MSC EML PC MC+

n = 100 p = 100 ρ = 0

FP 0.18 0.00 0.00 0.18 0.02 0.03 0.00 0.32 0.26 0.04 0.01

FN 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.08 0.00

FP+FN 0.18 0.00 0.00 0.18 0.02 0.13 0.00 0.32 0.26 0.12 0.01

Pr 0.88 1.00 1.00 0.82 0.98 0.92 1.00 0.91 0.92 0.94 0.99

n = 100 p = 1, 000 ρ = 0

FP 0.92 0.02 0.05 0.34 0.01 0.00 0.00 0.07 0.06 0.00 0.00

FN 0.00 0.00 0.00 0.01 0.00 0.30 0.00 0.00 0.00 0.20 0.00

FP+FN 0.92 0.02 0.06 0.34 0.01 0.31 0.00 0.07 0.06 0.20 0.00

Pr 0.70 0.99 0.98 0.70 0.99 0.84 1.00 0.94 0.95 0.93 1.00

n = 100 p = 100 ρ = 0.75

FP 0.00 0.00 0.25 0.40 0.03 0.02 0.00 0.18 0.11 0.05 0.00

FN 0.00 0.00 0.18 0.04 0.00 1.23 0.00 0.00 0.00 1.00 0.00

FP+FN 0.00 0.00 0.43 0.44 0.03 1.25 0.00 0.18 0.11 1.05 0.00

Pr 1.00 1.00 0.84 0.64 0.97 0.49 1.00 0.94 0.95 0.62 1.00

n = 100 p = 1, 000 ρ = 0.75

FP 0.00 0.00 2.29 0.70 0.00 0.00 0.00 0.08 0.11 0.04 0.00

FN 0.00 0.00 1.16 0.20 0.00 2.12 0.03 0.00 0.12 1.71 0.03

FP+FN 0.00 0.00 3.45 0.90 0.00 2.12 0.04 0.08 0.22 1.75 0.04

Pr 1.00 1.00 0.25 0.43 1.00 0.17 0.98 0.94 0.93 0.40 0.98

competitors) fail completely. Not surprisingly, for both RBVS and IRBVS, the

estimated top-ranked set is empty, because all variables appear to be quite similar

in terms of their coefficients using PC or MC+.

In contrast, MC+, SIS, and ISIS perform poorly in Model (C) (even when

|β| is very small), and in Model (D), owing to the presence of unimportant,

but relevant variables. Thus, they are not suitable for recovering the top-ranked

set in these settings. Though StabSel MC+ is also very competitive in Model

(A)–Model (C), it appears to perform considerably worse than RBVS MC+ or

IRBVS MC+ in Model (D), especially when p is large and the covariates are

highly correlated.

Finally, note that as long as the covariates are not too highly correlated, the

performance of IRBVS is relatively robust to the choice of measure used in the

procedure. Therefore, we recommend adjusting this choice based on the available
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Table 3. Model (B): the average number of false positives (FP), false negatives (FN),
total errors (FP+FN), and estimated probability (Pr) of a correct selection of the top-
ranked set (i.e., P (Ŝ = S)), calculated over 200 realizations. Bold: within 10% of the
lowest value of FP+FN (or within 5% of the highest value of Pr).

SIS StabSel RBVS ISIS IRBVS

MC+ MSC EML PC MC+ PC MC+ MSC EML PC MC+

n = 100 p = 100 K = 2

FP 0.12 0.08 0.04 0.18 0.00 0.00 0.00 0.26 0.21 0.04 0.00

FN 0.14 0.88 0.91 2.04 0.20 3.38 0.28 0.16 0.15 1.22 0.28

FP+FN 0.26 0.97 0.96 2.22 0.20 3.38 0.28 0.41 0.36 1.26 0.28

Pr 0.81 0.34 0.34 0.00 0.82 0.00 0.79 0.76 0.78 0.60 0.79

n = 100 p = 1, 000 K = 2

FP 0.40 0.22 0.32 0.36 0.00 0.01 0.00 0.06 0.08 0.04 0.00

FN 0.24 1.65 1.84 2.60 0.35 3.69 0.39 0.30 0.36 1.51 0.32

FP+FN 0.65 1.87 2.16 2.96 0.35 3.70 0.39 0.35 0.43 1.55 0.32

Pr 0.65 0.06 0.04 0.00 0.70 0.00 0.68 0.72 0.67 0.48 0.72

n = 100 p = 100 K = 10

FP 0.00 0.04 0.02 0.19 0.00 0.01 0.01 0.18 0.19 0.08 0.02

FN 0.22 0.86 0.84 1.95 0.15 3.01 0.19 0.12 0.12 0.93 0.17

FP+FN 0.22 0.89 0.86 2.14 0.16 3.02 0.20 0.30 0.32 1.00 0.18

Pr 0.78 0.36 0.38 0.02 0.84 0.00 0.82 0.84 0.80 0.64 0.82

n = 100 p = 1, 000 K = 10

FP 0.02 0.08 0.14 0.33 0.00 0.00 0.00 0.07 0.04 0.02 0.00

FN 0.26 1.52 1.59 2.27 0.20 3.33 0.22 0.16 0.18 0.88 0.18

FP+FN 0.28 1.60 1.74 2.60 0.20 3.34 0.22 0.22 0.22 0.89 0.18

Pr 0.78 0.14 0.12 0.00 0.82 0.00 0.81 0.80 0.80 0.69 0.84

computational resources and the size of the data. In particular, for large data sets

(p > 10, 000, n > 500), we recommend using IRBVS PC, which is extremely fast

to compute using the R package rbvs. Nevertheless, penalization-based methods,

such as MC+, typically offer better performance, and thus should be used as the

base measure for IRBVS in the case of moderate data size.

Supplementary Material

The online Supplementary Material provides implementation details for the

RBVS algorithm, two real-data examples, and additional numerical experiments.
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Table 4. Model (C): the average number of false positives (FP), false negatives (FN),
total errors (FP+FN), and estimated probability (Pr) of a correct selection of the top-
ranked set (i.e., P (Ŝ = S)), calculated over 200 realizations. Bold: within 10% of the
lowest value of FP+FN (or within 5% of the highest value of Pr).

SIS StabSel RBVS ISIS IRBVS

MC+ MSC EML PC MC+ PC MC+ MSC EML PC MC+

n = 100 p = 100 ρ = 0 β = 0.25

FP 7.65 1.06 0.95 0.24 0.04 0.02 0.01 3.46 3.50 0.04 0.01

FN 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.24 0.00

FP+FN 7.65 1.06 0.95 0.24 0.04 0.28 0.01 3.46 3.50 0.28 0.01

Pr 0.24 0.76 0.80 0.78 0.96 0.88 0.99 0.32 0.33 0.88 0.99

n = 100 p = 100 ρ = 0 β = 0.5

FP 11.96 4.25 4.04 0.32 0.06 0.02 0.00 4.36 4.17 0.08 0.01

FN 0.00 0.00 0.00 0.00 0.00 0.59 0.00 0.00 0.00 0.50 0.00

FP+FN 11.96 4.25 4.04 0.32 0.06 0.61 0.00 4.36 4.17 0.58 0.01

Pr 0.12 0.38 0.38 0.72 0.94 0.74 1.00 0.23 0.25 0.76 0.99

n = 100 p = 100 ρ = 0 β = 1

FP 19.63 11.44 11.10 0.44 0.06 0.02 0.00 5.34 5.13 0.04 0.00

FN 0.00 0.00 0.00 0.18 0.00 2.06 0.34 0.00 0.00 1.78 0.34

FP+FN 19.63 11.44 11.11 0.62 0.06 2.08 0.34 5.34 5.14 1.83 0.34

Pr 0.00 0.00 0.01 0.54 0.94 0.14 0.90 0.06 0.07 0.31 0.90

n = 100 p = 100 ρ = 0 β = 2

FP 34.10 15.37 15.10 0.78 0.14 0.00 0.00 5.94 5.79 0.00 0.00

FN 0.04 0.30 0.30 1.70 1.59 2.83 2.97 0.94 1.00 2.82 2.97

FP+FN 34.15 15.67 15.40 2.48 1.73 2.83 2.97 6.88 6.79 2.83 2.97

Pr 0.00 0.00 0.00 0.04 0.06 0.00 0.00 0.00 0.00 0.00 0.00
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A. Proofs

A.1. Proof of Proposition 1

Proof. First, we show that πn (S) tends to 1. Denote by E = {minj∈S ω̂j >

maxj /∈S ω̂j}. If there is no tie, E is equivalent to
{
{Rn1, . . . , Rns} = S

}
, i.e.,

all indices from S are ranked in front of those do not belong to S. Otherwise,
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Table 5. Model (D): the average number of false positives (FP), false negatives (FN),
total errors (FP+FN), and estimated probability (Pr) of a correct selection of the top-
ranked set (i.e., P (Ŝ = S)), calculated over 200 realizations. Bold: within 10% of the
lowest value of FP+FN (or within 5% of the highest value of Pr).

SIS StabSel RBVS ISIS IRBVS

MC+ MSC EML PC MC+ PC MC+ MSC EML PC MC+

n = 100 p = 100 ρ = 0.5

FP 0.07 1.99 1.17 0.40 0.03 0.00 0.01 3.27 3.35 0.10 0.01

FN 0.00 0.06 0.44 0.90 0.00 2.58 0.00 0.00 0.02 0.38 0.00

FP+FN 0.07 2.05 1.60 1.30 0.03 2.58 0.01 3.27 3.36 0..48 0.01

Pr 0.95 0.56 0.44 0.20 0.97 0.02 0.99 0.24 0.27 0.78 0.99

n = 100 p = 1, 000 ρ = 0.5

FP 0.00 0.02 0.03 0.88 0.28 0.02 0.00 0.10 0.10 0.05 0.02

FN 2.27 2.59 2.72 2.98 0.00 3.00 0.00 0.00 0.02 0.69 0.00

FP+FN 2.27 2.62 2.75 3.86 0.28 3.02 0.00 0.10 0.12 0.74 0.02

Pr 0.06 0.00 0.00 0.00 0.76 0.00 1.00 0.92 0.92 0.72 0.98

n = 100 p = 100 ρ = 0.75

FP 0.00 1.14 0.52 0.47 0.04 0.00 0.00 2.62 2.75 0.06 0.01

FN 1.04 0.06 0.84 1.24 0.00 2.80 0.00 0.00 0.02 0.40 0.00

FP+FN 1.04 1.21 1.35 1.71 0.04 2.80 0.00 2.63 2.76 0.46 0.01

Pr 0.39 0.62 0.27 0.12 0.96 0.01 1.00 0.31 0.30 0.80 0.99

n = 100 p = 1, 000 ρ = 0.75

FP 0.00 0.16 0.02 0.86 2.31 0.00 0.01 0.10 0.08 0.05 0.02

FN 3.00 2.69 2.86 2.98 0.00 3.00 0.02 0.00 0.01 0.82 0.00

FP+FN 3.00 2.85 2.88 3.85 2.31 3.00 0.02 0.10 0.08 0.87 0.02

Pr 0.00 0.00 0.00 0.00 0.07 0.00 0.98 0.92 0.92 0.68 0.98

{minj∈S ω̂j > maxj /∈S ω̂j} implies that
{
{Rn1, . . . , Rns} = S

}
. Using (C4) we

have

πn (S) ≥ P (E) ≥ P
(

max
j=1,...,p

|ω̂j − ωj | < ε

)
,

where ε = cηn
−η/2. Application of Bonferroni’s inequality yields that

P
(

max
j=1,...,p

|ω̂j − ωj | < ε

)
≥ 1− p sup

j=1,...,p
P (|ω̂j − ωj | ≥ ε) .

The last term is of order 1 − O (exp (−nγ)) (since b1 < γ), which tends to 1 as

n→∞. This proves that S is a s-top-ranked set, where s = |S|.
Second, consider any A ∈ Ωs+1. We will prove that πn(A) →

n
0. Note that

E implies that S ⊂ A, as all indices from S are ranked in front of those do not

belong to S. Thus, it suffices to only consider the case of S ⊂ A in which A\S has
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only one element, which we denote by a. Suppose there is no tie in the ranking,

on the event E , P ({minj∈A ω̂j > maxj 6∈A ω̂j} ∩ E) = P ({ω̂a > maxj 6∈A ω̂j} ∩ E) .

To bound P (ω̂a > maxj 6∈A ω̂j), we observe that P (ω̂a > maxj 6∈A ω̂j) ≤ P(ω̂a >

maxj∈Ma\{a} ω̂j). Using the exchangeability assumption (C3), we have that the

values of P
(
ω̂j∗ > maxj∈Ma\{j∗} ω̂j

)
are the same for every j∗ ∈ Ma (i.e., any

element in {ω̂j}j∈Ma
are equally likely to be the largest). Since

∑
j∗∈Ma

P(ω̂j∗ >

maxj∈Ma\{j∗} ω̂j) ≤ 1, we have that P
(
ω̂a > maxj∈Ma\{a} ω̂j

)
≤ 1/|M{a}| →

n
0.

Consequently,

πn(A) ≤ P
(
ω̂a > max

j 6∈A
ω̂j

)
+ P (Ec) ≤ P

(
ω̂a > max

j∈Ma\a
ω̂j

)
+ P (Ec)→

n
0.

Otherwise, if there are ties in the ranking, since we break the ties at random

uniformly, it follows from the exchangeability assumption that we are equally

likely to pick any index from Ma, given that we have picked one of them. Thus

we can argue in a similar manner to show that πn(A) ≤ 1/|Ma| + P (Ec) →
n

0,

i.e., S is always locally top-ranked.

Third, for every k′ = 1. . . . , s − 1, we show that there exists some A ∈ Ωk′

such that lim supn→∞ πn(A) > 0. Note that∑
{A: A∈Ωk′ and A⊂S}

πn(A) ≥ P
(

min
j∈S

ω̂j > max
j /∈S

ω̂j

)
→
n

1

from our previous argument. However, there are
(
s
k′

)
elements in {A : A ∈

Ωk′ and A ⊂ S}, so

max
{A: A∈Ωk′ and A⊂S}

lim sup
n→∞

πn(A) ≥ 1(
s
k′

) .
This implies that S is indeed a top-ranked set.

Finally, the uniqueness of S (among those in Ωs) follows from the fact that

πn(S)→
n

1 and
∑
A∈Ωs

πn(A) = 1.

A.2. Auxiliary lemmas and proof of Theorem 1

A.2.1. Auxiliary lemmas

Lemma 1 (Theorem 1 of Hoeffding (1963)). Let W be a binomial random vari-

able with the probability of success π and r trials. For any 1 > t > π, we

have P (W ≥ rt) ≤ (π/t)rt ((1− π)/(1− t))r(1−t) . Moreover, for any 0 < t < π,

P (W ≤ rt) ≤ (π/t)rt ((1− π)/(1− t))r(1−t).
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Lemma 2. Let a1, . . . , al be non-negative numbers s.t.
∑l

i=1 ai ≤ 1 and max ai ≤
t for some 1/l ≤ t ≤ 1. Let N ∈ N be the minimum integer such that there exist

mutually exclusive sets I1, . . . , IN ⊂ {1, . . . , l} with
∑

i∈Ij ai ≤ t and
⋃N
j=1 Ij =

{1, . . . , l}. Then, N ≤ b2/tc+ 1.

Proof. Since N is the smallest possible integer, there must be at most one j ∈
{1, . . . , N} with

∑
i∈Ij ai ≤ t/2. Otherwise, such two sets could be combined,

leading to a smaller N . So for all other j ∈ {1, . . . , N}, we have that
∑

i∈Ij ai >

t/2. Consequently, (N − 1)t/2 ≤
∑l

i=1 ai ≤ 1. This implies that N ≤ b2/tc+ 1.

Lemma 3. Let be Ω ⊂ Ωk for some k = 1, . . . , p − 1, m ≤ n, B ≥ 1, and t1, t2
satisfying maxA∈Ω πm,n(A) ≤ t2 < t1 < 1. Then

P
(

max
A∈Ω

π̂m,n(A) ≥ t1
)
≤ 3B

t2

[(
t2
t1

)t1 (1− t2
1− t1

)1−t1
]r
,

where πm,n(A), π̂m,n(A) are defined by (2.2) and Definition 5, respectively.

Proof. Denote by A1, . . . ,Al all the elements of Ω. Applying Lemma 2 we find a

partition I1, . . . , IN such that maxj=1,...,N
∑

i∈Ij πm,n(Aj) ≤ t2 and N ≤ 2/t2 +1.

Using the union bound, we have that

P
(

max
i=1,...,l

π̂m,n(Ai) ≥ t1
)
≤ N max

j=1,...,N
P

∑
i∈Ij

π̂m,n(Ai) ≥ t1

 .

Note that when B = 1, r
∑

i∈Ij π̂m,n(Ai) is a binomial random variable, where

there are r trials, each with the probability of success p∗j =
∑

i∈Ij
πm,n(Ai). We could conclude from Lemma 1 that

P

∑
i∈Ij

π̂m,n(Ai) ≥ t1

 ≤ [(p∗j
t1

)t1 (1− p∗j
1− t1

)1−t1
]r

≤

[(
t2
t1

)t1 (1− t2
1− t1

)1−t1
]r
,

where we used the fact that (x/t1)t1 ((1− x)/(1− t1))1−t1 is increasing for x ∈
[0, t1]. When B = 1, the above displayed equation, combined with N ≤ 3/t2
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gives that

P
(

max
i=1,...,l

π̂m,n(Ai) ≥ t1
)
≤ 3

t2

[(
t2
t1

)t1 (1− t2
1− t1

)1−t1
]r
.

Finally, when B > 1, r
∑

i∈Ij π̂m,n(Aj) is a sample average of B (not necessarily

independent) binomial random variables. Since the average of a collection of

non-negative numbers is always no greater than its maximum, we could simply

use the union bound again to establish that

P
(

max
i=1,...,l

π̂m,n(Ai) ≥ t1
)
≤ 3B

t2

[(
t2
t1

)t1 (1− t2
1− t1

)1−t1
]r
.

A.2.2. Proof of Theorem 1

Proof of Theorem 1. For notational convenience, define ω̂j,m = ω̂j(Z1, . . . ,

Zm), δ = πm,n (S) and θ = maxA6⊂S,|A|≤kmax
πm,n (A) , where πm,n(·) is given

by (2.2). We start from showing that δ and θ are well-separated for sufficiently

large n.

Take ε = cηm
−η/2. Using (A1) and (A5) combined with a simple Bonfer-

roni’s inequality, we get δ ≥ P (maxj=1,...,p |ω̂j,m − ωj | < ε) ≥ 1 − Cεp exp(−mγ)

for some constant Cε > 0. In views of (A2) and (A3), since here we assume that

γb2 > b1, we get that δ = 1−O(exp(−nγb2)), which tends to one as n→∞.

For every A ∈ Ωk with k ≤ kmax that contains at least one a ∈ A\S, if there

is no tie in the ranking of {ω̂j,m}1≤j≤p, we have that

πn,m(A) = P
(

min
j∈A

ω̂j,m > max
j 6∈A

ω̂j,m

)
≤ P

(
ω̂a,m > max

j∈Ma\A
ω̂j,m

)
≤ 1

|Ma| − kmax
≤ 1

mina6∈S |Ma| − kmax

≤ 1

C3nb3 − C4nb4
, (A.1)

where Ma is as in (A4). Here we utilized the exchangeability of {ω̂j,m}j∈Ma\S
together with (A4) and (A7). Even if there are ties, we still have that πn,m(A) ≤
1/(C3n

b3−C4n
b4) due to the exchangeability and since we break the ties uniformly

at random. See also the previous proof of Proposition 1 for a similar argument but

with a more detailed explanation. Notice that (A.1) does not depend onA or a, so

the inequality πn,m(A) ≤ 1/(C3n
b3−C4n

b4) holds for every A ∈ Ωk with k ≤ kmax
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and A\S 6= ∅. As such, we conclude that θ = maxA6⊂S,|A|≤kmax
πm,n (A) =

O(n−b3).

Next, to fix ideas, take ∆ = (b2 + b3 − 1)/2 (NB. ∆ > 0 from (A4)), t1 =

n(−b3+∆)/2 and t2 = t21. Note that for sufficiently large n we always have θ <

t21 < t1 < 1/2 < δ. Now define events

Ek =

{
max

A∈Ωk,A6⊂S
π̂m,n(A) < t1

}
, for k = 1, . . . , kmax,

B =

{
π̂m,n(S) >

1

2

}
,

E = B ∩
kmax⋂
k=1

Ek.

We will demonstrate that P (E)→
n

1 at an exponential rate, and with Âŝ,m = S
on the event E .

To prove the first claim, when B = 1, for sufficiently large n, we could use

Lemma 1 and the fact that 1− δ = O(exp(−nγb2))→
n

0 to bound P (Bc) by

P (Bc) ≤

[(
δ

0.5

)0.5(1− δ
0.5

)0.5
]r
≤ [2(1− δ)]0.5r ≤ exp

(
−C ′nγb2(1−b2)/2

)
(A.2)

for some 0 < C ′ < 1. When B > 1, since π̂m,n(S) is the average of B copies

of the that with B = 1, using the Bonferroni bound, we have that P (Bc) ≤
B exp

(
−C ′nγb2(1−b2)/2

)
. Moreover, by Lemma 3,

P (Eck) ≤
3B

t2

[(
t2
t1

)t1 (1− t2
1− t1

)1−t1
]r

=
3B

t21

[(
t1

1 + t1

)t1
(1 + t1)

]r
. (A.3)

Take the logarithm of (t1/(1 + t1))t1 (1 + t1). After simple algebra we get t1 log

(t1/(1 + t1)) + log (1 + t1) = t1 log (1− 1/(1 + t1)) + log (1 + t1) , which can be

bounded using (A6) and log(1 +x) ≤ 2x/(2 +x) for x ∈ (−1, 0) and log(1 +x) ≤
(x/2)((2 + x)/(1 + x)) for x ≥ 0 (Topsøe (2004)). Putting things together, we

have that

t1 log

(
1− 1

1 + t1

)
+ log (1 + t1) ≤ −t1

(2− t1 − 2t21)

2(1 + t1)(1 + 2t1)
≤ − t1

6
.

Here we also used the fact that the function h(x) = (2−x−2x2)/{2(1+x)(1+2x)}
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is decreasing for x ∈ [0, 1], h(1/2) = 1/6 and t1 = n(−b3+∆)/2 < 1/2. This applied

to (A.3) yields

P (Eck) ≤
3B

t21
exp

(
−rt1

6

)
< exp

(
−C ′′n1−b2−b3/2

)
, (A.4)

with positive constant C ′′, for sufficiently large n. (A4) implies that the right

hand side of the above inequality goes to 0 because (A4) says that 1−b2−b3/2 > 0.

It follows from (A.2), (A.4) and (A7) that

P (E) ≥ 1− kmax exp
(
−C ′′n1−b2−b3/2

)
− exp

(
−C ′nγb2(1−b2)/2

)
≥ 1− C4n

b4 exp
(
−C ′′n1−b2−b3/2

)
− exp

(
−C ′nγb2(1−b2)/2

)
≥ 1− exp

(
−Cβnβ

)
for some β ∈ (0, 1) and Cβ > 0, for sufficiently large n. Therefore, P (E)→

n
1.

The remaining arguments used in the proof are valid on E with a suffi-

ciently large n. Notice that from 1/2 > t1 one concludes that Âs,m = S,

where Âs,m is given by (2.4), hence showing ŝ = s proves Ŝ = S. Denote

Tk = π̂τm,n(Âk+1,m)/π̂m,n(Âk,m), then from definition, ŝ= argmink=0,1,...,kmax
Tk.

Three cases are considered.

• For every k = 0, . . . , s − 1, the event {{Rn(Z1, . . . ,Zm), . . . , Rn,s(Z1, . . . ,

Zm)} = S} implies that the index set {Rn(Z1, . . . ,Zm), . . . , Rn,k+1(Z1, . . . ,

Zm)} (i.e., of size k+1) must be one of the elements in {A ∈ Ωk+1 : A ⊂ S}.
Consequently, ∑

{A∈Ωk+1:A⊂S}

π̂m,n(A) ≥ π̂m,n(S).

The facts that
∣∣∣{A ∈ Ωk+1 : A ⊂ S}

∣∣∣ =
(
s

k+1

)
and π̂m,n(S) > 1/2 imply

that

π̂m,n(Âk+1,m) ≥ max
{A∈Ωk+1:A⊂S}

π̂m,n(A) ≥ π̂m,n(S)(
s

k+1

) ≥ 1

2
(
s

k+1

) ,
and hence Tk ≥ 1/(2

(
s

k+1

)
). for k = 0, . . . , s− 1.

• Directly from the definition of the events Es and B, we bound Ts ≤ 2tτ1 .

• π̂m,n(Âk+1,m)≥1/Br for any k. To see this, note that
∑
A∈Ωk+1

π̂m,n(A)

= 1. Picking Âk+1,m ∈ argmaxA∈Ωk+1
π̂m,n(A) would mean that
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π̂m,n(Âk+1,m) > 0, because otherwise it would imply
∑
A∈Ωk+1

π̂m,n(A)

= 0, leading to a contradiction. Now that π̂m,n(Âk+1,m) > 0, it must

be the case that π̂m,n(Âk+1,m) > 1/Br, according to Definition 5. Thus

Tk ≥ 1/t1(Br)τ for every k = s+ 1, . . . , kmax.

To prove Tk > Ts for k = 0, . . . , s − 1, it is sufficient to demonstrate that

1/(2
(
s

k+1

)
) > 2tτ1 , which is true for sufficiently large n, as t1 →

n
0 and maxk=0,...,s−1(

s
k+1

)
is bounded. Similarly, to claim that Ts < Tk for k = s + 1, . . . , kmax,

we need to show 2tτ1 < 1/(t1(Br)τ ), which amounts to 2t1+τ
1 < 1/(Br)τ , or

21/τ t
1+1/τ
1 < 1/Br. This is true for sufficiently large n, because t21 = n−b3+∆,

Br = O(n1−b2) and b2 + b3 −∆ > 1 from (A4).

Therefore Tk is necessarily minimised at k = s over E for sufficiently large

n, meaning that ŝ = s, which finishes the proof.
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