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We present here the detailed technical proofs of Lemma 1–Lemma 4 in Appendix A. Next,

the proofs of Theorem 1 to Theorem 3 are given in Appendix B, C, and D respectively.

Appendix A. Four Useful Lemmas

Lemma 1. Let X = (X1, · · · , Xn)> ∈ Rn, where Xis are independent and identically dis-

tributed random variables with mean zero, variance σ2
X and finite fourth order moment. Let

Ỹt =
∑∞
j=0G

jUEt−j, where G ∈ Rn×n, U ∈ Rn×N , and {Et} satisfy Condition (C1) and are in-

dependent of {Xi}. Then for a matrix A = (aij) ∈ Rn×n and a vector B = (b1, · · · , bn)> ∈ Rn,

it holds that

(a) n−1B>X →p 0 if n−2B>B → 0 as n→∞.

(b) n−1X>AX →p σ
2
X limn→∞ n

−1tr(A) if the limit exists, and n−2tr(AA>) → 0 as n →

∞.

(c) (nT )−1∑T
t=1B

>Ỹt →p 0 if n−1∑∞
j=0(B>GjUU>(G>)jB)1/2 → 0 as n→∞.

(d) (nT )−1∑T
t=1 Ỹ

>
t AỸ>t →p limn→∞ n

−1tr{AΓ(0)} if the limit exists, and n−1∑∞
i=0∑∞

j=0[tr{U>(G>)iAGjUU>(G>)jA>GiU}]1/2 → 0 as n→∞.
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(e) (nT )−1∑T
t=1X

>AỸ>t →p 0 if n−1∑∞
j=0[tr{AGjUU>(G>)jA>}]1/2 → 0 as n→∞.

Proof: The detailed proof can be found in Lemma 1 of Zhu et al. (2017).

Lemma 2. Assume minkNk = O(Nδ) and the stationary condition cβ < 1, where cβ =

maxk(|β1k| + |β2k|). Further assume Conditions (C1)-(C3) hold. For matrices M1 = (m
(1)
ij ) ∈

Rn×p and M2 = (m
(2)
ij ) ∈ Rn×p, define M1 4 M2 as m

(1)
ij ≤ m

(2)
ij for 1 ≤ i ≤ n and 1 ≤ j ≤ p.

In addition, define |M |e = (|mij |) ∈ Rn×p for any arbitrary matrix M = (mij) ∈ Rn×p. Then

there exists J > 0, such that

(a) for any integer n > 0, we have

|Gn(G>)n|e 4 nJc2nβ MM>, (A.1)

|GnΣY |e 4 αnJcnβMM>, (A.2)

where M = C1π> +
∑J
j=0W

j, C > 1 is a constant, π is defined in (C3.1), and α is a finite

constant.

(b) For positive integers k1 ≤ 1, k2 ≤ 1, and j ≥ 0, define gj,k1,k2(G,W (k)) = |(W (k))k1{Gj(G>)j}k2

(W (k)>)k1 |e ∈ RN×N . In addition, define (W (k))0 = Ik = (INk ,0) ∈ RNk×N . For integers

0 ≤ k1, k2,m1,m2 ≤ 1, as N →∞ we have

N−1
∞∑
j=0

{
µ>gj,k1,k2(G,W (k))µ

}1/2

→ 0, (A.3)

N−1
∞∑

i,j=0

[
tr
{
gi,k1,k2(G,W (k))gj,m1,m2(G,W (k))

}]1/2
→ 0, (A.4)

where |µ|e 4 cµ1 and cµ is a finite constant.

(c) For integers 0 ≤ k1, k2 ≤ 1, define fk1,k2(W (k), Q) = |(W (k))k1Qk2(W (k)>)k1 |e ∈ RN×N ,
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where Q is given in (C3). Then for integers 0 ≤ k1, k2,m1,m2 ≤ 1, as N →∞ we have

N−2µ>fk1,k2(W (k), Q)µ→ 0, (A.5)

N−2tr
{
fk1,k2(W (k), Q)fm1,m2(W (k), Q)

}
→ 0, (A.6)

N−1
∞∑
j=0

[
tr
{
fk1,k2(W (k), Q)gj,m1,m2(G,W (k))

}]1/2
→ 0, (A.7)

where |µ|e 4 cµ1 and cµ is a finite constant.

Proof: The proof is similar in spirit to Zhu et al. (2017). Therefore, we give the guideline of

the proof and skip some similar details. Without loss of generality, we let cβ = |β11|+ |β21| (i.e.,

k = 1). Consequently, we have |G|e 4 |β11|W + |β21|I. Let G = |β11|W + |β21|I. Follow similar

technique in part (a) in Lemma 2 of Zhu et al. (2017), it can be verified

|Gn|e 4 nJcnβM, (A.8)

where M = C1π> +
∑J
j=0W

j is defined in (a) of Lemma 2. Subsequently, the result (A.1)

can be readily obtained. Next, recall that ΣY = (I − G)−1ΣZ(I − G>)−1 +
∑∞
j=0 G

jΣe(G>)j =

(
∑∞
j=0 G

j)ΣZ(
∑∞
j=0(G>)j) +

∑∞
j=0 G

jΣe(G>)j . Let σ2
z = maxk{γ>k Σzγk} and σ2

e = maxk{σ2
k}.

Then we have |GnΣY |e 4 σ2
z(
∑∞
j=0 |G

n+j |e)(
∑∞
j=0 |(G

>)j |e) + σ2
e

∑∞
j=0 |G

n+j |e|(G>)j |e. Subse-

quently, (A.2) can by obtained by applying (A.8). Next, we give the proof of (b) in the following.

The conclusion (c) can be proved by similar techniques, which is omitted here to save space.

Let k1 = k2 = 1. Then we have gj,1,1(G,W (k)) = |W (k)GjGjW (k)>|. Recall that W (k) =

(wij : i ∈ Mk, 1 ≤ j ≤ N) ∈ RNk×N . Since we have |µ|e 4 cµ1, then it suffices to show∑∞
j=0N

−1
k

{
1>gj,1,1(G,W (k))1

}1/2 → 0. We first prove (A.3). By (A.8) we have |W (k)Gj |e 4
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jK(|β1|+ |β2|)jW (k)M . As a result, we have

|W (k)Gj(G>)jW (k)>|e 4 j2K(|β1|+ |β2|)2jM, (A.9)

whereM is defined asM = W (k)MM>W (k)>. As a result, we have
∑∞
j=0N

−1
k

{
1>W (k)Gj(G>)j

W (k)>1
}1/2 ≤ N−1

k α1(1>M1)1/2, where α1 =
∑∞
j=0 j

Kcjβ < ∞. Then it leads to show

N−2
k 1>M1 → 0. It can be shown 1>M1 = N2

kC
∑
j π

2
j +

∑K
j=1 1

>W (k)W j(W>)jW (k)>1 +

2NkC
∑
j π
>(W>)jW (k)>1+

∑
i6=j 1

>W (k)W i(W>)jW (k)>1. For the last two terms of 1>M1,

by Cauchy inequality, we have

Nk
∑
j

π>(W>)jW (k)>1 ≤ Nk
(∑

j

π2
j

)1/2{
1>W (k)W j(W>)jW (k)>1

}1/2

,

and
∑
i6=j 1

>W (k)W i(W>)jW (k)>1 ≤
∑
i6=j
{
1>W (k)W i(W>)iW (k)>1

}1/2{
1>W (k)W j(W>)j

W (k)>1
}1/2

. As a result, it leads to show

N∑
j=1

π2
j → 0 and N−2

k 1>W (k)W j(W>)jW (k)>1→ 0 (A.10)

for 1 ≤ j ≤ K + 1. As the first convergence in (A.10) is implied by (C2.1), we next prove

N−2
k 1>W (k)W j(W>)jW (k)>1 → 0 (1 ≤ j ≤ K). Recall that W ∗ = W + W>. Therefore,

we have N−2
k 1>W (k)W j(W>)jW (k)>1 ≤ N−21>W (k)W ∗2jW (k)>1. Then it suffices to show

N−21>W (k)W ∗2jW (k)>1→ 0. By eigenvalue-eigenvector decomposition of W ∗ we have W ∗ =∑
k λk(W ∗)uku

>
k , where λk(W ∗) and uk ∈ RN are the kth eigenvalue and eigenvector of W ∗ re-

spectively. As a result, we have N−2
k 1>W (k)W ∗2jW (k)>1 ≤ N−2

k λmax(W ∗)2j(1>W (k)W (k)>1)

(1 ≤ j ≤ K). Further we have 1>W (k)W (k)>1 ≤ Nkλmax(W (k)W (k)>). Note that W (k)W (k)>
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is a sub-matrix of WW> with row and column index in Mk. Therefore, by Cauchy’s interlac-

ing Theorem, we have λmax(W (k)W (k)>) ≤ λmax(WW>) = O(Nδ′) for δ′ < δ. Since we have

minkNk = Nδ for δ > 0, then we have N−1
k λmax(W (k)W (k)>) → 0 as N → ∞. As a conse-

quence, the second term in (A.10) holds. Similarly, it can be proved that (A.10) holds for all

0 ≤ k1, k2 ≤ 1. As a result, we have (A.3) holds.

We next prove (A.4) with k1 = k2 = m1 = m2 = 1, and gi,1,1(G,W (k))gj,1,1(G,W (k)) =

|W (k)Gi(G>)iW (k)>W (k)Gj(G>)jW (k)>|e. Then it can be similarly proved for other cases (i.e.,

0 ≤ k1, k2,m1,m2 ≤ 1). Note that by (A.9), we have

[
tr
{
W (k)Gi(G>)iW (k)>W (k)Gj(G>)jW (k)>

}]1/2
≤ iKjK(|β1|+ |β2|)i+jtr

{
M2}1/2.

It then can be derived thatN−1
k

∑∞
i,j=0[tr{W (k)Gi(G>)iW (k)>W (k)Gj(G>)jW (k)>}]1/2 ≤ α2N−1

k

tr
{
M2

}1/2
. In order to obtain (A.4), it suffices to show that

N−2
k tr{M2} → 0. (A.11)

Equivalently, by Cauchy inequality, it suffices to prove (
∑
π2
j )2 → 0, andN−2

k tr{W (k)W jW j>W (k)>

W (k)W jW j>W (k)>} → 0 holds for 1 ≤ j ≤ K. It can be easily verified the first term holds

by (C2.1). For the second one, we have N−2
k tr{W (k)W jW j>W (k)>W (k)W jW j>W (k)>} ≤

N−2
k tr{W (k)(W ∗)4jW (k)>} ≤ N−2

k λmax(W ∗)4jtr(W (k)W (k)>) ≤ N−2
k Nkλmax(W ∗)4Kλmax(WW>).

Similarly, due to that λmax(W ∗) = O(logN) and λmax(WW>) = O(Nδ′) in (C2.2), we have

N−1
k λmax(W ∗)4Kλmax(WW>) → 0 as N → ∞. Consequently, we have (A.11) and then (A.4)

holds. This completes the proof of (b).

Lemma 3. Let {Xit : 1 ≤ t ≤ T} and {Yit : 1 ≤ t ≤ T} be random sub-Gaussian time
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series with mean 0, var(Xit) = σi,xx, var(Yit) = σi,yy, and cov(Xit, Yit) = σi,xy. Let σxi,t1t2 =

cov(Xit1 , Xit2) and Σxi = (σxi,t1t2 : 1 ≤ t1, t2 ≤ T ) ∈ RT×T . Similarly, define σyi,t1t2 and

Σyi ∈ RT×T . Then we have

P
(∣∣∣T−1

T∑
t=1

XitYit − σi,xy
∣∣∣ > ν

)
≤ c1

{
exp(−c2σ−2

xi T
2ν2) + exp(−c2σ−2

yi T
2ν2)

}
(A.12)

for |ν| ≤ δ, where σ2
xi = tr(Σ2

xi), σ2
yi = tr(Σ2

yi), c1, c2, and δ are finite constants.

Proof: Let Xi = (Xi1, · · · , XiT )> ∈ RT and Yi = (Yi1, · · · , YiT )> ∈ RT . In addition, let

Zi = Zi + Yi. Therefore, we have Z>i Zi = 2−1(Z>i Zi −X>i Xi − Y >i Yi). It can be derived that

P{|T−1(X>i Yi)− σi,xy| ≥ ν} ≤ P{|T−1(Z>i Zi)− (σi,xx + σi,yy + 2σi,xy)| ≥ ν1}

+ P{|T−1(X>i Xi)− σi,xx| ≥ ν1}+ P{|T−1(Y >i Yi)− σi,yy| ≥ ν1}, (A.13)

where ν1 = 2ν/3. Next, we derive the upper bound for the right side of (A.13). Note that

X>i Xi, Y >i Yi, and Z>i Zi all take quadratic form. Therefore the proofs are similar. For the sake of

simplicity, we take Y >i Yi for an example and derive the upper bound for P{|n−1(Y >i Yi)−σi,yy| ≥

ν1}. Similar results can be obtained for the other two terms.

First we have Y >i Yi = Y >i Σ
−1/2
yi ΣyiΣ

−1/2
yi Yi = Ỹ >i ΣyiỸi, where Ỹi = Σ

−1/2
yi Yi follows sub-

Gaussian distribution. Let λ1 ≥ λ2 ≥ · · · ≥ λT be the eigenvalues of Σyi. Since Σyi is a non-

negative definite matrix, The eigenvalue decomposition can be applied to obtain Σyi = U>ΛU ,

where U = (U1, · · · , UT )> ∈ RT×T is an orthogonal matrix and Λ = diag{λ1, · · · , λT }. As a con-

sequence, we have Y >t Yt =
∑
t λtζ

2
t , where ζt = U>t Ỹt and ζts are independent and identically

distributed as standard sub-Gaussian. It can be verified ζ2t − 1 satisfies sub-exponential distri-

bution and T−1(
∑
t λt) = σi,yy. In addition, the sub-exponential distribution satisfies condition
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(P) on page 45 of Saulis and Statuleviveccius (2012). There exists constants c1, c2, and δ such

that P{|T−1(Y >i Yi)−σi,yy| ≥ ν1} = P{
∑
t λt(ζ

2
t − 1)| ≥ Tν1} ≤ c1 exp{−c2(

∑
t λ

2
t )
−1T 2ν2} =

c1 exp{−c2σ−1
yi T

2ν2} for |ν| < δ by the Theorem 3.3 of Saulis and Statuleviveccius (2012).

Consequently, (A.12) can be obtained by appropriately chosen c1, c2, and δ.

Lemma 4. Assume Yit follows the GNAR model (2.4) and |cβ | < 1. Then there exists finite

constants c1, c2, and δ, for ν < δ we have

P
{∣∣T−1

T∑
t=1

Y 2
it − µ2

i − e>i ΣY ei
∣∣ > ν

}
≤ δT , (A.14)

P
{∣∣T−1

T∑
t=1

Yit(w
>
i Yt)− µY i(w>i µY )− w>i ΣY ei

∣∣ > ν
}
≤ δT (A.15)

P
{∣∣T−1

T∑
t=1

Yi(t−1)εit
∣∣ > ν

}
≤ δT , P

{∣∣T−1
T∑
t=1

(w>i Yt−1)εit
∣∣ > ν

}
≤ δT , (A.16)

P
{∣∣T−1

T∑
t=1

Yi(t−1) − µi
∣∣ > ν

}
≤ δT , P

{∣∣T−1
T∑
t=1

w>i Yt − w>i µY
∣∣ > ν

}
≤ δT , (A.17)

where δT = c1 exp(−c2Tν2), ei ∈ RN is an N-dimensional vector with all elements being 0 but

the ith element being 1, and µi = e>i µY .

Proof: For the similarity of proof procedure, we only prove (A.14) in the following. Without

loss of generality, let µY = 0. Recall that the group information is denoted as Z = {zik : 1 ≤

i ≤ N, 1 ≤ k ≤ K}. Define P ∗(·) = P (·|Z), E∗(·) = E(·|Z), and cov∗(·) = cov(·|Z). Write

Yi = (Yi1, · · · , YiT )> ∈ RT . Given Z, Yi is a sub-Gaussian random vector with cov(Yi) =

Σi = (σi,t1t2) ∈ RT×T , where σi,t1t2 = e>i Gt1−t2ΣY ei for t1 ≥ t2, σi,t1t2 = e>i ΣY (G>)t2−t1ei,

and G is pre-defined in (2.6) as G = B1W + B2. It can be derived var∗(Y>i Yi) ≤ ctr(Σ2
i ),

where c is a positive constant and tr(Σ2
i ) = T (e>i ΣY ei)

2 + 2
∑T−1
t=1 (T − t)(e>i GtΣY ei)2. It

can be derived |ΣY |e 4 αMM> and |GtΣY |e 4 α1t
JctβMM> by (A.2) of Lemma 2, where

cβ , J and M are defined in Lemma 2, α and α1 are finite constants. In addition, it can be
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verified
∑T−1
t=1 (T − t)t2Jc2tβ ≤ α2T , where α2 is a finite constant. Therefore we have tr(Σ2

i ) ≤

T (α+ 2α1α2){(e>i MM>ei)
2}. Since we have e>i MM>ei ≤ (J + 1)e>i M1 ≤ (J + 1)2 = O(1), it

can be concluded that tr(Σ2
i ) ≤ Tα3, where α3 = (α+ 2α1α2)(J + 1)2. By Lemma 3, the (A.14)

can be obtained.

Appendix B. Proof of Theorem 1

Let λi(M) be the ith eigenvalue of M ∈ RN×N . We first verify that the solution (2.7) is

strictly stationary. By Banerjee et al. (2014), we have maxi |λi(W )| ≤ 1. Hence we have

max
1≤i≤N

|λi(G)| ≤
(

max
1≤k≤K

|β1k|
)(

max
1≤i≤N

|λi(W )|
)

+ max
1≤k≤K

|β2k| < 1. (A.18)

Consequently, we have limm→∞
∑m
j=0 G

jEt−j exists and {Yt} given by (2.7) is a strictly sta-

tionary process. In addition, one could directly verify that {Yt} satisfies the GNAR model

(2.4).

Next, we verify that the strictly stationary solution (2.7) is unique. Assume {Ỹt} is another

strictly stationary solution to the GNAR model (2.4) with E‖Ỹt‖ < ∞. Then we have Ỹt =∑m−1
j=1 G

j(B0 + Et−j) + GmỸt−m for any positive integer m. Let ρ = maxk(|β1k|+ |β2k|). Then

one could verify E‖Yt− Ỹt‖ = E‖
∑∞
j=m G

j(B0 + Et−j)−GmỸt−m‖ ≤ Cρm, where C is a finite

constant unrelated to t and m. Note that m can be chosen arbitrarily. As a result, we have that

E‖Yt − Ỹt‖ = 0, i.e. Yt = Ỹt with probability one. This completes the proof.

Appendix C. Proof of Theorem 2

According to (3.9), θ̂k can be explicitly written as θ̂k = θk+Σ̂−1
k ζ̂k, where Σ̂k = (NkT )−1∑T

t=1

X(k)>
t−1 X(k)

t−1 and ζ̂k = (NkT )−1∑T
t=1 X

(k)>
t−1 E

(k)
t . Without loss of generality, we assume σ2

k = 1 for
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k = 1, · · · ,K. Let Σk = limN→∞E(Σ̂k). As a result, it suffices to show that

Σ̂k →p Σk, (A.19)

√
NkT ζ̂k = Op(1), (A.20)

as min{N,T} → ∞. Subsequently, we prove (A.19) in Step 1 and (A.20) in Step 2.

Step 1. Proof of (A.19). Define Q = (I −G)−1ΣV(I −G>)−1. In this step, we intend to show

that Σ̂k =

1

NkT

T∑
t=1

X(k)>
t−1 X(k)

t−1 =



1 S12 S13 S14

S22 S23 S24

S33 S34

S44


→p



1 c1β c2β 0>

Σ1 Σ2 κ8γ
>Σz

Σ3 κ3γ
>Σz

Σz


= Σk,

where

S12 =
1

NkT

T∑
t=1

∑
i∈Mk

w>i Yt−1, S13 =
1

NkT

T∑
t=1

∑
i∈Mk

Yi(t−1), S14 =
1

Nk

∑
i∈Mk

V >i ,

S22 =
1

NkT

T∑
t=1

∑
i∈Mk

(w>i Yt−1)2, S23 =
1

NkT

T∑
t=1

∑
i∈Mk

w>i Yt−1Yi(t−1),

S24 =
1

NkT

T∑
t=1

∑
i∈Mk

w>i Yt−1V
>
i , S33 =

1

NkT

T∑
t=1

∑
i∈Mk

Y 2
i(t−1),

S34 = (NkT )−1∑T
t=1

∑
i∈Mk

Yi(t−1)V
>
i , S44 = N−1

k

∑
i∈Mk

ViV
>
i . By (2.7), we have

Yt = (I − G)−1b0 + (I − G)−1bv + Ỹt, (A.21)
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where b0 =
∑
kDkB0k, bv =

∑
kDkVγk, and Ỹt =

∑∞
j=0 G

jEt−j . By the law of large numbers,

one could directly obtain that S44 →p Σv and S14 →p 0>. Subsequently, we only show the

convergence of S12 and S23 in Σ̂k as follows.

Convergence of S12. It can be derived that

S12 =
1

NkT

T∑
t=1

1>W (k)Yt−1 =
1>W (k)µY

Nk
+ S12a + S12b,

where S12a = N−1
k 1>W (k)(I − G)−1bv and S12b = (NkT )−1∑T

t=1 1
>W (k)Ỹt−1. Then by (A.5)

and (A.3) in Lemma 2, we haveN−2
k 1>W (k)QW (k)>1→ 0 andN−1

k

∑∞
j=0

{
1>W (k)Gj(G>)jW (k)>

1
}1/2 → 0, as N → ∞. As a result, it is implied by Lemma 1 (a) and (c) that S12a →p 0 and

S12b →p 0.

Convergence of S23. Note that

S23 =
1

NkT

T∑
t=1

∑
i∈Mk

w>i Yt−1Yi(t−1) =
1

NkT

T∑
t=1

Y(k)>
t−1 W

(k)Yt−1

=
µ
(k)>
Y W (k)µY

Nk
+ S23a + S23b + S23c + S23d + S23e,

where S23a = N−1
k b̃>v I>k W (k)b̃v, S23b = N−1

k T−1∑T
t=1 Ỹ

(k)>
t−1 W

(k)Ỹt−1 and S23c = N−1
k T−1∑T

t=1

(̃b>v I>k W (k)Ỹt−1 + Ỹ>t−1I>k W (k)b̃v), S23d = N−1
k (̃b>v I>k µ̃Y + µ>Y I>k b̃v), S23e = N−1

k T−1∑T
t=1

(Y(k)>
t−1 µ̃Y + µ>Y I>k W (k)Yt−1), where µ̃Y = W (k)µY and b̃v = (I − G)−1bv.

We next look at the terms one by one. First we have N−2
k tr(IkQI>k W (k)QW (k)>) → 0

by (A.6) in Lemma 2 (c). Therefore, by (b) in Lemma 1, we have S23a →p s23a, where s23a =

limNk→∞E(S23a). Next, for S23b we haveN−1
k

∑∞
i,j=0 tr{IkGi(G>)iI>k W (k)Gj(G>)jW (k)>} → 0

by (A.4) in Lemma 2 (b). Therefore, by (d) in Lemma 1, we have S23b →p s23b, where s23b =

limNk→∞E(S23b). Next, let S23c = S(1)
23c+S(2)

23c, where S(1)
23c = N−1

k T−1∑T
t=1 b̃

>
z I>k W (k)Ỹt−1 and
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S(2)
23c = N−1

k T−1∑T
t=1 Ỹ

>
t−1I>k W (k)b̃v. Note that we have N−1

k

∑∞
j=0 tr{W (k)Gj(G>)jW (k)>IkQ

I>k } → 0 and N−1
k

∑∞
j=0 tr{IkGj(G>)jI>k W (k)QW (k)>} → 0 by (A.7) in Lemma 2 (c). There-

fore, S23c →p s23c by (e) in Lemma 1, where s23c = limNk→∞E(S23c). Next, by similar proof

to the convergence of S13, we have that S23d →p 0 and S23e →p 0. As a consequence, we have

S23 →p Σ2.

Step 2. Proof of (A.20). It can be verified that
√
NkTE(ζ̂k) = 0. In addition, we have

var{
√
NkT ζ̂k} = E(Σ̂k)→ Σk as Nk →∞. Consequently, we have

√
NkT ζ̂k = Op(1).

Appendix D. Proof of Theorem 3

Let Σ̂
(i)
x = T−1∑T

t=1 Xi(t−1)X
>
i(t−1) = (σ̂x,ij) ∈ R3×3, and Σ̂

(i)
xe = T−1(

∑T
t=1 Xi(t−1)δi

εit). We then have

b̂i − bi = (Σ̂(i)
x )−1Σ(i)

xe .

Let Σ̂
(i)
x = (σ̂x,j1j2 : 1 ≤ l1, l2 ≤ 3) ∈ R3×3, where the index i of σ̂x,l1l2 is omitted. Specif-

ically, σ̂x,11 = 1, σ̂x,12 = T−1∑
t w
>
i Yt−1, σ̂x,13 = T−1∑

t e
>
i Yt−1, σ̂x,22 = T−1∑

t Y
2
i(t−1),

σ̂x,23 = T−1∑
t Yi(t−1)(w

>
i Yt−1), σ̂x,33 = T−1∑

t(w
>
i Yt−1)2. Mathematically, it can be com-

puted (Σ̂
(i)
x )−1 = |Σ̂(i)

x |−1Σ̂
∗(i)
x , where |Σ̂(i)

x | is the determinant of Σ̂
(i)
x , and Σ̂

∗(i)
x is the adjugate

matrix of Σ̂
(i)
x , and Σ

∗(i)
x = (σ̂∗x,l1l2), where σ̂∗x,11 = σ̂x,22σ̂x,33 − σ̂2

x,23, σ̂∗x,12 = σ̂x,13σ̂x,32 −

σ̂x,12σ̂x,33 σ̂∗x,13 = σ̂x,21σ̂x,32 − σ̂x,22σ̂x,31, σ̂∗x,22 = σ̂x,11σ̂x,33 − σ̂2
x,13, σ̂∗x,23 = σ̂x,13σ̂x,32 −

σ̂x,12σ̂x,33, and σ̂∗x,33 = σ̂x,11σ̂x,22 − σ̂2
x,12. It can be derived |Σ̂(i)

x | = σ̂x,11(σ̂x,22σ̂x,33 − σ̂2
x,23)−

σ̂x,12(σ̂x,12σ̂33 − σ̂13σ̂23) + σ̂13(σ̂12σ̂23 − σ̂22σ̂13). By the maximum inequality, we have

P (sup
i
‖b̂i − bi‖ > ν) ≤

N∑
i=1

P (‖b̂i − bi‖ > ν). (A.22)
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In addition, we have

P (‖b̂i − bi‖ > ν) ≤ P
(∣∣|Σ̂(i)

x | − σ(i)
x

∣∣ ≥ δi)+ P
(∣∣Σ̂∗(i)x Σ̂(i)

xe

∣∣ ≥ δiν), (A.23)

where σ
(i)
x = σx,11(σx,22σx,33 − σ2

x,23) − σx,12(σx,12σ33 − σ13σ23) + σ13(σ12σ23 − σ22σ13) =

(e>i ΣY ei)(w
>
i ΣY wi) − (e>i ΣY wi)

2, δi = σ
(i)
x /2. By lemma 4, for each component of |Σ̂(i)

x | we

have P (|σ̂x,l1l2 − σx,l1l2 | > ν0) ≤ c1 exp(−c2Tν20 ), where σx,l1l2 = E(σ̂x,l1l2) and ν0 is a finite

positive constant. Moreover, by the conditions of Theorem 3, we have σ
(i)
x ≥ τ with probability

tending to 1. Consequently, it is not difficult to obtain the result P (||Σ̂(i)
x | − σ

(i)
x | ≥ δi) ≤

c∗1 exp(−c∗2Tτ2), where c∗1, c∗2 are finite constants. Subsequently, we have P (|Σ̂∗(i)x Σ̂
(i)
xe | ≥ δiν) ≤

P (|Σ̂∗(i)x Σ̂
(i)
xe | ≥ τν/2). By similar technique, one could verify that each element of Σ̂

∗(i)
x and

Σ̂
(i)
xe converge with probability and the tail probability can be controlled, where the basic results

are given in Lemma 4. Consequently, there exists constants c∗3 and c∗4 such that P (|Σ̂∗(i)x Σ̂
(i)
xe | ≥

τν/2) ≤ c∗3 exp(−c∗4Tτ2ν2). Consequently, we have P (‖b̂i − bi‖ > ν) ≤ c∗1 exp(−c∗2Tτ2) +

c∗3 exp(−c∗4Tτ2ν2) by (A.23). By the condition N = o(exp(T )), the right side of (A.22) goes to

0 as N →∞. This completes the proof.
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