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Supplementary Material
We present here the detailed technical proofs of Lemma 1-Lemma 4 in Appendix A. Next,
the proofs of Theorem 1 to Theorem 3 are given in Appendix B, C, and D respectively.
Appendix A. Four Useful Lemmas

Lemma 1. Let X = (Xq,--- ,Xn)T € R", where X;s are independent and identically dis-
tributed random variables with mean zero, variance o% and finite fourth order moment. Let
Y: = >ivo GIUE—;, where G € R™™, U € R™*N and {&:} satisfy Condition (C1) and are in-
dependent of {X;}. Then for a matriz A = (ai;) € R™*" and a vector B = (by,--- ,b,)" € R™,

it holds that
() n'BTX =,0in?B"B—0 as n — co.

() nTIXTAX —p 0% limpoyoo n  tr(A) if the limit exists, and n™2tr(AAT) — 0 as n —

(c) T) S BTY, =, 0if ' Y20 (BT GIUUT(GTYB)Y? = 0 as n — o

(d) (nT)"*37, Y{ AY] —p limy o n~ ' tr{ AT(0)} if the limit exists, and n~" >

S t{UT(GTY AGUUT(GTY ATG'UNY? =0 as n — oo.
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(¢) (nT)" 'S XTAY] —, 0 if n ™' 02 [tr{AG'UU T (GTY ATHY? = 0 as n — oo.
Proof: The detailed proof can be found in Lemma 1 of [Zhu et al.| (2017).

Lemma 2. Assume ming Ny = O(N°®) and the stationary condition cs < 1, where cg =
maxy(|Bik| + |B2k|). Further assume Conditions (C1)-(C3) hold. For matrices My = (mijl)) €
R™*? and Mz = (mg)) € R™*? | define My < M2 as mgjl-) < mg) for1<i<nand1l<j<p.
In addition, define |M|. = (|mj]) € R"*P for any arbitrary matriz M = (m;;) € R"*P. Then
there exists J > 0, such that

(a) for any integer n > 0, we have

G"(G")" e s 07" MM, (A1)

16" Sy e < an’chMM T, (A.2)

where M = C1n' + Z;-]:o Wi, C > 1 is a constant, © is defined in (C3.1), and o is a finite
constant.

(b) For positive integers ky < 1, ko < 1, andj > 0, define g; uy 5, (G, W) = |(WHF)k1{GI(GT )T }k2
(WETYkL e RNXN - In addition, define (W*)° = T), = (In,,0) € RY**N . For integers

0<ki,ka,mi,mz2 <1, as N = oo we have

N_l Z {HngJﬁJw (gv W(k)),u}l/2 — 0, (AS)
j=0

NS [ guiis 6 W) gy (6. W) }] 7 0, (A.4)
1,7=0

where |ule < ¢l and ¢, is a finite constant.

(¢) For integers 0 < ki, ka < 1, define fi, ks (W®,Q) = (W) QF2(W R Tk | ¢ RNXN,
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where @ 1is given in (C8). Then for integers 0 < k1, ka2, m1,m2 <1, as N — oo we have

N72/LTfk1,k2 (W<k)7 Q),LL — 0, (A5)

N72tr{fk1,k2 (W(k>7 Q)fml,mz (W(k>, Q)} — 0, (AG)

N71 Z [tr{fklykZ (WUC), Q)gj,’ml,'mg (g7 W(k))}] 1/2 — 0, (A?)
=0

where |ule < ¢l and ¢, is a finite constant.

Proof: The proof is similar in spirit to (2017). Therefore, we give the guideline of

the proof and skip some similar details. Without loss of generality, we let ¢cg = |B11|+|821] (i-e.,

k = 1). Consequently, we have |G|e < |B11|W + |B21]I. Let G = |B11|W + |B21|I. Follow similar

technique in part (a) in Lemma [2| of |[Zhu et al.| (2017), it can be verified
19" < e, (A.8)

where M = Cl1n' + Z;‘]:o W is defined in (a) of Lemma [2} Subsequently, the result
can be readily obtained. Next, recall that Xy = (I — g)_lEZ(I — gT)—l + Z;io gfze(gT)j =
( ;io GH3s( ;’;O(QT)j) + Z?io gjze(gT)j. Let o2 = maxk{fy,jzz’yk} and o2 = maxi{o}}.
Then we have [G" Sy . < 02(335% 1671)(S20 16TV [e) + 02 5520 107G V. Subse-
quently, (|A.2) can by obtained by applying . Next, we give the proof of (b) in the following.
The conclusion (c) can be proved by similar techniques, which is omitted here to save space.
Let k1 = kp = 1. Then we have g;1,1(G, W®) = [WRGIgIWw®T| Recall that Wk =
(wij 1 i € My, 1 < j < N) € RV*Y_ Gince we have |u|le < c.1, then it suffices to show

>0 N;l{ngj,l,l(g,W(’“))l}l/2 — 0. We first prove 1) By 1} we have [WMG7|, <
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FEWB] + B2 WH M. As a result, we have
WEG GTYWOT L < 725 (1B1] +1821)7 M, (A.9)

where M is defined as M = WSO MM TW®H T As a result, we have > 520 N H{1TwRgi(gTy
VVUV)TI}U2 < No'ar(1TMD)Y2) where ar = ;.;OjKCZ? < oo. Then it leads to show
N;?1"M1 = 0. It can be shown 1" M1 = N2CY m; + 30 1T WSW/ (W yw® Ty 4
2NC Y2, WT(WT)jW(k)Tl—i—Z#j 1" W®OWI WY WHETL, For the last two terms of 17 M1,

by Cauchy inequality, we have

. 1/2 v ) 1/2
Ni ZTI_T(WT)Jw(k)Tl < Nk(zﬂ'?) {1Tw(k>WJ(WT)]W(k)T1} ’
J J
i j i i 1/2 j j

and 3o, UTWHOWI (W Tyw®TL <3 {1TwOW (W Ty wkT1} POaTw®EwI (W Ty
WU“)TI}I/Q. As a result, it leads to show

N . .

dai—=0 and NPUTWEWI (WTYw®T1 0 (A.10)

j=1
for 1 < j < K + 1. As the first convergence in (A.10)) is implied by (C2.1), we next prove
N2AATTWOWI (WY w®T1 - 0 (1 < j < K). Recall that W* = W + W . Therefore,
we have N, 21T W®WI(WTyw®T1 < N21TW®W*2WET1, Then it suffices to show
N721Tw® w2y )Ty 5 0. By eigenvalue-eigenvector decomposition of W* we have W* =
S M (W) uguy, , where \e(W*) and uy, € R are the kth eigenvalue and eigenvector of W* re-
spectively. As a result, we have N, 21T WH® W2 WHET1 < N2\ (WP (1 TWHEHWETY)

(1 < j < K). Further we have 1" W®W®T1 < Ny Apax (WO WHE T Note that WHEWwET
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is a sub-matrix of WW T with row and column index in M. Therefore, by Cauchy’s interlac-
ing Theorem, we have Amax(W®HWHET) < Ao (WWT) = O(N?') for 6 < 6. Since we have
ming Ny = N for § > 0, then we have Nk_lkmax(W(k)W(k)T) — 0 as N — o0o. As a conse-
quence, the second term in holds. Similarly, it can be proved that holds for all
0 < k1, ke < 1. As a result, we have holds.

We next prove with k1 = ko = m1 = ma = 1, and ¢;1.1(G, W*)g;11(G, WH) =
[WEGHGTY W TWwEGIH(GT)YWET|.. Then it can be similarly proved for other cases (i.e.,
0 < k1, k2,m1,ma2 < 1). Note that by , we have

/2 o
<K (B + |Ba)) e { MY

[tr{W(k)gi(gT)iW(k)TW(k)gj(gT)jW(k)T}] 1
It then can be derived that N, * > =0 [te{W®GH Gy W TR GGy wrETHY2 < o2 Nt

tr{./\/l2}1/2. In order to obtain l) it suffices to show that
N 2tr{M?} = 0. (A.11)

Equivalently, by Cauchy inequality, it suffices to prove (3 77)® — 0, and N 2t {w W wiTwkT
W<k)WjoTW(k>T} — 0 holds for 1 < j < K. It can be easily verified the first term holds
by (C2.1). For the second one, we have N,;ztr{Ww)WjoTW(k)TW(k)WjoTW(k>T} <
N2 {W B W)W ETY < No2 Ao (W)Y tr(WEWETY < N2 N dmax (W) Apax (WW ).
Similarly, due to that Amax(W*) = O(log N) and Amax(WWT) = O(N‘Sl) in (C2.2), we have
Ny Amax (W)  Mpax(WWT) — 0 as N — oo. Consequently, we have and then

holds. This completes the proof of (b).

Lemma 3. Let {Xit : 1 <t < T} and {Yir : 1 < t < T} be random sub-Gaussian time
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series with mean 0, var(Xit) = 04,22, var(Yit) = 04,4y, and cov(Xiz, Yit) = Oi,zy. Let Ozitity =
cov( Xty , Xity) and Ygi = (Ogitgre + 1 < t1,t2 < T) € RT*T " Similarly, define Oyitita aNd

3y € RT*T . Then we have

T
P(‘T71 Z XitYit — i,y
t=1

> 1/) < cl{ exp(—cao, T?V%) + EXp(chO';i2T2l/2)} (A.12)

for |v| < 8, where 02, = tr(%2,), agi = tr(Efﬂ), c1, c2, and & are finite constants.

Proof: Let X; = (Xi1, -, Xir)'! € RT and Y; = (Yi1,---,Yir)" € R”. In addition, let

Z; = Z; +Y;. Therefore, we have ZZ-TZZ- = 2*1(Zl—TZi — XZ-TX,L- — YiTYZ-). It can be derived that

P{T M X]'Yi) = 0iey| > v} < PUTN(Z Zi) = (0400 + Oigy +200,09)| > 01}

+ P{T (X Xi) = 0iwal 2 1} + PUT ' (VTYi) = iyl = 11}, (A.13)

where 11 = 2v/3. Next, we derive the upper bound for the right side of . Note that
X/ X;,Y,"Y;:, and Z; Z; all take quadratic form. Therefore the proofs are similar. For the sake of
simplicity, we take Y;' Y; for an example and derive the upper bound for P{|n = (Y;" i) =0 44| >
v1}. Similar results can be obtained for the other two terms.

First we have V;'Y; = Y;' £, 1?55 V2, = ¥,"9,,Vi, where ¥; = 5, '/?Y; follows sub-
Gaussian distribution. Let Ay > A2 > .-+ > Ar be the eigenvalues of ¥,;. Since ¥y, is a non-
negative definite matrix, The eigenvalue decomposition can be applied to obtain ¥,; = UTAU,
where U = (Un, - - ,UT)T € RT*T is an orthogonal matrix and A = diag{A\1, -+, Ar}. As acon-
sequence, we have Y;' Y; = > A\iC?, where ¢ = Ut—r?t and (;s are independent and identically
distributed as standard sub-Gaussian. It can be verified (? — 1 satisfies sub-exponential distri-

bution and 77 (3", A¢t) = 0i,yy. In addition, the sub-exponential distribution satisfies condition
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(P) on page 45 of [Saulis and Statuleviveccius| (2012). There exists constants ci1, ¢z, and 6 such

that P{T ™ (V,T¥:) ~ 0140l 2 11} = P{S, MG — D] 2 Tin} < 1 exp{—ea(S, M) T2} =

c EXp{—CQO'y_,L-lTQI/2} for |v| < § by the Theorem 3.3 of |Saulis and Statulevivecciusl 42012[).

Consequently, (A.12)) can be obtained by appropriately chosen c1, ¢2, and 4.

Lemma 4. Assume Yy follows the GNAR model and |cg| < 1. Then there exists finite

constants c1, c2, and §, for v < & we have

T

P{T™' Y Vi — i — el Sves| > v} < or, (A.14)
t=1
T

P{|T71 ZY;t(w;rYt) — /J,Yi(w;r/,by) — w?Eyei| > V} < or (A.15)
t=1
T T

P{T™> Yig-neu| > v} <or, P{T7") (w]Yi1)eu| > v} < or, (A.16)
t=1 t=1
T T

P{’T_l Zm(t,l) — ,ui| > I/} S 5T, P{’T_l ZwZTYt — w;ruy‘ > l/} S 6T7 (A17)
t=1 t=1

where 67 = ¢1 exp(—c2TV?), e; € RY is an N-dimensional vector with all elements being 0 but

the ith element being 1, and p; = e;ruy‘

Proof: For the similarity of proof procedure, we only prove in the following. Without
loss of generality, let uy = 0. Recall that the group information is denoted as Z = {z; : 1 <
i < N,1 <k < K}. Define P*(-) = P(:|Z), E*(-) = E(-|Z), and cov*(-) = cov(-|Z). Write
Vi = (Y, - ,YiT)T € RT. Given Z, Y; is a sub-Gaussian random vector with cov(Y;) =
Y = (0itqts) € RT*T | where 0441, = el Gt 2y e; for ty > to, Cityty = e;rZy(gT)t?*tle,-7
and G is pre-defined in as G = B1W + Bs. It can be derived Var*(y;yi) < ctr(Ef),
where ¢ is a positive constant and tr(X?) = T(ef Sye;)? + 23, (T — t)(ef G'Syes)?. Tt
can be derived |Zy|e = aMM' and |Qt2y|e < alt‘]cngMT by of Lemma where

cg, J and M are defined in Lemma [2} o and oy are finite constants. In addition, it can be
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verified 37" (T — t)t*7 3’ < T, where s is a finite constant. Therefore we have tr(X7) <
T(a+4200a2){(ef MM Te;)?}. Since we have ef MM Te; < (J+1)e] M1 < (J+1)? =0(1), it
can be concluded that tr(%?) < Tas, where az = (a+2a10a2)(J+1)%. By Lemma the (A.14)

can be obtained.

Appendix B. Proof of Theorem 1

Let \;(M) be the ith eigenvalue of M € RY*YN. We first verify that the solution (2.7) is

strictly stationary. By [Banerjee et al.|(2014), we have max; |A;(W)| < 1. Hence we have

max Xi(G)] < (| max |Bu]) (| max Ma(W)I) + max |Bax] < 1. (A.18)
Consequently, we have limy, oo Z;.":O Q'j&,j exists and {Y:} given by is a strictly sta-
tionary process. In addition, one could directly verify that {Y;} satisfies the GNAR model
9.

Next, we verify that the strictly stationary solution is unique. Assume {%} is another
strictly stationary solution to the GNAR model with E[Y;|| < co. Then we have Y; =
Z;”:—ll G/ (Bo + Ei—j) + G™ Y, for any positive integer m. Let p = maxy(|B1x| + |B2x|). Then
one could verify E|Y, —Y,| = E|| dem G (Bo+E&i—j) —G™Yi_m| < Cp™, where C is a finite
constant unrelated to ¢ and m. Note that m can be chosen arbitrarily. As a result, we have that

E|Y: — §t|\ =0,ie Y = Y, with probability one. This completes the proof.
Appendiz C. Proof of Theorem[g

According to l) 5k can be explicitly written as 5k = Gk—i—f};l&, where f]k = (NkT)*1 ZtT:1

XEE)ITXEE)I and ( = (NyT)™! Zthl Xgli)l-ré't(k). Without loss of generality, we assume o7 = 1 for
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k=1,--- ,K. Let X = limn_ oo E(ik) As a result, it suffices to show that
Sk —p Sk, (A.19)
VNRTC = 0, (1), (A.20)

as min{ N, T} — co. Subsequently, we prove (A.19) in Step 1 and (A.20) in Step 2.

STEP 1. PROOF OF (A.19)). Define Q = (I —G) ™ '¥v(I —G")~'. In this step, we intend to show

that $p =
1 Si2 Sz Sua 1 cip cop 0"
1 Yo key' D
1 R Saz  Saz  Sos 1 2 KgY X
N.T ZX( X = —p =2k,
t= Ssz  Sza s K3y .
844 ZZ
where
R r
Si2 = T Z w?Ytﬂ, Si3 = Z Z i(t—1)» S1a = — Z V; s
k t=11ieEMy = EMy, zeMk
1 <« r
Sz = N.T Z Z (wi Yi1)?, Sog= Z Z w; Yeo1Yigi-1y,
k t=11ieMy =13ieEMy

T T
Sos = 1TZ wi Y1V, 833— Z Z z(t 1)
- —1ieM,

Ssa = (NeT) " S0, Vi, Yia-)Vi' s Saa = NV 30,0, ViViT- By (2.7), we have

Ye=(=6) "o+ (I —G) b+ Vi, (A.21)
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where bo = Y, DrBok, bv = >, Dx Vi, and ?t = Z;io Qj&,j. By the law of large numbers,
one could directly obtain that Si4 —, %, and S;4 —, 0'. Subsequently, we only show the
convergence of S12 and Se3 in ik as follows.

CONVERGENCE OF S32. It can be derived that

1TW(k)/-LY

S124 + Si2s,
N + D124 + D128

T
L Ty
S10 = —— 1 WWYq =
o= s WO
where Si2, = N7 '1TWH (I = G)7'b, and S125 = (N.T) "' 1, 1TW®Y,_1. Then by (A.5)
and || in Lemma we have N, 21T W® QW™ T1 — 0and N, ! P {1Tw®gi(GgTywHrT
1}1/2 — 0, as N — oo. As a result, it is implied by Lemma (a) and (c) that Si2¢ —p 0 and
Slgb —p 0.

CONVERGENCE OF S23. Note that

T T
1 T 1 (W) T i (k)
Sa3 = E E w; Y 1Yii—1) = 75 E Yo WY
NiT t=1iEM,, NeT t=1

= W + S23a + S23p + S23c + S23a + Saze,
where Sa34 = N,C_IFI;ZI,IW('“)’I;U, Sasp = Nk_lel 23:1 YN(',E@ITW““)%VQA and So3. = N;C_ITLI 23:1
(b ZE WOV, 1 + Y LI Wb, Sasa = Ny ' () T iy + iy I by), Sase = N ' T7H 01
(YM hy + uy ZT WY, ), where fiy = W® puy and b, = (I — G)~'b,.

We next look at the terms one by one. First we have N, 2tr(ZyQZ, W™ QW®T) — ¢
by in Lemma [2[ (c). Therefore, by (b) in Lemma we have S23, —p S23a, Where s23, =
limn, o0 E(Sasa). Next, for Sog, we have Nt 3% tr{Z,G" (G )’ T, WP G (GTY WM Ty -0
by in Lemma (b). Therefore, by (d) in Lemma we have Sazp —p S23p, Where sagp =

lim v, o0 B(Sass). Next, let Saa. = S5y, +S$), where S5, = N T S8 b T w®Y,_; and
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SSe, = N T ST YL T Wb, Note that we have Ny 3000 te{W Mg/ (GT )W TZ,Q
I} = 0 and NP 2520 te{ZeG? (GT VT W QW MTY — 0 by in Lernrna (c). There-
fore, S23c —p S23c by (e) in Lemma where s23. = limpy, 500 E(S23.). Next, by similar proof
to the convergence of Si3, we have that Sa3q4 —p 0 and Sa23e —5 0. As a consequence, we have
Saz —p 2o.

STEP 2. PROOF OF . It can be verified that VNxTE((x) = 0. In addition, we have

var{\/NkTZk} = E(ik) — Y as Nx — co. Consequently, we have \/NkTEk = 0p(1).
Appendiz D. Proof of Theorem[J

Let 5% =T S0 Xi0) X[y 1) = (Grij) € R¥P, and B8 = 771X, Xig—1)di

€:¢). We then have

bi —b; = (S)7'nl),

IN

Let S8 = (Gujijn : 1 < l1,l2 < 3) € R¥*3, where the index i of G4y, is omitted. Specif-
ically, Gz,11 = 1, g2 = T7! > wi Yi—1, Gopz = T7F > e; Y1, Oppo = T7! > Yi%t71)7
Go2s = T, Yig—ny(w! Y1), Guszs = T3, (w) Ye—1)?. Mathematically, it can be com-

puted (f:;”)*l = |§J§f)|*1§];(i), where \f]gm is the determinant of f]gf), and i;(” is the adjugate

. S (2) #(1) _ y~x o~ o~ ~ ~2 ~% oA ~
matrix of 337, and X2 = (6} ,,,,), where 05 11 = 02,2202,33 — Oz,23, Op,12 = 02,1302,32 —
~ ~ ~ A~ ~ ~ ~ ~k o~ ~ ~2 ~k A~ ~
02,120%,33 Og,13 — 02,2102,32 — 02,2202,31, Og 22 = O0g,1102,33 — 0413, 0523 = 0z,130%,32 —
~ ~ o~ ~ ~ ~2 . S(2) ~ ~ ~ ~2
02,120¢,33, and O 33 = 0x,1102,22 — 04,12- It can be derived |X5’| = G4,11(0¢,220¢,38 — Os,23) —

3%12(3%126’\33 — 3136\'23) + 6’13 (3126’23 — 322/0'\13). By the maximum inequality, we have

N
P(sup [[bi — bil| > v) <> P([[bs — bil| > v). (A.22)
v i=1
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In addition, we have

P(|[b; — bi]| > v) < P(|IEY] - o] > &) + P92 > swv), (A.23)
where O';i) = 02,11(02,2202,33 — 03,23) — 042,12(02,12033 — 013023) + 013(012023 — 022013) =

(e Sye)(w! Sywi) — (ef Syw;)?, 6 = Ug(f)/l By lemma for each component of |§]§E’)\ we

have P(|0z,1,15 — Ou,i115] > v0) < 1 exp(fczTyg), where 04,1,1, = F(0s,1,1,) and g is a finite

positive constant. Moreover, by the conditions of Theorem |3 we have ol? > 7 with probability

tending to 1. Consequently, it is not difficult to obtain the result P(||§)S)\ — a:(f>| > 6)

IN

IN

¢t exp(—c3T7?), where ¢, ¢} are finite constants. Subsequently, we have P(|§J;(z)§§fe)| > 6iv)
P(|§J;(2)f]§fe>| > 7v/2). By similar technique, one could verify that each element of $:4) and
) converge with probability and the tail probability can be controlled, where the basic results

are given in Lemma Consequently, there exists constants c3 and ¢} such that P(|§;(l)f}§fg| >

Tv/2) < cjexp(—ciTT?v?). Consequently, we have P(||31 —b] > v) < cfexp(—c3TT?) +

c5 exp(—c;Tm%v?) by (A.23). By the condition N = o(exp(T)), the right side of (A.22) goes to

0 as N — oo. This completes the proof.
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