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SUPPLEMENTARY MATERIAL

Online Supplementary:

(doi: COMPLETED BY THE TYPESETTER; .pdf). The online supplementary ma-

terial contains the detailed proofs of Theorem 2.1 and some useful lemmas. The long

detailed steps are in section 6 and the lemmas are postponed to section 7.

6. Detailed Steps of the Proof of Theorem 2.1

6.1. Preparation stage: The preparation stage consists of truncation approxima-

tion, m-dependence approximation and blocking approximation.

6.1.1. Truncation approximation: Truncation approximation is necessary to allow

higher moments manipulations. For b > 0 and v = (v1, . . . , vd)T 2 Rd, define

Tb(v) = (Tb(v1), . . . , Tb(vd))
T, where Tb(w) = min(max(w,�b), b). (6.1)

Proposition 6.1. Assume Condition (2.A). It is possible to choose a sequence

tn ! 0 slow enough such that we have

max
1in

|Si � S�
i | = oP (n

1/p), where S�
l =

lX

i=1

[Ttnn1/p(Xi)� ETtnn1/p(Xi)]. (6.2)

Proof. of Proposition 6.1. We introduce a very slowly converging sequence tn ! 0

based on the uniform integrability condition (2.A). For every t > 0, we have

sup
i

1

tp
E(|Xi|p1|Xi|>tn1/p) = 0 and n sup

i
Emin(

|Xi|�

t�n�/p
, 1) ! 0 as n ! 1, (6.3)
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where � > p. The second relation follows from Lemma 7.1. Clearly (6.3) implies that

sup
i

1

tpn
E(|Xi|p1|Xi|>tnn1/p) + n sup

i
Emin(

|Xi|�

t�nn�/p
, 1) ! 0 as n ! 1, (6.4)

holds for a sequence tn ! 0 very slowly. Without loss of generality we can let

tn log log n ! 1 (6.5)

since otherwise we can replace tn by max(tn, (log log n)�1/2) (say). The truncation

operator Tb in (6.1) is Lipschitz continuous with Lipschitz constant 1. Let

Rc,l =
l+cX

i=1+c

X�
i =

l+cX

i=1+c

[Ttnn1/p(Xi)� ETtnn1/p(Xi)]. (6.6)

By (6.4), we have P (maxin |Si �
Pi

j=1 Ttnn1/p(Xj)| = 0) ! 1 in view of

sup
j

P
�
|Xj| > tnn

1/p
�
 sup

j

1

ntpn
E
�
|Xj|pI

�
|Xj| > tnn

1/p
��

= o(1/n).

Also by (6.4), maxjn |E(Xj � Ttnn1/p(Xj))| = o(n1/p�1). Hence (6.2) follows.

6.1.2. m-dependence approximation: The m-dependence approximation is a very

important tool that is extensively used in literature; see for example the Gaussian

approximation in Liu and Lin (2009, [13]) and Berkes, Liu and Wu (2014, [2]). For

a suitably chosen sequence m, we look at the conditional mean E(Xi|✏i, . . . ✏i�m).

This gives a very simple yet e↵ective way to handle the original process in terms of

a collection of ✏i’s. Define the partial sum process

R̃c,l =
l+cX

i=1+c

X̃j, where X̃j = E(Ttnn1/p(Xj)|✏j, . . . , ✏j�m)� E(Ttnn1/p(Xj)). (6.7)
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Write R̃0,i = S̃i. From Lemma A1 in Liu and Lin (2009, [13]), we have

k max
1ln

|S�
l � S̃l|kr  crn

1/2⇥1+m,r. (6.8)

The proofs in [13] are for stationary processes. Since our �j,r in (2.1) is defined in an

uniform manner, the proof goes through for the non-stationary case as well. Assume

n1/2�1/r⇥m,r ! 0. (6.9)

By (6.8) and (6.9), we have n1/r convergence in the m-dependence approximation

step

max
1in

|S�
i � S̃i| = oP (n

1/r). (6.10)

6.1.3. Blocking approximation: Towards the blocking approximation, we approx-

imate the partial sum process S̃i by sums of Aj where, for j � 0,

Aj+1 =
(2k0j+2k0)mX

i=2jk0m+1

X̃i, where k0 = b⇥2
0,2/�⇤c+ 2. (6.11)

To this end, we will need the following two conditions, for some � > p,

n1��/rm�/2�1 ! 0, (6.12)

n1/p�1/�
1X

j=m+1

�p/�j,p ! 0. (6.13)
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We now define functional dependence measure for the truncated process (Ttnn1/p(Xi))in

as

��j,l = sup
i

kTtnn1/p(Xi)� Ttnn1/p(Xi,(i�j))kl, where l � 2.

Similarly, define the functional dependence measure for the m-dependent process

(X̃i) as

�̃j,l = sup
i

kX̃i � X̃i,(i�j)kl.

For these dependence measures, the following inequality holds for all l � 2:

�̃j,l  ��j,l  �j,l. (6.14)

We now proceed to proving Proposition 6.2, the blocking approximation result. As

mentioned in the main text, we need to assume conditions (6.12) and (6.13) for

this step. The almost-polynomial rate of m sequence as mentioned in (6.15) is also

assumed.

Remark: We need another condition for the blocking approximation (see (7.2) in

the proof of Lemma 7.3). However, we skip it here and choose m and � such that

conditions (6.9), (6.12) and (6.13) are met. These will automatically imply this fourth

one in view of (2.3).

We assume an almost polynomial rate for m sequence: for some 0 < L < 1,

m = bnLtknc, 0 < k < (� � p)/(�/2� 1). (6.15)
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Proposition 6.2. Assume (6.12) and (6.13) for some � > p. Moreover, assume

(6.15) for the m sequence and (2.3) for the decay rate of ⇥i,p with some A > �/p.

Then

max
1in

|S̃i � S⇧
i | = oP (n

1/r), where S⇧
i =

qiX

j=1

Aj, qi = bi/(2k0m)c. (6.16)

Proof. of Proposition 6.2: Let S = {2ik0m, 0  i  qn}, �n = (n1��/rm�/2�1)1/(2�).

Then

P

0

@max
1ln

|R̃0,l �
bl/(2k0m)cX

j=1

Aj| � �nn
1/r

1

A  n

2k0m
max
c2S

P ( max
1l2k0m

|R̃c,l| � �nn
1/r)

 nmax
c2S

E(max1l2k0m |R̃c,l|�)
2k0m��

nn�/r
= O(��

n),

from the assumption (6.12) and Lemma 7.3. Since �n ! 0, (6.16) follows.

Summarizing (6.2), (6.10) and (6.16), we can work on S⇧
i in view of

max
1in

|Si � S⇧
i | = oP (n

1/r). (6.17)

In the next two subsections we shall provide details of the arguments for steps

mentioned in sections 4.2 and 4.3. section 6.2 presents the conditional Gaussian

approximation, where we shall apply Proposition 6.3 stated in section 7. section 6.3

deals with unconditional Gaussian approximation and regrouping.
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6.2. Conditional Gaussian approximation: The blocks Aj created in (6.11) after

the blocking approximation are weakly independent; except they share some depen-

dence on the border. In this subsection, we look at the conditional process given the

✏i the blocks share in their borders. Demeaning the conditional process, we apply

the Proposition 6.3 for the Gaussian approximation. For 1  i  n, let H̃i be a

measurable function such that

X̃i = H̃i(✏i, . . . , ✏i�m). (6.18)

Recall Proposition 6.2 for the definition of qi. Let q = qn. For j = 1, . . . , q, define

ā2k0j = {a(2k0j�1)m+1, . . . , a2k0jm} and a = {. . . , ā0, ā2k0 , ā4k0 , . . .}.

Given a, define, for 2k0jm+ 1  i  (2k0j + 1)m,

X̃i(ā2k0j) = H̃i(✏i, . . . , ✏2k0jm+1, a2k0jm, . . . , ai�m)

and for (2k0j + 2k0 � 1)m+ 1  i  (2k0j + 2k0)m,

X̃i(ā2k0j+2k0) = H̃i(ai, . . . , a(2k0j+2k0�1)m+1, ✏(2k0j+2k0�1)m, . . . , ✏i�m).
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Further, define the blocks as following,

F4j+1(ā2k0j) =
(2k0j+1)mX

i=2k0jm+1

X̃i(ā2k0j), (6.19)

F4j+2 =
(2k0j+k0)mX

i=(2k0j+1)m+1

X̃i, F4j+3 =
(2k0j+2k0�1)mX

i=(2k0j+k0)m+1

X̃i,

F4j+4(ā2k0j+2k0) =
(2k0j+2k0)mX

i=(2k0j+2k0�1)m+1

X̃i(ā2k0j+2k0).

Similarly, for j = 1, . . . , q, define

#̄2k0j = {✏(2k0j�1)m+1, . . . , ✏2k0jm} and # = {. . . , #̄0, #̄2k0 , #̄4k0 , . . .}.

Recall Aj from (6.11). We have

Aj+1 = F4j+1(#̄2k0j) + F4j+2 + F4j+3 + F4j+4(#̄2k0j+2k0).

Define the mean functions

⇤4j+1(ā2k0j) = E⇤(F4j+1(ā2k0j)) and ⇤4j+4(ā2k0j+2k0) = E⇤(F4j+4(ā2k0j+2k0)),

where E⇤ refers to the conditional moment given a. In the sequel, with slight abuse

of notation, we will simply use the usual E to denote moments of random variables

conditioned on a. Introduce the centered process

Yj(ā2k0j, ā2k0j+2k0) = F4j+1(ā2k0j)� ⇤4j+1(ā2k0j) + F4j+2 (6.20)

+F4j+3 + F4j+4(ā2k0j+2k0)� ⇤4j+4(ā2k0j+2k0).
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Following the definition of S⇧
n, we let

Si(a) =
qi�1X

j=0

Yj(ā2k0j, ā2k0j+2k0).

The mean and variance function of Si(a) are respectively denoted by

Mi(a) =
qi�1X

j=0

[⇤4j+1(ā2k0j) + ⇤4j+4(ā2k0j+2k0)],

Qi(a) =
qi�1X

j=0

Vj(ā2k0j, ā2k0j+2k0),

where Vj(ā2k0j, ā2k0j+2k0) is the dispersion matrix of Yj(ā2k0j, ā2k0j+2k0). Define

Vj0(ā2k0j) = E(F4j�2F
T
4j�1 + F4j�1F

T
4j�2) + V ar(F4j�1 + F4j(ā2k0j)� ⇤4j(ā2k0j))

+V ar(F4j+1(ā2k0j)� ⇤4j+1(ā2k0j) + F4j+2). (6.21)

Note that, the following identity holds for all t:

tX

j=0

Vj(ā2k0j, ā2k0j+2k0) = L(ā0) +
t�1X

j=1

Vj0(ā2k0j) + Ut(ā2k0t+2k0), (6.22)

where L(ā0) = V ar(F1(ā0) + F2) and

Ut�1(ā2k0t) = E(F4t�2F
T
4t�1+F4t�1F

T
4t�2)+V ar(F4t�1+F4t(ā2k0t)�⇤4t(ā2k0t)). (6.23)

Define

La
� =

q�1X

j=0

E(|Yj(ā2k0j, ā2k0j+2k0)|�).
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In the sequel, we suppress Yj(ā2k0j, ā2k0j+2k0), Yj(#̄2k0j, #̄2k0j+2k0), Vj(ā2k0j, ā2k0j+2k0),

Vj0(ā2k0j), Vj(#̄2k0j, #̄2k0j+2k0) and Vj0(#̄2k0j) as just Y
a
j ,Y

#
j , V

a
j , V

a
j0, V

#
j and V #

j0 re-

spectively. We apply Proposition 6.3 to the independent mean zero random vectors

Y a
j .

Proposition 6.3 concerns Gaussian approximation for independent vectors. There

are several types of Gaussian approximations in literature for independent vectors.

We find the following result by Götze and Zaitsev (2008, [10]) particularly useful

since it provides an explicit and good approximation bound for the partial sums.

This has been used several times in our proof.

Proposition 6.3. Let ⇠1, . . . , ⇠n be independent Rd
-valued mean zero random

vectors. Assume that there exist s 2 N and a strictly increasing sequence of non-

negative integers ⌘0 = 0 < ⌘1 < . . . < ⌘s = n satisfying the following conditions.

Let

⇣k = ⇠⌘k�1+1 + . . .+ ⇠⌘k , V ar(⇣k) = Bk, k = 1, . . . , s

and L� =
Pn

j=1 E(|⇠j|�), � � 2, and assume that, for all k = 1, . . . , s,

C1w
2  ⇢⇤(Bk)  ⇢⇤(Bk)  C2w

2, (6.24)

where w = (L�)1/�/ log
⇤ s, with some positive constants C1 and C2. Suppose the
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quantities

�k,� =
⌘kX

j=⌘k�1+1

Ek⇠jk�, k = 1, . . . s,

satisfy, for some 0 < ✏ < 1 and constant C3,

C3d
�/2s✏(log⇤ s)�+3 max

1ks
�k,�  L�. (6.25)

Then one can construct on a probability space independent random vectors X1, . . . , Xn

and a corresponding set of independent Gaussian vectors Y1, . . . , Yn so that (Xj)nj=1
D
=

(⇠j)nj=1, E(Yj) = 0, V ar(Yj) = V ar(Xj), 1  j  n, and for any z > 0,

P

 
max
tn

|
tX

i=1

Xi �
tX

i=1

Yi| � z

!
 C⇤L�z

��.

where C⇤ is a constant that depends on d, �, C1, C2 and C3.

We need to find a suitable sequence ⌘k that allows us to get constants C1, C2 in

(6.24) and C3 in (6.25). There are roughly q = n/(2k0m) many Y a
j random variables.

Define

l = bq2/�/ log2 qc. (6.26)

To apply Proposition 6.3, we choose the sequence ⌘k = kl and s ⇣ q/l. This choice

is justified by proving the following series of propositions.
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Proposition 6.4. Recall �⇤ and Aj from (2.B) and (6.11) respectively. There

exists a constant � > 0 such that

2(�⇤ + �)k0m  ⇢⇤(V ar(Aj))  ⇢⇤(V ar(Aj))  kAjk2  2k0m⇥
2
0,2.

Proposition 6.5. We can get positive constants c1 and c2 such that for all j,

c1m  ⇢⇤(V ar(Y #
j ))  ⇢⇤(V ar(Y #

j ))  E(|Y #
j |2)  c2m. (6.27)

Proposition 6.6. For l in (6.26), there exists constant c3 such that,

P

0

@ max
1tq/l

|V ar

0

@
tl�1X

j=(t�1)l

Y a
j

1

A� E

0

@V ar

0

@
tl�1X

j=(t�1)l

Y a
j

1

A

1

A | � c3lm

1

A! 0.

Proposition 6.7. We can get constants c4 and c5 such that

P (c4q
2/�m  (La

�)
2/�  c5q

2/�m) ! 1.

Proposition 6.8. Choose ⌘k = kl with l being defined in (6.26). Then we can

get C1 and C2 such that (6.24) is satisfied. Moreover, with l in (6.26), we can get C3

such that (6.25) holds.

Thus, we use Proposition 6.3 to construct d-variate mean zero normal random vectors

Na
j and random vectors Ea

j such that

Ea
j

D
= Y a

j and V ar(Na
j ) = V ar(Y a

j ), 0  j  q � 1,
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Pa

✓
max
1in

|⇧a
i �Da

i | � c0z

◆
 C

La
�

z�
, where ⇧a

i =
qi�1X

j=0

Ea
j , Da

i =
qi�1X

j=0

Na
j (6.28)

and C is a constant depending on �, c1, . . . , c5 and C3. These constants are free of

a. We can create a set A with P (A) ! 1 so that a 2 A implies the statements

in Proposition 6.7 and Proposition 6.6 hold. Putting z = n1/r above in (6.28), by

Lemma 7.3 and the restriction (4.6), we have, as n ! 1,

E(La
�n

��/r)  q

n�/r
c� max

c
E(|R̃c,2k0m|�) = O(n1��/rm�/2�1) ! 0, (6.29)

using

E(|Yj(#̄2k0j, #̄2k0j+2k0)|�)  c� max
c

E(|R̃c,2k0m|�) = O(m�/2).

Hence, conditioning on whether a lies in A or not, from (6.29) we obtain,

max
in

|⇧#
i �D#

i | = oP (n
1/r). (6.30)

6.3. Unconditional Gaussian approximation and Regrouping: Here we shall work

with the processes ⇧#
i , µ

#
i and D#

i . Note that, Vj0(ā2k0j) defined in (6.21) is a function

of # and might not be positive definite in an uniform fashion. For a constant 0 <

�⇤ < �⇤, let

Vj1(ā2k0j) =

8
>>><

>>>:

Vj0(ā2k0j) if ⇢⇤(V a
j0) � �⇤m,

(�⇤m)Id otherwise,

(6.31)
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which is a positive-definitized version of Vj0(ā2k0j). The following proposition shows

that partial sums of Vj0(ā2k0j) and Vj1(ā2k0j) are close to each other.

Proposition 6.9. For some ◆ > 0, we have

max
in

E

0

@

������

max(1,qi�1)X

j=1

(Vj0(ā2k0j)� Vj1(ā2k0j))

������

1

A = oP (n
2/r�◆).

Henceforth in the sequel we will slightly abuse max(1, qi�1) = max(1, bi/(2k0m)c�

1) and simply use qi � 1 = bi/(2k0m)c � 1 for presentational clarity.

Proof. of Proposition 6.9. Recall (6.19) for the definition of F4j+1(.), F4j+2 etc.

Define

F21 =
2mX

i=m+1

X̃i.

Define the projection operator Pi by

PiY = E(Y |Fi)� E(Y |Fi�1), Y 2 L1.

For 1  j  m, kPjF21k 
Pm

i=m+1�j �i,2. Since kE(FT
21|Fm)k2 =

Pm
j=1 kPjF21k2, we

have

|E(F1(ā0)F
T
2 )| = |E(F1(ā0)F

T
21)| = |E(F1(ā0)E(FT

21|Fm))|

 kF1(ā0)k(
mX

j=1

(
mX

i=m+1�j

�i,2)
2)1/2. (6.32)

Under the decay condition on ⇥i,p in (2.3), we have

E(|E(F1(ā0)F
T
21)|�) = O(mmax(�/2,����)).
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We expand the last term of Vj0(ā2k0j) (see (6.21)). Also note that,

|E(F4j�2F
T
4j�1) + E(F4j�1F

T
4j�2)| ⌧ m and ⇢⇤(V ar(F4j+2)) � (k0 � 1)�⇤m.

Then Proposition 6.9 follows from the fact that our solution of � from (4.5), (4.6),

and (4.7) satisfy � > max(2, 4�) for �  �0 and

nmax
j

P
�
⇢⇤(V

a
j0) < �⇤m

�
 2nmax

j
P (|E(F4j+1(ā2k0j)F

T
4j+2)| � �✓m/2)

= O(n)
mmax(�/2,����)

m�
= o(n2/r�◆),

for some ◆ > 0 since we can choose �⇤ such that ✓ = (k0 � 1)�⇤ � �⇤ > 0.

Recall (6.23) for the definition of Uj. By Lemma 7.3 and Jensen’s inequality, we

obtain maxj kUj(#̄2k0j+2k0)k�/2 = O(m1/2). By (4.6), �n := q1/�m1/2n�1/r ! 0. Then

P

✓
max

0jq�1
|Uj(#̄2k0j+2k0)| � �nn

2/r

◆


q�1X

j=0

P
�
|Uj(#̄2k0j+2k0)| � �nn

2/r
�

= O(���/2
n n1��/rm�/2�1) = O(��/2

n ) ! 0.

Similarly, |L(#̄0)| = oP (n2/r). Thus, by (6.22) and Proposition 6.9, since V ar(Y a
j ) =

V ar(Na
j ), one can construct i.i.d. N(0, Id) normal vectors Za

l , l 2 Z, such that

max
in

|D#
i � &i(#)| = oP (n

1/r), where &i(a) =
qi�1X

j=1

V 0
j1(ā2k0j)

1/2Za
j .

By (6.30), we have

max
in

|⇧#
i � &i(#)| = oP (n

1/r).
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Let Z⇤
l , l 2 Z, independent of (✏j)j2Z, be i.i.d. N(0, Id) and define

 i =
qi�1X

j=1

Vj1(#̄2k0j)
1/2Z⇤

j .

From the distributional equality,

(⇧#
i +Mi(#))1in

D
= (S⇧

i )1in, (6.33)

we need to prove Gaussian approximation for the process  i +Mi(#). Define

Bj = Vj1(#̄2k0j)
1/2Z⇤

j + ⇤4j(#̄2k0j) + ⇤4j+1(#̄2k0j),

which are independent random vectors for j = 1, . . . , q and let

S]
i =

qi�1X

j=1

Bj and W ]
i =  i +Mi(#)� S]

i .

Note that,

max
in

|W ]
i | = max

in
|⇤4qi(#2k0qi) + ⇤1(#0)| = oP (n

1/r). (6.34)

Conditions (6.24) and (6.25) can be verified easily with this unconditional process

(S)]i to use the Proposition 6.3. Thus, there existsBnew
j and Gaussian random variable

Bgau
j , such that (Bnew

j )jq�1
D
= (Bj)jq�1 and corresponding Bgau

j ⇠ N(0, V ar(Bj)),

such that

max
in

|
bi/2k0mc�1X

j=1

Bnew
j �

bi/2k0mc�1X

j=1

Bgau
j | = oP (n

1/r). (6.35)
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By (6.16), (6.33), (6.34) and (6.35), we can construct a process Sc
i and Bc

j such that

(Sc
i )in

D
= (Si)in and (Bc

j)jq�1
D
= (Bgau

j )jq�1 and

max
in

|Sc
i �

bi/(2k0m)c�1X

j=1

Bc
j | = oP (n

1/r). (6.36)

Relabel this final Gaussian process as

Gc
i =

bi/2k0mc�1X

j=1

(V ar(Bj))
1/2Y c

j ,

where Y c
j are i.i.d. N(0, Id). This concludes the proof of Theorem 2.1.

Proof. of Proposition 6.4. Without loss of generality, we prove it for j = 1. Note

that

2k0m�⇤  ⇢⇤(V ar(S2k0m))  ⇢⇤(V ar(S2k0m))  k
2k0mX

i=1

Xik2  2k0m⇥
2
0,2. (6.37)

Recall X�
i and X̃i from (6.6) and (6.7). The same upper bound works for S�

i and

S̃i. Note that, kS�
2k0m

� S2k0mk = o(m) and from [14], we have

kA1 � S�
2k0m

k = O(
p

2k0m⇥m,2) = o(
p
2k0m).

This concludes the proof using the Cauchy-Schwartz inequality.

Proof. of Proposition 6.5. As Aj is the block sum of the m-dependent processes

with length 2k0m, we have, using (6.37), for all j,

2k0m(�⇤ + �)  E(|Aj|2)  2k0m⇥
2
0,2,
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for some small � > 0. We conclude the proof by using

|E(|Y #
j |2)� E(|Aj+1|2)| = |⇤4j+1(#̄2k0j)|2 + |⇤4j+4(#̄2k0j+2k0)|2  2m⇥2

0,2

and k0 > ⇥2
0,2/�⇤ + 1. Using similar arguments, (6.27) follows.

Proof. of Proposition 6.6. Note that, without loss of generality, we can assume

V a
j to be independent for di↵erent j since otherwise we can always break the proba-

bility statement in even and odd blocks and prove the statement separately. We use

Corollary 1.6 and Corollary 1.7 from Nagaev (1979, [18]) respectively for the case

� < 4 and � � 4 on |V a
j � E(V a

j )| to deduce that it su�ces to show the following

q max
1tq/l

max
t(l�1)+1jtl

P (|V a
j � E(V a

j )| � lm) ! 0. (6.38)

We expand and write V a
j as follows:

V a
j = V ar(F4j+1(ā2k0j)� ⇤4j+1(ā2k0j)) + V ar(F4j+2 + F4j+3) (6.39)

+ E((F4j+1(ā2k0j)� ⇤4j+1(ā2k0j))F
T
4j+2) + E(F4j+2(F4j+1(ā2k0j)� ⇤4j+1(ā2k0j))

T)

+ E(F4j+3(F4j+4(ā2k0j+2k0)� ⇤4j+4(ā2k0j+2k0))
T)

+ E((F4j+4(ā2k0j+2k0)� ⇤4j+4(ā2k0j+2k0))F
T
4j+3)

+ V ar(F4j+4(ā2k0j+2k0)� ⇤4j+4(ā2k0j+2k0)).

Using derivation similar to (6.32), it su�ces to show (6.38) for only the first and

last term in (6.39). Moreover, we assume d = 1 and j = 1 to simplify notations.
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The proofs and the theorems used can be easily extended to vector-valued processes.

Denote by S̃m,{j} for the sum S̃m with ✏j replaced by an i.i.d. copy ✏0j. For the first

term, by Burkholder’s inequality,

E(|V ar(F1(ā0))� E(V ar(F1(ā0)))|�/2) = E(|E(S̃2
m|a1�m, . . . , a0)� E(S̃2

m)|�/2)

= k
0X

j=�m

PjS̃
2
mk

�/2
�/2  c�(

0X

j=�m

kPjS̃
2
mk2�/2)�/4

For �m  j  0, kPjS̃2
mk�/2  kS̃2

m � S̃2
m,{j}k�/2  kS̃m � S̃m,{j}k�kS̃m + S̃m,{j}k�.

Note that kS̃mk� = O(m1/2) and kS̃m � S̃m,{j}k� 
Pm

r=1 �̃r�j,�. By Lemma 7.2,

�̃k,�  2n1/p�1/�t1�p/�
n �p/�k,p . Then since 3 > 2(�+ 1)p/� for �  �0, we have

0X

j=�m

kPjS̃
2
mk2�/2 = O(m)

0X

j=�m

mX

r=1

(�̃r�j,�)
2 (6.40)

= O(m)n2/p�2/�t2�2p/�
n

mX

j=0

(
mX

r=1

�p/�r+j,p)
2

= O(m)n2/p�2/�t2�2p/�
n m3�2(�+1)p/�(logm)�2Ap/� ,

by (2.3) and the Hölder inequality. Then, since A > 2�/p and logm ⇣ log q ⇣ log n,

qE(|V ar(F1(ā0))� E(V ar(F1(ā0)))|�/2) (6.41)

. qm��(�+1)p/2n�/2p�1/2t�/2�p/2
n (log n)�Ap/2 = o((lm)�/2),

using (6.5), (4.7) and the choice of l in (6.26). For the last term in (6.39), we view

E(F4(ā2k0)
2) as

E(F4(ā2k0)
2) = E((S̃2k0m � S̃(2k0�1)m)

2|a(2k0�1)m+1, . . . a2k0m)
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and show that it is close to (S̃2k0m � S̃(2k0�1)m)2. Let Fm
j = (✏j, . . . , ✏m). Note that,

kS̃2
m � E(S̃2

m|am, . . . , a1)k
�/2
�/2 . (

0X

j=�m�1

kE(S̃2
m|Fm

j )� E(S̃2
m|Fm

j+1)k2�/2)�/4 (6.42)

 cm��(�+1)p/2n�/2p�1/2t�/2�p/2
n (logm)�Ap/2

= o(q�1(lm)�/2),

similar to the derivation in (6.40). By (6.41) and (6.42), it su�ces to show that

n

m
P (|S̃m| �

p
lm) ! 0. (6.43)

Using the Nagaev-type inequality from Wu and Wu (2016, [28]) we obtain

P (|S̃m| �
p
lm)  C1

mmax{1,p(1/2��)}

(lm)p/2
+ C2 exp(�C3l), (6.44)

where C1, C2 and C3 depend on � and p. The second term in (6.44) is o(m/n) since

e�l ! 0 very fast. For the first term in (6.44), if � < 1/2� 1/p, then

n

m

mp(1/2��)

(lm)p/2
= (log n)pn1�p/�+L(p/��p��1)tk(p/��p��1)

n = o(1),

as from (4.7) we have 1 � p/� + L(p/� � p� � 1) = L(p/� � 1)(�p + p + 1) < 0.

If 1/2 � 1/p  � < �0 and consequently r < p, then we have, for the first term in

(6.44),

n

m

m

(lm)p/2
= (log n)pnp(1/p�1/�+L(1/��1/2))tk(p/��p/2)

n = o(1), (6.45)

using (6.5), r < p and the fact that r satisfy 1/r � 1/� + L(1/� � 1/2) = 0.
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Proof. of Proposition 6.7. By Lemma 7.3, E(La
�) ⇣ qm�/2. Then it su�ces to

prove

P (|La
� � E(La

�)| � cqm�/2/ log q) ! 0, (6.46)

holds for some constant c > 0. Note that E(|Y a
j |�) are even indices j (also for odd

indices j). Thus we can prove the statement separately by breaking La
� in sum of even

and odd E(|Y a
j |�). Without loss of generality, we assume all E(|Y a

j |�) are independent

and proceed. Define Jj = (2k0m)��/2E(|S̃2k0mj � S̃2k0m(j�1)|�|ā2k0(j�1), ā2k0j) and ✓ =

l�/2 = q/(log q)�. Recall the truncation operator T from (6.1). Noting E(Jj) = O(1)

from Lemma 7.3, we have

P (|
qX

j=1

T✓(Jj)� E(T✓(Jj))| � �)  q

�2
max

j
E(T✓(Jj)

2) = O(✓q/�2) = o(1),

where � = q/ log q, and

max
j

P (Jj � ✓)  max
j

P (E(|S̃2k0mj � S̃2k0m(j�1)|2|ā2k0(j�1), ā2k0j) � 2k0lm) = o(q�1),

from (6.41), (6.42) and (6.43). Thus P (|
Pq

j=1 Jj �
Pq

j=1 E(Jj)| � �) ! 0 which is a

restatement of (6.46).

Proof. of Proposition 6.8. We showed in Proposition 6.7 that

P (cqm�/2  L�  Cqm�/2) ! 1,
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for some constants c and C. Let l be as given in (6.26). Let S = {0, l, 2l, · · · }.

Proposition 6.5 and Proposition 6.6 show that, for some constants c and C,

P (clk0m  min
i2S

⇢⇤

 
V ar

 
i+l�1X

j=i

Y a
j

!!
 max

i2S
⇢⇤
 
V ar

 
i+l�1X

j=i

Y a
j

!!
 Clk0m) ! 1.

We choose ⌘k = kl and s ⇣ q/l. Starting with the conditional block sum process Y a
j

for 0  j  q � 1, this choice of ⌘k satisfies (6.24) for a given a with probability

going to 1. The other condition, (6.25) can be easily verified for such a choice of

⌘-sequence using ideas similar to the proof of Proposition 6.7. We skip the details of

that derivation.

7. Some Useful Results

Lemma 7.1. Let p < �. Assume (2.A). Then supi Emin{|Xi|�n��/p, 1} = o(n�1).

Proof. Choose kn = b2(log n)/((p+�) log 2)c. Then n = o(2�kn) and 2pkn = o(n).

Let Z = |Xi|n�1/p. The lemma follows from

E(min{Z�, 1})  P (Z � 1) +
knX

k=0

2�k�P (2�1�k  Z < 2�k) + 2��(kn+1)

 E(Zp
1Z�1) +

knX

k=0

2p(k+1)�k�E(Zp
1Z�2�1�k) + 2��(kn+1) = o(n�1),

in view of the uniform integrability condition (2.A) and n1/2/2kn ! 1.

Lemma 7.2. The functional dependence measures defined on the truncated pro-

cess (X�
i ) and the m-dependent process (X̃i), satisfy �̃j,�  ��j,�  2n1/p�1/�t1�p/�

n �p/�j,p .
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Proof. Since the truncation operator T is Lipschitz continuous,

(��j,�)
� = sup

i
E(|Ttnn1/p(Xi)� Ttnn1/p(Xi,(i�j))|�)

= n�/pt�n sup
i

E

✓����min

✓
2,

����
Xi �Xi,(i�j)

tnn1/p

����

◆����
�◆

 2�n�/p�1t��p
n �pj,p.

The first inequality �̃j,�  ��j,� follows from (6.14).

Lemma 7.3. Rosenthal Type Moment Bound Recall (6.4) and (6.5) for tn. As-

sume (6.9), (6.12), (6.13) along with (2.6) on A related to the restriction on ⇥i,p

as mentioned in (2.3). Moreover, assume m = bnLtknc with k satisfying k < (�/2 �

1)�1(� � p). Then, we have

max
t

E( max
1lm

|R̃t,l|�) = O(m�/2). (7.1)

Proof. Since the functional dependence measure is defined in an uniform manner,

we can ignore the maxt in (7.1) and use the Rosenthal-type inequality for stationary

processes in Liu, Xiao and Wu (2013, [15]). By [15], there is a constant c, depending

only on �, such that

k max
1lm

|R̃t,l|k�  cm1/2[
mX

j=1

�̃j,2 +
1X

j=1+m

�̃j,� + sup
i

kTtnn1/p(Xi)k]

+cm1/�[
mX

j=1

j1/2�1/� �̃j,� + sup
i

kTtnn1/p(Xi)k�]

 c(I + II + III + IV ),
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where

I = m1/2
mX

j=1

�̃j,2 +m1/2kX1k2,

II = m1/2
1X

j=m+1

�̃j,�, III = m1/�
1X

j=1

j1/2�1/� �̃j,�,

IV = m1/� sup
i

kTtnn1/p(Xi)k�.

For the first term I, since
P1

j=1 �j,2 + supi kXik2  2⇥0,2 and �̃j,2  �j,2, we have

I = O(m1/2). Starting with II, we apply Lemma 7.2 to obtain

II = m1/2
1X

j=m+1

�̃j,� . m1/2n1/p�1/�t1�p/�
n

1X

j=m+1

�p/�j,p .

The rest follows from the derivation in (4.4) and (4.7). For the third term, we have

III . m1/�n1/p�1/�t1�p/�
n

mX

j=1

j1/2�1/��p/�j,p (7.2)

 m1/�n1/p�1/�t1�p/�
n

blog2 mc+1X

l=1

2l�1X

j=2l�1

j1/2�1/��p/�j,p

 m1/�n1/p�1/�t1�p/�
n

blog2 mc+1X

l=1

2l(3/2�1/��p/�)O(2�l�p/�l�Ap/�).

Recall the definition of �0 from (2.5). If �  �0, then our solution for � satisfies

3/2� 1/� � (�+ 1)p/� � 0,

with equality holding only for � = �0. Hence, if � < �0, we have

m�1/2III = m1�(�+1)p/�n1/p�1/�t1�p/�
n (log n)�Ap/�O(1) = o(1),
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from (4.7), (6.15) and (6.5). If � = �0, since A > �/p from (2.6) [The lower bound

for A there is just 2�/p as mentioned in (4.5)], we have

m�1/2III = m1/��1/2n1/p�1/�t1�p/�
n O(1) = o(1), (7.3)

since (4.6) is true. Also for the case of � > �0 in the proof of Theorem 2.2, the way we

define our three conditions in (5.1) the new solution also satisfy �0 = 2(1+ p+ p�)/3

and thus (7.3) holds. For the fourth term IV , we use (6.4) to derive

m��/2IV � = m1��/2 sup
i

kTtnn1/p(Xi)k� (7.4)

 m1��/2t�nn
�/p sup

i
E

✓
min{ |Xi|�

t�nn�/p
, 1}
◆

= m1��/2t�nn
�/p�1o(1) = o(1),

in the light of (4.6).


