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Abstract: Time series analyses are often used to model a continuous response for

all individuals at equally spaced time points. With the rapid advance of social net-

work sites, network data are becoming increasingly available. The network vector

autoregression (NAR) model incorporates the network information among individ-

uals. The response of each individual can be explained by its lagged value, the av-

erage of its neighbors, and a set of node-specific covariates. However, all individuals

are assumed to be homogeneous because they share the same autoregression coef-

ficients. To express individual heterogeneity, we develop a grouped NAR (GNAR)

model. Individuals in a network can be classified into different groups characterized

by sets of parameters. The strict stationarity of the GNAR model is established.

Two estimation procedures are developed, as well as the asymptotic properties of

the proposed model. Numerical studies are conducted to evaluate the finite-sample

performance of our proposed methodology. Lastly, two real-data examples are pre-

sented, based on studies on user posting behavior on the Sina Weibo platform and

on air pollution patterns (especially PM2.5) in mainland China, respectively.

Key words and phrases: EM algorithm, network data, ordinary least square estima-

tor, vector autoregression.

1. Introduction

An important result of the rapid development of the Internet has been the

rise of social networks, such as Facebook, Twitter, Sina Weibo, and many others.

Accordingly, network data are becoming increasingly available. On the one hand,

users (i.e., nodes) in a social network are related (e.g., friendship) rather than

being independent of each other. On the other hand, many covariates can be

collected for each user, including personal information, consumption behavior,

and textual records. As a result, network data play an important role in various

disciplines. They can be used to provide site user portraits (Lewis et al. (2008)),

characterize social capital flow patterns (Bohn et al. (2014)), and analyze con-

sumer behavior (Hofstra, Corten and Buskens (2015)).

Mathematically, we use an adjacency matrix A = (aij) ∈ RN×N to represent

the network structure, where N is the total number of nodes. If the ith node
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follows the jth node, we set aij = 1; otherwise, aij = 0. For convenience, we

always let aii = 0. In addition, we assume that a continuous response Yit ∈ R1

can be observed for each node over time t. On a social network platform, Yit could

be the number of characters posted by node i at time t, reflecting nodal activeness.

Furthermore, we study the dynamic pattern of Yt = (Y1t, . . . , YNt)
> ∈ RN . To

this end, prior studies often use vector autoregression (VAR) models and their

corresponding dimension-reduction methods, especially the factor models (Pan

and Yao (2008); Lam and Yao (2012)). Recently, Zhu et al. (2017) proposed a

network vector autoregression (NAR) model, which takes the network structure

into account when modeling the dynamics of Yt.
The NAR model assumes that the response Yit is influenced by four factors:

(a) its lagged value Yi(t−1); (b) its socially connected neighbors n−1i
∑

j aijYj(t−1)
with ni =

∑
j aij ; (c) a set of node-specific covariates Vi ∈ Rp; and (d) an

independent noise εit. Thus, the model is specified as follows:

Yit = β0 + β1n
−1
i

∑
j

aijYj(t−1) + β2Yi(t−1) + V >i γ + εit, (1.1)

where β0, β1, β2, and γ are referred to as the baseline effect, network effect,

momentum effect, and nodal effect, respectively.

Although model (1.1) can be used to study the dynamic pattern of Yt when

network information is available, it treats all nodes as being homogenous. For

instance, according to the NAR model, the node-irrelevant network effect β1
implies that all nodes are influenced by their neighbors to the same extent. This

is obviously unrealistic in practice. For example, consider Sina Weibo, one of the

most popular social network platforms in China. Some nodes on the platform

are super stars or political leaders, and have millions of fans. These nodes are

referred to as opinion leaders, and are less influenced by others (Wasserman and

Faust (1994)). As a result, the network effect (i.e., β1) for opinion leaders should

be small. In contrast, their followers are more likely to be affected, leading to a

relatively large network effect for these ordinary nodes.

From the above discussion, we conclude that the baseline effect, network

effect, momentum effect, and nodal effect might vary among groups of nodes.

As discussed later, our real-data shows that nodes in a network can be classi-

fied into K groups characterized by different sets of parameters (e.g., β1k, for

k = 1, . . . ,K). Figure 1 shows that for the Sina Weibo data set, nodes are clas-

sified into three groups, each with different coefficient estimates. Specifically, the

estimated network effect is much smaller for group 3 than it is for group 2 (i.e.,
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Figure 1. Coefficient estimates for three groups. Distinct characteristics are evident for
different groups of nodes.

β̂12 = 0.026 vs. β̂13 = 0.002). On the other hand, group 3 has a larger estimated

momentum effect than that of group 2 (i.e., β̂22 = 0.396 vs. β̂23 = 0.958). This

indicates that nodes in group 2 tend to be affected by their connected neighbors,

whereas those in group 3 are more likely to be self-influenced.

In order to capture this interesting phenomenon, we propose a grouped net-

work vector autoregression (GNAR) model. The GNAR model basically assumes

that nodes in a network can be classified into groups characterized by different

sets of parameters. The proposed model is related to the literature on the clus-

tering of time series data, where the most popular technique is model-based clus-

tering, established using finite-mixture models (Fröhwirth-Schnatter and Kauf-

mann (2008); Juárez and Steel (2010); Wang et al. (2013)). According to this

approach, each time series is assumed to belong to one group, and each group is

characterized by a different data-generating mechanism. The method is widely

applied to gene expression classification (Luan and Li (2003); Heard, Holmes

and Stephens (2006)), financial data modeling (Frühwirth-Schnatter and Kauf-

mann (2006); Bauwens and Rombouts (2007)), and economic growth analyses

(Fröhwirth-Schnatter and Kaufmann (2008); Juárez and Steel (2010); Wang et al.

(2013)). To the best of our knowledge, most of the above methods deal with inde-

pendent univariate time series, and can be difficult to apply directly to network

data.
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In this study, we group users according to their dynamic network behaviors.

The network information is embedded in the model. Section 2 introduces the

GNAR model, including establishing the strict stationarity of Yt. In section 3,

two estimation methods are developed: an EM algorithm, and a two-step (TS)

estimation procedure. This section also presents the corresponding asymptotic

properties. A number of simulation studies are presented in Section 4 to demon-

strate the finite-sample performance of our methodology. Two real-data examples

are discussed in Section 5. These are based on data on user postings on the Sina

Weibo platform (the largest Twitter-type social media platform in China), and

on PM2.5 data recorded across mainland China, respectively. Section 6 concludes

the paper. All technical proofs are left to the online Supplementary Material.

2. Grouped Network Vector Autoregression

2.1. Model and notation

The NAR model is defined in (1.1). Here we wish to model the dynamics

of Yt. Note that the effects do not vary by node, implying that all nodes are

homogenous. However, as discussed above, this assumption might be too stringent

in practice. To address this problem, we assume the nodes in the network can

be classified into K groups, where each group is characterized by a specific set

of parameters θk = (β0k, β1k, β2k, γ
>
k )> ∈ Rp+3, for 1 ≤ k ≤ K. Let Ft be the

σ-field generated by {Yis : 1 ≤ i ≤ N, 1 ≤ s ≤ t}. Given Ft−1, Y1t, . . . , YNt are

assumed to be independent, and to follow a mixture Gaussian distribution

K∑
k=1

αkf

β0k + β1kn
−1
i

∑
j

aijYj(t−1) + β2kYi(t−1) + V >i γk, σ
2
k

 , (2.1)

where αk ≥ 0 satisfying
∑K

k=1 αk = 1 is the group ratio, and f(µ, σ2) is the prob-

ability density function for a normal distribution with mean µ and variance σ2.

Model (2.1) defines the GNAR model. Essentially, the model specifies a dynamic

pattern for each group as a set of parameters. Following the NAR model, we refer

to β0k, β1k, β2k, and γk as the grouped baseline effect, network effect, momentum

effect, and nodal effect, respectively.

The model in (2.1) does not specify the group to which each node belongs.

Thus, we assume the ith node carries a latent variable zik ∈ {0, 1}. Specifically,

zik = 1 if i is from the kth group, otherwise zik = 0. As a result, the GNAR
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model (2.1) can be written as

Yit =

K∑
k=1

zik

β0k + β1kn
−1
i

∑
j

aijYj(t−1) + β2kYi(t−1) + V >i γk + σkεit

 , (2.2)

where εit is an independent noise term the follows a standard normal distribution.

In addition, we can represent the GNAR model in random-coefficient form, as

follows:

Yit = b0i + b1in
−1
i

∑
j

aijYj(t−1) + b2iYi(t−1) + V >i ri + δiεit, (2.3)

where bji =
∑

k zikβjk, for 0 ≤ j ≤ 2, ri =
∑

k zikγk, and δi =
∑

ik zikσk. Note

that (2.3) can be viewed as a generalized extension of the NAR model. There are

two main differences between the models. First, the effects (i.e., coefficients) are

all node-specific, reflecting the heterogenous characteristics of each node. Second,

the parameters are all random (i.e., a linear combination of the latent variables

zik). This makes the GNAR model (2.3) more flexible and realistic in practice.

Remark 1. The GNAR model (2.3) considers only one lag of information. As

a flexible extension, one could consider the GNAR(p) model, which considers

additional historical information, as follows:

Yit = b0i +

q∑
m=1

b
(m)
1i n−1i

N∑
j=1

aijYj(t−m) +

p∑
m=1

b
(m)
2i Yi(t−m) + V >i ri + δiεit, (2.4)

where b
(m)
1i =

∑
k zikβ

(m)
1k and b

(m)
2i =

∑
k zikβ

(m)
2k . The theoretical properties and

estimation methods can be extended to the GNAR(p) model in (2.4) in a similar

manner. In this work, we focus on the GNAR model with one lag, for simplicity.

Recall Yt = (Y1t, . . . , YNt)
> ∈ RN is the vector of responses at time t. Let

Dk = diag{zik : 1 ≤ i ≤ N} ∈ RN×N , with 1 ≤ k ≤ K. Furthermore, define

V = (V1, . . . , VN )> ∈ RN×p and B0 =
∑K

k=1Dk(B0k + Vγk) ∈ RN , where B0k =

β0k1 ∈ RN and 1 = (1, . . . , 1)> with compatible dimension. Similarly, write B1 =∑K
k=1DkB1k ∈ RN×N and B2 =

∑K
k=1DkB2k ∈ RN×N , where Bjk = βjkI ∈

RN×N , for j = 1, 2, and I is the identity matrix with compatible dimension.

Then, the GNAR model can be written in vector form as

Yt = B0 + GYt−1 + Et, (2.5)
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where G = B1W + B2, W = diag{n−11 , . . . , n−1N }A is a row-normalized adjacency

matrix, and Et = (δ1ε1t, . . . , δNεNt)
> ∈ RN is a noise vector.

2.2. Strict stationarity of the GNAR model

In this section, we examine the strict stationarity of the GNAR model. When

N is fixed, we have the following theorem.

Theorem 1. Assume E‖Vi‖ <∞ and N is fixed. If max1≤k≤K(|β1k|+|β2k|) < 1,

then there exists a unique stationary solution {Yt} with E‖Yt‖ <∞ to the GNAR

model (2.5). The solution takes the form:

Yt = (I − G)−1B0 +

∞∑
j=0

GjEt−j . (2.6)

The proof of Theorem 1 is given in Section 2 of the Supplementary Material.

Remark 2. Given the group label Z = {zik : 1 ≤ i ≤ N, 1 ≤ k ≤ K}, de-

fine the conditional expectation of Yt as µY = E(Yt|Z) = (I − G)−1b0, where

b0 = (b01, . . . , b0N )> ∈ RN . More specifically, denote µY = (µ1, . . . , µN )> ∈ RN .

As discussed earlier, Yit may, for example, denote the number of posts a node

makes on a social network platform. As a result, µY can be viewed as the nodal

activeness level. Furthermore, let Mk = {i1, . . . , iNk
} be the collection of node

indices for the kth group, and |Mk| = Nk denote the group size. It can be ver-

ified that the conditional expectation for nodes belonging to the same group is

identical; that is, µi1 = · · · = µiNk
= νk.

Remark 3. In addition to the conditional mean, we also study the condi-

tional covariance of Yt. For any integer h, define the auto covariance function

of Yt, given Z, as Γ(h) = cov(Yt,Yt−h|Z). It can be verified that Γ(0) = (I −
G)−1ΣV(I−G>)−1+ΣE , where ΣV = diag{

∑K
k=1 zik(γ

>
k ΣV γk) : 1 ≤ i ≤ N}, with

ΣV = cov(V1), and vec(ΣE) = (I−G⊗G)−1vec(Σe), with Σe = diag{
∑K

k=1 zikσ
2
k :

1 ≤ i ≤ N}. It can be further verified that Γ(h) = GhΓ(0), for h > 0, and

Γ(h) = Γ(0)(G>)−h, for h < 0.

To better understand (2.6), we consider a special network structure, namely,

the “core-periphery” network. Specifically, there are two groups of nodes in this

kind of network: the core (i.e., group 1) and the periphery (i.e., group 2). Nodes

in the core group are often celebrities with many followers, whereas nodes in the

periphery group tend to have very few followers and are influenced by the nodes

in the core group. Figure 2 shows the core-periphery network.
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Figure 2. The core-periphery network structure. A black circle represents a core node,
and a gray circle denotes a peripheral node. The core and the periphery can be viewed
as two different groups, with their own regression coefficients. An arrow indicates the
direction of the relationship.

Without loss of generality, let the first s nodes be the first group, and the

remaining N − s form the other. Accordingly, let W = (W11,W12;W21,W22) be

the partition of the two groups. Edges are seldom observed from the core to the

periphery, or among the periphery. Accordingly, we set W12 = 0 and W22 = 0.

The conditional expectation for each group can be computed analytically as

ν1 = β01/(1−β21−β11) and ν2 = (1−β22)−1(β02 +β12ν1), respectively. In such a

case, the conditional mean for the core is determined only by its own coefficients

(i.e., β01, β11, and β21). However, the activeness level of the periphery is also

influenced by the core through the term β12ν1.

3. Parameter Estimation

In this section, we discuss the estimation of the GNAR model. Note that

the group label zik is latent. Therefore, the parameter estimation and group

detection need to be conducted at the same time. Because the procedure might

not be straightforward, as a starting point, we assume the group label is known.

In fact, this can be useful when the groups are predetermined by some preliminary

knowledge.
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3.1. Estimation when group label is known

Define Y(k)
t = (Yit : i ∈ Mk)

> ∈ RNk , W (k) = (wij : i ∈ Mk, 1 ≤ j ≤ N) ∈
RNk×N , V(k) = (Vi : i ∈ Mk)

> ∈ RNk×p, and E(k)t = (εit : i ∈ Mk)
> ∈ RNk .

Then, the GNAR model (2.3) can be rewritten as

Y(k)
t = β0k + β1kW

(k)Yt−1 + β2kY
(k)
t−1 + V(k)γk + σkE

(k)
t , (3.1)

for k = 1, . . . ,K. Let Xit = (1, w>i Yt, Yit, V >i )> ∈ Rp+3, where wi is the ith row

of W . Furthermore, let X(k)
t = (X>it : i ∈ Mk) ∈ RNk×(p+3). Recall that θk =

(β0k, β1k, β2k, γ
>
k )> ∈ Rp+3. Then, (3.1) can be written as Y(k)

t = X(k)
t θk+σkE

(k)
t .

Subsequently, the ordinary least squares (OLS) estimator can be obtained for the

kth group, as

θ̂k =

(
T∑
t=1

X(k)>
t−1 X(k)

t−1

)−1( T∑
t=1

X(k)>
t−1 Y(k)

t

)
. (3.2)

Next, we investigate the asymptotic properties of θ̂k.

Define µ
(k)
Y = (µi : i ∈ Mk)

> ∈ RNk . In addition, let ΣY = Γ(0) = (σy,ij) ∈
RN×N , Σ

(k)
Y = (σy,ij : i ∈ Mk, 1 ≤ j ≤ N) ∈ RNk×N , and Σ

(k,k)
Y = (σy,ij : i ∈

Mk, j ∈Mk) ∈ RNk×Nk . The following technical conditions are required.

(C1) (Group Size) Assume that minkNk = O(N δ), where 0 < δ ≤ 1.

(C2) (Independence Assumption) Assume that Vi are independent and iden-

tically distributed (i.i.d.) random vectors, with E(V1) = 0, cov(V1) = ΣV ∈
Rp×p, and a finite fourth-order moment. Assume εit are i.i.d. In addition,

assume {Vi} and {εit} are mutually independent.

(C3) (Network Structure) Assume W is a sequence of matrices indexed by

N , which we assume to be nonstochastic.

(C3.1) (Connectivity) Treat W as a transition probability matrix of a

Markov chain, where the state space is the set of all nodes in the network

(i.e., {1, . . . , N}). Suppose the Markov chain is irreducible and aperiodic.

In addition, define π = (π1, . . . , πN )> ∈ RN as the stationary distribution

of the Markov chain, such that (a) πi ≥ 0, with
∑N

i=1 πi = 1, and (b)

π = W>π. Furthermore,
∑N

i=1 π
2
i is assumed to converge to 0 as N →∞.

(C3.2) (Uniformity) Define W ∗ = W + W> as a symmetric matrix. As-

sume λmax(W ∗) = O(logN) and λmax(WW>) = O(N δ′), for δ′ < δ, where
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λmax(M) denotes the largest absolute eigenvalue of an arbitrary symmetric

matrix M , and δ is defined in (C1).

(C4) (Law of Large Numbers) Assume the following limits exist: c
(k)
1β =

limNk→∞N
−1
k (1>W (k)µY ), c

(k)
2β = limNk→∞N

−1
k (1>µ

(k)
Y ), Σ

(k)
1 = limNk→∞

N−1k {µ
(k)>
Y µ

(k)
Y +tr(W (k)>W (k)ΣY )}, Σ

(k)
2 = limNk→∞N

−1
k {(µ

(k)>
Y W (k)µY )+

tr(W (k)Σ
(k)>
Y )}, and Σ

(k)
3 = limNk→∞N

−1
k {(µ

(k)>
Y µ

(k)
Y ) + tr(Σ

(k,k)
Y )}, for

k = 1, . . . ,K.

Condition (C1) is an assumption on the group size that the diverging speed

of all groups should be at least faster than O(N δ) for δ > 0. Note that an

unbalanced group size is allowed, which is useful in practice. Condition (C2) is

a regular assumption imposed on the nodal covariates Zi and the noise term

εit. Condition (C3) sets constraints on the network structure W . Specifically,

Condition (C3.1) requires that a certain extent of connectivity should exist for

the network. Here, a sufficient condition for the irreducibility of the Markov

chain is that there should exist a path with finite length between two arbitrary

nodes. Condition (C3.2) restricts the heterogeneity of the nodes in the network,

requiring that the divergence rate of λmax(W ∗) and λmax(WW>) should not be

too fast. Lastly, Condition (C4) describes the law of large numbers condition

for each group, and assumes that the limits of certain network features exist as

Nk →∞, for k = 1, . . . ,K.

Theorem 2. Assume maxk(|β1k| + |β2k|) < 1 and that Conditions (C1)–(C4)

hold. Then, we have
√
NkT (θ̂k − θk) = Op(1) as min{Nk, T} → ∞.

The proof of Theorem 2 is given in Section 3 of the Supplementary Material. Note

that the
√
NkT -consistency can be obtained for the estimator θ̂k from Theorem

2.

3.2. An EM algorithm

Although the OLS estimation in (3.2) is simple and straightforward, it can

be limited if the group label is unknown. Recall that the latent variable zik ∈
{0, 1} indicates whether the ith user belongs to the kth group. Denote Θ as the

parameter space. The full likelihood function is given as

L(Θ) =

N∏
i=1

K∏
k=1

[
T∏
t=1

αkφ
{
σ−1k (Yit −X>it θk)

}]zik
, (3.3)
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where φ(·) is the probability density function of the standard normal distribution.

We then adopt an EM algorithm for the parameter estimation. After setting an

initial value θ̂(0), we follow the procedure described below. Specifically, in the

mth (m ≥ 1) iteration, we have the following step:

E-Step. Estimate zik by its posterior mean z
(m)
ik . Here,

z
(m)
ik = E

(
zik|θ̂(m−1)

)
=

α̂
(m−1)
k

∏T
t=1 φ(∆̂

(m−1)
it,k )∑K

k=1 α̂
(m−1)
k

∏T
t=1 φ(∆̂

(m−1)
it,k )

, (3.4)

where ∆̂
(m−1)
it,k = (Yit − X>i(t−1)θ̂

(m−1)
k )/σ̂

(m−1)
k , and θ̂

(m−1)
k and σ̂

(m−1)
k are the

estimates from the (m− 1)th iteration.

M-Step. Given z
(m)
ik , we then maximize (3.3) with respect to αk, θk, and σk.

Specifically, we have

θ̂
(m)
k =

(∑
i

z
(m)
ik

∑
t

XitX
>
it

)−1(∑
i

z
(m)
ik

∑
t

XitYit

)
, (3.5)

(
σ̂2k
)(m)

=

(
T
∑
i

zik

)−1{∑
i

z
(m)
ik

∑
t

(Yit −X>it θ̂
(m)
k )2

}
,

α̂
(m)
k = N−1

(
N∑
i

z
(m)
ik

)
.

(3.6)

Repeat the above steps until the EM algorithm converges. The final results

are the desired estimators.

Note that the estimation given in (3.5) is similar in spirit to (3.2). In par-

ticular, the EM estimation of θk can be treated as a weighted OLS estimator,

where the weights are the latent group variables zik. In addition, the estimations

of σ2k and αk in (3.6) can be viewed in a similar way.

3.3. A TS estimation method

In practice, the computation of the E-Step (3.4) might not be stable when

the time dimension T is large. As a result, the estimation result in the M-Step

might not be reliable. Note that (2.3) can be treated as a random coefficient

model with node-specific coefficients. Motivated by this fact, we consider a TS

estimation procedure as an alternative. In the first step, we estimate the coeffi-

cient at the nodal level. Then, we pool these estimates to obtain the parameter

estimation θ̂k, for k = 1, . . . ,K. For convenience, we assume (β1k, β2k)
> are not
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the same between groups.

Let bi = (b0i + V >i γi, b1i, b2i)
> ∈ R3. Write Xit = (1, w>i Yt, Yit)> ∈ R3.

Then, the estimates for bi can be obtained as

b̂i =

(
T∑
t=1

Xi(t−1)X
>
i(t−1)

)−1( T∑
t=1

Xi(t−1)Yit

)
. (3.7)

Note that (3.7) is the OLS estimation for each node. Intuitively, this estimate

will approximate the true value bi well when T is sufficiently large.

Theorem 3. Assume N = o(exp(T )), the stationary condition maxk(|β1k| +
|β2k|) < 1, and Conditions (C1)–(C4) hold. In addition, assume there exists

τ > 0, such that mini{(e>i ΣY ei)(w
>
i ΣY wi) − (e>i ΣY wi)

2} ≥ τ , with probability

tending to one. Then, we have sup1≤i≤N ‖b̂i − bi‖ = op(1).

The proof of Theorem 3 is given in Section 4 of the Supplementary Mate-

rial. The above term, (e>i ΣY ei)(w
>
i ΣY wi) − (e>i ΣY wi)

2, can be rewritten as∑
i

∑
j1,j2

∆ij1j2wij1wij2(σ̃y,j1j2− σ̃y,ij1 σ̃y,ij2), where ∆ij1j2 = σy,iiσy,j1j1σy,j2j2 and

σ̃y,ij = cor(Yit, Yjt). Then, the condition is satisfied if σy,ii and ∆̃ij1j2 = σ̃y,j1j2 −
σ̃y,ij1 σ̃y,ij2 are lower bounded away from zero, with probability tending to one for

the triplets set {(i, j1, j2) : aij1aij2 = 1, i 6= j1, i 6= j2}. Given the results in Theo-

rem 3, the overall estimation bias (i.e., supi ‖b̂i − bi‖) can be controlled, because

the time T diverges slightly faster than log(N) (i.e., log-transformed network

size) does.

Based on the theoretical result of Theorem 3, we consider the second step of

the estimation. Ideally, the estimated values b̂i will form K clusters (i.e., groups)

as the output of the cluster algorithm. The corresponding group members are

collected in M̂k, where N̂k = |M̂k|. Then, the group ratio αk can be estimated

directly by α̂k = N̂k/N . Subsequently, given this estimated group information,

we can conduct the estimation using the procedure in (3.2) in Section 3.1. Specif-

ically, θk can be estimated by

θ̂TSk =

 T∑
t=1

∑
i∈M̂k

Xi(t−1)X
>
i(t−1)

−1 T∑
t=1

∑
i∈M̂k

Xi(t−1)Yit

 ,

which is referred to as the TS estimator. Theoretically, one would expect a con-

sistency result for θ̂TSk if all nodes are clustered into their true groups with proba-
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Table 1. Parameter setup for Examples 1–3 in the simulation study.

α β0 β1 β2 γ
Example 1 & 2

Group 1 0.2 0.0 0.1 0.3 (0.5, 0.7, 1.0, 1.5,−1.0)>

Group 2 0.3 0.2 -0.3 0.2 (0.1, 0.9, 0.4,−0.2,−1.5)>

Group 3 0.5 0.5 0.2 0.7 (0.2,−0.2, 1.4,−0.8, 0.5)>

Example 3
Group 1 0.2 5.0 0.2 0.1 (0.5, 0.7, 1.0, 1.5,−1.0)>

Group 2 0.3 -5.0 -0.4 0.2 (0.1, 0.9, 0.4,−0.2,−1.5)>

Group 3 0.5 0.0 0.2 0.4 (0.2,−1.0, 2.0, 3.0,−2.0)>

bility tending to one (Hartigan (1981); Pollard (1981); Von Luxburg, Belkin and

Bousquet (2008)). This is guaranteed by the result of Theorem 3 when abundant

time information can be obtained.

4. Numerical Studies

4.1. Simulation models

To demonstrate the finite-sample performance of our proposed methodology,

we conduct a number of numerical studies in this section. Specifically, the first

two examples are presented with different types of network structures. The third

example investigates the parameter estimation and prediction accuracy when the

number of groups is misspecified. In each example, different estimation methods

(EM and TS) are employed and compared.

For each example, we fix the number of groups as K = 3, and gener-

ate the random innovations εit from a standard normal distribution. For con-

venience, we set δk = 1, for k = 1, . . . ,K. In addition, the nodal covariates

Vi = (Vi1, . . . , Vi5)
> ∈ R5 are independently sampled from a multivariate normal

distribution with mean 0 and covariance Σv = (σj1j2), with σj1j2 = 0.5|j1−j2|. The

true values of the parameters for each group are listed in Table 1. Furthermore,

let σ2 = 1 for Examples 1 and 2, and let σ2 = 4 for Example 3. Given the initial

value Y0 = 0, the time series Yt is generated according to the GNAR model in

(2.3). Here, the first 50 replications are dropped to ensure the time series achieves

stationarity.

Note that different network and momentum effects are employed for each

group in order to distinguish nodal behaviors. As shown in Table 1, Group 1 has

a relatively lower activeness level, with small, positive network and momentum

effects (i.e., β1 and β2). Group 2 is characterized by a negative network effect
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(i.e., β1), implying that nodal behaviors in this group exhibit a negative correlated

pattern with their connected friends. Lastly, compared with the other two groups,

Group 3 occupies a larger portion (i.e., α) and has a higher momentum effect

(i.e., β2). Next, we introduce two typical network structures employed in the

simulation studies.

Example 1. (Stochastic Block Model) First, we consider the block structure

network, also known as the stochastic block model (Wang and Wong (1987); Now-

icki and Snijders (2001); Zhao, Levina and Zhu (2012)). This model assumes that

nodes in the same block are more likely to be connected. To generate the model,

we follow Zhu et al. (2017), setting J ∈ {5, 10, 20} blocks, and randomly assigning

each node a block label with equal probability. Next, let P (aij = 1) = 0.3N−0.3

if i and j are from the same block, otherwise set P (aij = 1) = 0.3N−1. Con-

sequently, nodes within the same block have a higher probability of connecting

with each other than they do of connecting with nodes from other blocks.

Example 2. (Power-law Model) In real networks, a small portion of nodes

(e.g., superstars and opinion leaders) have many network links, whereas the ma-

jority tend to have few connections. This phenomenon is described by the power-

law model (Barabási and Albert (1999)). Specifically, we generate the nodal in-

degrees di =
∑

j aji from a power-law distribution; that is, P (di = d) = cd−α,

where c is a normalizing constant and α is the exponent parameter. We set

α = 2.5, as suggested by Clauset, Shalizi and Newman (2009), which is based on

empirical studies of real social network data.

Example 3. (Number of Groups) In this example, we evaluate the impact on

the parameter estimation and prediction accuracy when the number of groups

K is incorrectly specified. Specifically, data are generated using the power-law

model described in Example 2, with total time periods (T + 20). The first T

periods are used for the parameter estimation, and the remaining 20 periods are

used for prediction. Lastly, we set K = 1, 2, 3, 5, 7, where K = 3 is the true

number of groups.

4.2. Performance measurements and simulation results

For each simulation example, we consider network sizes N = 100, 200, 500.

Accordingly, to evaluate the performance of the proposed estimation methods,

we employ two settings of T : T = N/2, and T = 2N . To ensure a reliable

result, we randomly repeat the simulation experiments R = 1, 000 times. Let

(β̂
(r)
0k , β̂

(r)
1k , β̂

(r)
2k , γ̂

(r)>
k )> ∈ Rp+3 be the estimator of the kth group obtained from
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the rth replication. In addition, for each node, we obtain its group label as ẑ
(r)
i ,

for i = 1, . . . , N . Specifically, for the EM algorithm, the group label is defined

as ẑ
(r)
i = arg maxk{ẑik}. For the TS estimation, the group label is the same as

the cluster label after the first-step estimation. Next, we consider measurements

with which to evaluate the numerical results.

First, for a given parameter, the root mean squared error (RMSE) is em-

ployed to evaluate the estimation accuracy. For example, consider the network

effect β1 = (β1k : 1 ≤ k ≤ K)> ∈ RK . The RMSE is calculated over all

groups as RMSEβj
= {(RK)−1

∑K
k=1

∑R
r=1(β̂

(r)
jk −βjk)

2}1/2. Similarly, the RMSE

can be computed for the baseline effect (i.e., RMSEβ0
) and the momentum

effect (i.e., RMSEβ2
). In addition, the RMSE for the nodal effect is defined

as RMSEγ = {(RK)−1
∑K

k=1

∑R
r=1 ‖γ̂

(r)
k − γk‖

2}1/2. Next, given the estimated

groups ẑ
(r)
i , the misclassification rate (MCR) can be calculated as MCR =

(NR)−1
∑R

r=1

∑N
i=1 I(ẑ

(r)
i 6= zi), where zi is the true group label of node i. Lastly,

the average network density (i.e., {N(N − 1)}−1
∑

i1,i2
ai1i2) is also reported.

When the number of groups K is misspecified (e.g., Example 3), we evaluate

the impact on the parameter estimation and prediction accuracy. Denote Ŷ(K)
t as

the fitted response for t = 1, . . . , T and the predicted value for t = T +1, . . . , T +

20, where the superscript K indicates the number of groups. In order to evaluate

the parameter estimation accuracy, we compare the fitted value Ŷ(K)
t to the

conditional expectation E(Yt|Ft−1,Z). This is because the comparison cannot

be conducted directly for the parameter estimation error when the number of

groups K is misspecified. Thus, we define the estimation error as

Err
(K)
est =

{
(NT )−1

T∑
t=1

∥∥Ŷ(K)
t − E(Yt|Ft−1,Z)

∥∥2}1/2

,

where Ft−1 is the σ-field generated by {Ys : s ≤ t− 1}, and E(Yt|Ft−1,Z) is the

conditional expectation based on the historical and group information. Next, the

prediction error is measured by

Err
(K)
pred =

{
(20N)−1

T+20∑
t=T+1

∥∥Ŷ(K)
t − Yt

∥∥2}1/2

,

which is the RMSE for the predicted values. The median values of Err
(K)
est and

Err
(K)
pred over all replications are reported.

The detailed results are given in Tables 2–4. For the first two examples, we
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Table 2. Simulation results with 1,000 replications for the stochastic block model. The
RMSE (×102) is reported for the EM and TS estimations. The network density (ND)
and misclassification rate (MCR) are reported as percentages (%).

N Est. α β0 β1 β2 γ ND MCR
Scenario 1. T = N/2

100 EM 3.63 30.80 10.96 14.56 49.64 2.2 11.1
TS 8.92 110.00 28.13 38.91 175.10 2.2 42.4

200 EM 2.10 14.86 6.42 11.09 26.54 1.1 3.8
TS 7.56 46.74 22.19 34.66 75.44 1.1 31.3

500 EM 0.82 7.07 3.06 5.71 11.04 0.4 0.9
TS 6.72 19.00 12.56 22.58 48.59 0.4 14.7

Scenario 2. T = 2N
100 EM 4.08 41.67 12.24 17.60 56.03 2.2 13.3

TS 6.65 37.43 13.86 21.51 60.08 2.2 15.0
200 EM 2.49 17.37 6.90 12.48 30.03 1.1 4.7

TS 4.49 12.33 7.20 11.57 28.34 1.1 4.8
500 EM 1.04 8.82 3.19 6.76 13.95 0.4 1.1

TS 1.42 3.84 1.42 2.31 7.16 0.4 0.3

find that as the network size N and time period T increase, the RMSEs of all

estimated parameters decrease toward zero for both the algorithm and the TS

estimation. In addition, a similar pattern can be observed for the MCR, which

drops as the network size and time period (i.e., N and T ) increase. In the finite-

sample comparison, the EM algorithm outperforms the TS estimation in Scenario

1, in which less time information is available (i.e., small T ). Specifically, lower

RMSE and MCR values are observed. However, the TS estimation outperforms

the EM algorithm in Scenario 2 in terms of both parameter estimation and group

classification. Lastly, in Example 3, we find that both the estimation and the

prediction errors drop sharply from K ≤ 2 to K = 3, where the model is correctly

specified with K = 3. Furthermore, for K ≥ 3, it is observed that the estimation

and prediction errors perform relatively consistently.

5. Case Study

In this section, we conduct two case studies to evaluate our proposed meth-

ods. The first is based on users’ posting behavior on a social network platform.

The second is based on a study of dynamic and spatial patterns of PM2.5. Here,

the adjacency matrix between cities is constructed by taking advantage of their

spatial locations.
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Table 3. Simulation results with 1,000 replications for the power law model. The RMSE
(×102) is reported for the EM and TS estimations. The network density (ND) and
misclassification rate (MCR) are reported as percentages (%).

N Est. α β0 β1 β2 γ ND MCR
Scenario 1. T = N/2

100 EM 3.21 28.42 9.69 12.75 43.40 2.3 9.4
TS 14.22 72.19 39.86 35.14 116.84 2.3 32.0

200 EM 1.74 13.15 5.67 9.86 23.44 1.2 3.5
TS 12.08 34.17 27.13 27.83 64.49 1.2 18.0

500 EM 0.78 5.94 2.67 5.55 11.00 0.5 0.8
TS 7.15 15.46 12.04 13.17 32.13 0.5 4.5

Scenario 2. T = 2N
100 EM 3.79 36.09 11.19 16.27 50.06 2.3 12.0

TS 6.15 14.07 10.01 13.95 30.63 2.3 4.4
200 EM 2.33 17.64 6.65 11.67 27.50 1.2 4.7

TS 2.99 6.20 4.00 6.14 14.08 1.2 0.9
500 EM 0.74 5.70 2.42 4.92 10.37 0.5 0.7

TS 0.02 0.35 0.12 0.39 0.64 0.5 0.0

5.1. User behavior analysis: a Sina Weibo data set

We first apply the proposed GNAR model to a social network data set.

The data are collected from Sina Weibo, the largest Twitter-type social media

platform in China. Users can follow other users, create profiles, and post Weibo

to express their opinions. In addition to ordinary users, celebrities, the media,

and organizations may also register on Sina Weibo. The diversity among users

leads to varying behavior patterns.

Data Description

To investigate users’ behaviour on Weibo, we collect data on N = 2, 021

followers of an official account for T = 11 consecutive weeks, from January 1,

2014. The response Yit is defined as the log(1 + x)-transformed average Weibo

post length (i.e., the average number of characters posted by a user per week),

which can be viewed as the nodal activeness level. A histogram of the response is

displayed in Figure 3, where an approximately symmetric shape can be observed.

In addition, two node-specific variables are recorded: the gender of the user (male

= 1; female = 0), and the number of personal labels (i.e., keywords created by

Weibo users to describe their life status and interests).

The network adjacency matrix A can be constructed as follows: aij = 1 if

the ith user follows the jth user on Weibo; otherwise aij = 0. Note that, the
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Figure 3. Histogram of responses (i.e., log-transformed Weibo post length).

adjacency matrix is asymmetric, because users are not required to be mutually

connected on Weibo. We illustrate the distributions of the nodal in-degree (i.e.,

a+i =
∑

j aji) and out-degree (i.e., ai+ =
∑

j aij) in Figure 4, which shows that

the distribution of the in-degree is more skewed than that of the out-degree. This

implies that there might exist users who attract many followers. In addition, the

network density is 2.7% (i.e.,
∑

i,j aij/{N(N − 1)}), which indicates a relatively

sparse network.

Model Estimation and Explanation

Next, we fit the GNAR model on this data set. We apply the EM algorithm

only, because the network size N is much larger than the number of periods T .

The number of groups is fixed as K = 3. The estimation results in Table 5 show

that the estimated network effect and momentum effect are both positive for the

three groups. This suggests that a user’s activeness level is positively related to

itself, and to that of its neighbors. Moreover, the momentum effect appears to

be stronger than the network effect. Lastly, the estimated nodal effects indicate

that male users with more self-created labels exhibit higher activeness levels.

For further illustration, we compare the groups. Note that Group 1 and

Group 2 include a large portion of all network users (with larger estimated α

values). Specifically, they both have larger network effects (i.e., estimated β1
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Figure 4. Histogram of nodal in- and out-degree of N = 2, 021 nodes. A heavily skewed
shape can be detected for the nodal in-degree, which indicates the existence of “super-
stars” in the network.

Table 5. GNAR analysis results for the Sina Weibo data set.

Regression coefficient Group 1 Group 2 Group 3
Group Ratio (α) 0.447 0.361 0.192
Baseline Effect (β0) 0.857 1.681 0.236
Network Effect (β1) 0.031 0.026 0.002
Momentum Effect (β2) 0.765 0.396 0.958
Gender (γ1) 0.077 0.155 0.009
Number of Labels (γ2) 0.006 0.018 0.002

values) than that of Group 3, implying that users in these two groups tend to be

influenced by those they follow. With regard to the momentum effect (i.e., the

estimated β2 values), users in Groups 1 and 3 are more self-motivated than those

in Group 2 are. In particular, Group 3 has the largest momentum effect, but the

smallest network effect. This indicates that the user behavior of this group can

be predicted well using historical information.

Moreover, we draw a box plot for the responses in a grouped manner in

Figure 5. A higher activeness level can be found for Group 3. Users in this group

are mostly media accounts and celebrities with many followers, such as “Sina

Finance”, “Xinhua Views”, “Beijing Youth Daily”, “Phoenix TV”, and many

others. These accounts generate content and release information on the platform



1456 ZHU AND PAN

Group 1                          Group 2                           Group 3             

0 
   

   
   

   
   

   
 2

   
   

   
   

   
   

  4
   

   
   

   
   

   
  6

   
   

   
   

   
   

  8
   

Lo
g 

W
ei

bo
 P

os
t L

en
gt

h

Figure 5. Box plot of log-transformed Weibo post length for each group.

in order to pass on information and influence other users. In contrast, most users

in Group 1 and Group 2 are ordinary users, who play the role of information

adopters. Lastly, we compare the performance of the proposed model with that

of the network vector autoregression model (Zhu et al. (2017)) and the univariate

autoregression (AR) model. The first nine weeks are used for model training, and

the last two weeks are employed for prediction evaluation. The predictive RMSE

is used to quantify the prediction accuracy of each model (0.809, 0.850, and

2.312), respectively. Here, we find that the predictive RMSE of the GNAR is

lower than those of the NAR and AR, indicating that the GNAR model exhibits

better prediction power.

5.2. Air pollution analysis: a PM2.5 data set

In recent years, the issue of air pollution in China has drawn worldwide at-

tention. Of particular concern is PM2.5, which refers to airborne particles with

an aerodynamic diameter of less than 2.5 µm. There is evidence that a high con-

centration of PM2.5 may cause severe clinical symptoms, such as lung morbidity

and respiratory and cardiovascular diseases. Hence, it is of great importance to

understand the PM2.5 distribution and diffusion pattern across China.
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Figure 6. Left panel: daily average PM2.5 in 2015; Right panel: histogram of log-PM2.5.

Data Description

The PM2.5 data are collected from air quality monitoring stations in 291 cities

in mainland China. Specifically, the daily PM2.5 index (unit: µg/m3) is recorded

for the period January 1, 2015, to December 31, 2015 with T = 365. The left side

of Figure 6 gives the time series of the average daily PM2.5 of all cities during

2015. A high PM2.5 level is evident in November, December, and January, with

the highest PM2.5 being greater than 100 µg/m3. Figure 7 shows the average

PM2.5 in each city, where darker regions imply higher PM2.5 levels. Spatially,

the northeastern regions in China (especially in Heibei province) exhibit higher

concentrations of PM2.5.

The response is defined as the log-transformed PM2.5 level; see the histogram

displayed on the right-hand side of Figure 6. A symmetric shape can be observed.

In order to construct the network structure, we treat each city as a node. The

adjacency matrix A is constructed using the spatial distances between two cities.

Let s1, . . . , sN (si ∈ R2) be the locations of N cities. Then, aij is defined as

aij = 1/‖si − sj‖ for i 6= j, and aii = 0 for i = 1, . . . , N .

Model Estimation and Explanation

Motivated by the descriptive analysis, we model the dynamic patterns of the

seasons separately. We define the seasons as follows: spring (March to May), sum-

mer (June to August), autumn (September to November), and winter (January
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Asia

Figure 7. Average PM2.5 for each city in 2015. White indicates an absence of PM2.5

monitoring stations in corresponding cities.

to February). Intuitively, the number of groups should be large in winter because

the pollution level is relatively high. As a result, we set K = 3 for winter, and

K = 2 for the other seasons. The GNAR, NAR, and AR models are estimated

in order to compare their predictions. The GNAR model is estimated using the

proposed EM algorithm and the TS estimation method. For each season, the last

10 days are used to conduct predictions. The prediction RMSEs are summarized

in Table 6. The results show that the EM algorithm always outperforms the other

methods in terms of prediction accuracy. We next describe the estimation results

for the EM algorithm in great detail.

The estimated regression coefficients are given in Table 7. We focus here on

the results for winter. First, the number of cities in the three groups is unbal-

anced, with proportions of 0.32, 0.39, and 0.29, respectively. Note that the first

group has a relatively large baseline effect, indicating that air pollution in these

cities is much more severe. Figure 8 shows that cities in group 1 are located in

northeastern China. Furthermore, cities in group 2 have large network effects,

implying that these cities are more likely to be influenced by their spatial neigh-

bors. With regard to the other seasons, the patterns in summer and autumn

are very similar, mainly because the pollution level is relatively low in these two

seasons.

There are two further remarks related to this example. First, the network
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Table 6. The prediction RMSE for the PM2.5 data set using the GNAR model (with EM
and TS estimations), NAR model, and AR model.

GNAR (EM) GNAR (TS) NAR AR
Spring 0.375 0.387 0.388 0.739
Summer 0.328 0.328 0.330 0.941
Autumn 0.439 0.439 0.441 1.122
Winter 0.546 0.565 0.561 0.955

Table 7. Estimation results for the PM2.5 data set from the EM algorithm. Two groups
are set for spring, summer, and autumn and for winter, the number of groups is K = 3.

Spring Summer Autumn Winter
Group 1 2 1 2 1 2 1 2 3
Group Ratio (α) 0.61 0.39 0.67 0.33 0.53 0.47 0.32 0.39 0.29
Baseline Effect (β0) 1.26 0.77 0.46 0.55 0.25 0.41 2.04 0.37 0.25
Network Effect (β1) 0.14 0.11 0.20 -0.04 0.32 0.11 -0.01 0.33 0.19
Momentum Effect (β2) 0.55 0.65 0.67 0.87 0.62 0.76 0.52 0.59 0.72

structure is symmetric (i.e., aij = aji). Recall that when the network structure is

asymmetric (as in the social network case), the term n−1i
∑

j aijYj(t−1) represents

the averaged responses of the nodes that i follows. As a result, the network effect

β1 can be viewed as the “influence” that i receives from the nodes it follows

(i.e., those j with aij = 1). When the adjacency matrix is symmetric, as in

this example, the term n−1i
∑

j aijYj(t−1) represents the averaged responses of

those nodes to which i is connected. The corresponding parameter β1 can be

understood as the “connection” or “correlation,” rather than the “influence”

that node i receives from its connected neighbours. Second, in this example, no

node-specific covariates are utilized, owing to a lack of data. Thus, future research

should incorporate nodal effect variables (i.e., Vi), such as temperature, humidity,

and wind speed into the modeling framework.

6. Conclusion

In this study, we develop a novel GNAR model that incorporates group-

specific network autoregression coefficients. To estimate the GNAR model, an

EM algorithm and a TS estimation are designed. The results suggest that both

methods produce consistent results, but vary in terms of their finite-sample per-

formance. Sina Weibo and PM2.5 data sets are analyzed for illustration purpose,

where the nodes in the different groups show distinct behavioral patterns.

Several directions for future research are possible. First, although we have
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Figure 8. Different groups of cities detected by the EM algorithm for spring (left top
panel), summer (right top panel), autumn (left bottom panel), and winter (right bottom
panel). Cities in Groups 1, 2, and 3 are marked as light gray, gray, and dark gray,
respectively.

developed estimation and group classification procedures, they are not sufficiently

flexible for inferences on the estimated parameters. Next, for the proposed es-

timation methods of the GNAR model, the number of groups K needs to pre-

specified. Hence, how to select K remains to be a challenging task. Lastly, it is

assumed that users can be grouped by their dynamic behavior patterns, which

are further quantified by the network autoregression coefficients. As a further

extension, one could consider incorporating user network structure information

(e.g., the following-followee information of the focal user) to decide their groups.

Supplementary Material

The online Supplementary Materials contains the proofs of Theorems 1 to 3,

as well as several useful lemmas.
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