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Abstract: Data from a large number of covariates with known population totals are

frequently observed in survey studies. These auxiliary variables contain valuable

information that can be incorporated into an estimation of the population total

of a survey variable in order to improve the estimation precision. We consider a

generalized regression estimator formulated under a model-assisted framework, in

which a regression model is used for the available covariates, and the estimator

retains the basic design-based properties. The generalized regression estimator is

shown to improve the efficiency of the design-based Horvitz–Thompson estimator

when the number of covariates is fixed. We investigate the performance of the

generalized regression estimator when the number of covariates p is allowed to

diverge as the sample size n increases. We examine two approaches. First, the

model parameter is estimated using the weighted least squares method when p < n.

Second, the Lasso method is employed when the model parameter is sparse. We

show that under an assisted model and certain conditions on the joint distribution of

the covariates, as well as the divergence rates of n and p, the generalized regression

estimator is asymptotically more efficient than the Horvitz–Thompson estimator,

and is robust against a model misspecification. We also study the consistency of

the variance estimation for the generalized regression estimator. Our theoretical

results are corroborated by simulation studies and an example.

Key words and phrases: Asymptotic efficiency, auxiliary information, high dimen-

sion, Lasso, model-assisted, survey sampling.

1. Introduction

In many survey studies, in addition to the observed data from a study vari-

able and related covariates, auxiliary information—for instance from administra-

tive records or results from previous surveys—is available in the form of covariate

population totals. This information can be used under the model-assisted frame-

work to improve the precision of the Horvitz–Thompson estimator, a well-known

design-based estimator of the total or mean of the survey variable (Cassel, Särndal

and Wretman (1977); Särndal, Swensson, and Wretman (2003)).
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In this framework, a model is adopted to reduce the estimation variability by

utilizing the auxiliary information from the covariates related to the main study

variable. Because the model’s role is only to assist in the estimation process, the

constructed estimator is protected against a model misspecification in the sense

that it is still asymptotically design-unbiased and normally distributed when the

model is incorrect.

The generalized regression (GREG) estimator, first discussed in Cassel,

Särndal and Wretman (1976), and studied extensively in Cassel, Särndal and

Wretman (1977); Särndal (1980a,b); Särndal, Swensson, and Wretman (2003), is

a popular estimator under the model-assisted framework. It includes a wide range

of estimators, notably the ratio estimator and the classical regression estimator

(Särndal (1980b)), and is constructed for many survey designs that allow arbi-

trary inclusion probabilities (Särndal, Swensson, and Wretman (2003)). A closely

related estimator is the calibration estimator, which is asymptotically equivalent

to the GREG estimator under certain assumptions (Deville and Särndal (1992)).

Here, we estimate the population total or mean using the GREG estimator.

In traditional applications that consider a small or moderate number of co-

variates, the properties of the GREG estimator have been well studied; see,

for example, Cassel, Särndal and Wretman (1977) and Särndal, Swensson, and

Wretman (2003) for a good overview. A well-known characteristic of the GREG

estimator is that when there is a linear regression model between the study vari-

able and the covariates, the estimator is asymptotically more efficient than the

Horvitz–Thompson estimator, which is based only on data from the study vari-

able. Moreover, the gain in efficiency is not affected by the fact that the weighted

least squares estimator (WLSE) instead of the true regression parameter is used

in the GREG estimator.

However, with technological advances, it is now possible to collect data on

a large number of covariates, which could even exceed the sample size. See

Nascimento Silva and Skinner (1997) for examples of survey data with large

numbers of covariates. For example, in the 1990 U.S. Census on law enforce-

ment (http://archive.ics.uci.edu/ml/datasets/communities+and+crime+

unnormalized), 101 covariates are recorded in a population of 2,195 communi-

ties. These covariates include the population of a community, mean people per

household, percentage of population by race, median household income, number

of people in each age, percentage of a household with a salary, farm, or self-

employment income, etc. A complete list of these 101 covariates can be found

in the Supplementary Material. Population totals of these covariates can be ob-

http://archive.ics.uci.edu/ml/datasets/communities+and+crime+unnormalized
http://archive.ics.uci.edu/ml/datasets/communities+and+crime+unnormalized
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tained from the census or administrative records. A more recent example is the

electronic health record (Jha et al. (2009)), in which a large number of covariates

are recorded for each patient, including demographic information, biometric in-

formation, medical records, historical medical test results and so on. In addition,

population totals for many covariates are maintained by social and governmen-

tal organizations. Another example is that of considering covariate interactions

and/or polynomial effects in a regression. In this case, even though the original

number of covariates with a known population total is moderate, the number of

covariates after adding interactions and/or polynomial terms could be very large

(McConville et al. (2017)).

With high-dimensional covariate and auxiliary population information, we

wish to know whether the GREG estimator based on the WLSE still improves the

efficiency, and whether using a regularized regression estimator leads to a better

GREG estimator. To answer these questions, we study the GREG estimator in a

setting in which both the number of covariates p and the sample size n are allowed

to diverge to infinity. Our first result concerns the GREG estimator based on the

WLSE. We show that under a correct regression model and certain assumptions

on the joint distribution of the covariates, the GREG estimator using the WLSE

is asymptotically equivalent to the GREG estimator using the true regression

parameter. Hence, it outperforms the Horvitz–Thompson estimator, as long as

p/n → 0. On the other hand, when p/n does not converge to zero, the GREG

estimator using the WLSE may not be asymptotically more efficient than the

Horvitz–Thompson estimator.

If there are only s of p covariates that are actually related to the study

variable, where s diverges slower than the sample size n, although p may be

comparable to, or even larger than n, a GREG estimator using a regularized

regression estimator can be constructed. Dimension reduction has been studied

in Cardot, Goga and Shehzad (2017), in which the authors considered a principal

component analysis to reduce the covariate dimension prior to performing a cali-

bration. This calibration approach can also be adopted for the GREG estimator.

However, the asymptotic results of their GREG estimator are established under

the condition p3/n→ 0, which is much stronger than the condition p/n→ 0 for

the GREG estimator based on the WLSE (our Theorem 1). As a result, when

p3/n → 0, there is no strong motivation to consider the principal component

regression estimator.

The WLSE is unavailable when p > n. This may occur in some small-area

survey estimations and in economic and biological studies. The principal compo-
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nent calibration approach does not perform well in this high-dimensional problem

either. We adopt the Lasso (Tibshirani (1996)) as a regularization method. The

use of the Lasso for the GREG was proposed in McConville (2011) and Mc-

Conville et al. (2017), but they studied the empirical and theoretical properties

for fixed p only. Under some conditions on the divergence rates of s and p, we

show that the GREG estimator constructed using the Lasso is asymptotically

equivalent to the GREG using the true regression parameter when the regression

model is correct. In addition, this GREG estimator still possesses asymptotically

design-based properties when the assumed model is misspecified. We also study

variance estimation for the GREG with the Lasso.

We present simulation results to study how much the Horvitz–Thompson

estimator can be improved by the GREG estimators, observe the effect of p on

the efficiency gain, and compare the relative performance between the GREG

estimators using the WLSE and the Lasso estimator. All technical proofs are

available in the Supplementary Material.

2. The Generalized Regression Estimator

Consider a finite population U that consists of N units, for i = 1, . . . , N . For

unit i, let yi be the value of the study variable, and xi be the p-dimensional vector

of covariates. We estimate the finite population total Y =
∑

i∈U yi using data

from a sample S of size n selected from U , following a probability plan called

sampling design. The value of (yi, xi) is observed for unit i in sample S. To

estimate Y , Horvitz and Thompson (1952) introduced the following estimator:

Ŷht =
∑
i∈S

yi
πi
, (2.1)

where πi > 0 is the inclusion probability for unit i, which can be calculated

from the sampling design, and may depend on some components of xi. The

population mean Y/N can be estimated using Ŷht/N or Ŷht/
∑

i∈S π
−1
i . Under

the noninformative sampling assumption, that is, πi is a known function of xi,

but does not depend on yi, the Horvitz–Thompson estimator in (2.1) is design–

unbiased with respect to the random selection of S from U . Throughout this

paper, we assume noninformative sampling and that Ŷht − Y is asymptotically

normal as n→∞, under the given sampling design with some conditions; see, for

example, Krewski and Rao (1981); Bickel and Freedman (1984); Fuller (2009).

When considering asymptotic properties, the finite population is viewed as a
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member of a sequence of finite populations, with sizes increasing to infinity. Then,

the sample is a member of a sequence of samples, with sample sizes increasing

to infinity. To abbreviate, we simply write n→∞.

In addition to the observed xi, for all i ∈ S, the finite-population total vector

X =
∑

i∈U xi is often known in many studies. To use the information provided

by the covariates, we consider {(xi, yi) : i ∈ U} as realizations from a super-

population model. In some applications, it may not be practical to impose an

assumption on the entire population U . It may be more realistic to assume that

U can be divided into sub-populations, such that an assumption can be made for

units within each sub-population. These sub-populations, such as strata or post-

strata (Valliant (1993)), are constructed so that (xi, yi) in each sub-population

is assumed to be unconditionally independent and identically distributed (i.i.d.).

Because an estimator of the sub-population total will be constructed using data

within each sub-population, and the estimator of the overall population total is

the sum of the sub-population total estimators, in what follows, we ignore the

sub-populations for notation simplicity; that is, for all i ∈ U , we assume that

yi = µ+ βTxi + εi, (2.2)

where µ and β are unknown parameters, aT is the transpose of a vector a, xi is an

i.i.d. random vector of covariates with an unknown positive-definite covariance

matrix Σ, εi is an independent random variable with mean zero and unknown

variance σ2
ε , and xi is independent of εi. After the sample S is selected from U ,

{(xi, yi), i ∈ S} are observed.

To take advantage of the available covariate information under model (2.2),

Cassel, Särndal and Wretman (1976, 1977) proposed the following GREG esti-

mator of the total Y :

Ŷgr = Ŷht + β̂T (X − X̂ht), (2.3)

where X =
∑

i∈U xi is the known finite population total of xi, X̂ht is the Horvitz–

Thompson estimator of X, defined as in (2.1); that is, X̂ht =
∑

i∈S xi/πi, and β̂

is an estimator of β in (2.2) based on (yi, xi), for i ∈ S. The GREG estimator

in (2.3) is the sum of the Horvitz–Thompson estimator Ŷht and an adjustment

β̂T (X − X̂ht) that is used to increase the efficiency.

To study the properties of the GREG estimator, we first consider an artificial

situation where β in (2.2) is known, such that β̂ = β and the estimator in (2.3)

is denoted as

Ŷ ∗gr = Ŷht + βT (X − X̂ht). (2.4)
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Because X̂ht is the Horvitz–Thompson estimator of X, Ŷ ∗gr is a design-unbiased

estimator of Y , even if model (2.2) is wrong or β is a wrong value. If model (2.2)

is correct, then regardless of how large the dimension p is, the variance of Ŷ ∗gr is

smaller than the variance of Ŷht, unless β = 0, where the variance is calculated

with respect to the sampling and model. For this reason, the GREG estimator

is referred to as a model-assisted estimator.

In practice, β is unknown; therefore, the GREG estimator, which involves

β̂, is asymptotically design-unbiased and normally distributed, as long as β̂ does

not diverge to infinity. In a traditional setting, the covariate dimension is fixed,

in the sense that p does not change as n → ∞. Then, under model (2.2), the

GREG estimator is asymptotically more efficient than the Horvitz–Thompson

estimator, as long as β̂ is consistent, because

Ŷgr − Y = Ŷht − Y + β̂T (X − X̂ht)

= Ŷht − Y + βT (X − X̂ht) + (β̂ − β)T (X − X̂ht)

= Ŷ ∗gr − Y + op(1)(X − X̂ht)

= Ŷ ∗gr − Y + op(1)(Ŷ ∗gr − Y ),

where op(1) denotes a quantity converging to zero in probability. This implies

that in a low-dimensional setting, Ŷgr and Ŷ ∗gr in (2.4) are asymptotically equiv-

alent under model (2.2). Note that we do not need to worry about the efficiency

of β̂.

When p is fixed, β̂ is typically the following WLSE of β under model (2.2),

β̂wls =

∑
i∈S

1

πi

(
xi −

X̂ht

N̂

)(
xi −

X̂ht

N̂

)T
−1∑

i∈S

(xi − x̂S)yi
πi

, (2.5)

where N̂ =
∑

i∈S πi
−1. The GREG estimator constructed using β̂wls is denoted

by Ŷgr wls. If model (2.2) is correct, n1/2(β̂wls− β) is asymptotically normal with

mean zero; thus,

Ŷgr wls − Y = Ŷ ∗gr − Y +Op(n
−1/2)(Ŷ ∗gr − Y ); (2.6)

that is, Ŷgr wls is asymptotically equivalent to Ŷ ∗gr up to an order of n−1/2, where

Op(an) denotes a sequence that is bounded in probability by |an|.
As discussed in the introduction, modern data are often high dimensional.

When p is unbounded as n → ∞, we examine whether Ŷgr wls is still asymptot-
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ically equivalent to Ŷ ∗gr such that it improves Ŷht. The answer is given in the

following result.

Theorem 1. Assume model (2.2) with p < n and the following assumptions:

(A1) maxi∈U π
−1
i = O(N/n).

(A2)
∑

i∈U (π−1
i − 1) ≥ c(N2/n) for a constant c > 0, not depending on n and

p.

(A3) The components of Σ−1/2xi are i.i.d. and have finite fourth-order mo-

ments.

Then, we have the following conclusions:

(a) If p/n→ 0 as n→∞, then

Ŷgr wls − Y = Ŷ ∗gr − Y +Op

{( p
n

)1/2
}

(Ŷ ∗gr − Y ) (2.7)

and, hence, Ŷgr wls is asymptotically equivalent to Ŷ ∗gr.

(b) If p/n → γ > 0 as n → ∞, then, in general, Ŷgr wls is not asymptotically

equivalent to Ŷ ∗gr.

Assumptions (A1) and (A2) involve bounds on the inclusion probabilities.

Assumption (A3) is used to obtain the limiting spectral distribution of the func-

tionals of the design matrix. Using the arguments in Bai and Zhou (2008) and

Xie (2013), the results in Theorem 1 can also be established if (A3) is replaced

by

(A3′) p3/n → ∞ and E(xTi Σ−1/2BΣ−1/2xi − trB)2 = o(p3/n), for any p × p
deterministic matrix B with a bounded spectral norm.

Note that result (2.7) includes result (2.6) for the case of fixed p as a special

case. Theorem 1 indicates that under model (2.2), if p/n → 0, then Ŷgr wls is

asymptotically more efficient than Ŷht, and is asymptotically equivalent to Ŷ ∗gr,

which is based on the true β. The difference between Ŷgr wls and Ŷ ∗gr depends

on the rate of convergence of p/n, as result (2.7) indicates. Thus, it is expected

that the efficiency gain by the GREG estimation deteriorates as the rate of p/n

increases, although there is no rigorous proof.

When p/n→ γ > 0, Theorem 1 shows that Ŷgr wls may not be asymptotically

equivalent to Ŷ ∗gr. Consequently, if p diverges at a rate the same as or close to n,
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then the performance of Ŷgr wls can be even worse than Ŷht, even if model (2.2)

is correct. In the next section, we consider an improvement of Ŷgr wls when the

true regression coefficient β is sparse, in the sense that many of its components

are zero, although p can still be large.

3. The Lasso Generalized Regression Estimator

Although data today contain many covariates, it is often true that only a

few of these are actually related to the study variable. In model (2.2), among p

covariates, only s have nonzero regression coefficients (i.e., β-components) and s

is fixed or diverges much slower than p. We require a sparse estimator of β when

β is sparse because retaining the extraneous variables serves no purpose, but it

does increase the variability and model complexity. The WLSE β̂wls, however, is

not sparse, regardless of whether or not β is sparse. Therefore, we consider the

Lasso estimator, denoted by β̂`1 . The GREG estimator in (2.3) using β̂ = β̂`1 ,

denoted as Ŷgr `1 , is well defined, even when p > n. In this section, we study

the asymptotic properties of Ŷgr `1 , and show that it improves Ŷgr wls and the

Horvitz–Thompson estimator Ŷht. Furthermore, it is asymptotically equivalent

to Ŷ ∗gr, under some conditions on the sparsity and the diverging rate of p that

allows p/n→∞. It is also design-based robust against a model misspecification.

We use the notation from Section 2. The Lasso estimator β̂`1 is a solution

to the `1-penalized weighted least squares minimization problem:

min
b∈Rp

[
1

2n

∑
i∈S

{yi − bT (xi − X̂ht/N̂)}2

πi
+ λ‖b‖1

]
, (3.1)

where ‖b‖1 is the usual `1-norm of a vector b ∈ Rp, and λ ≥ 0 is a penalty

parameter that may depend on n. The `1-norm penalty is applied to shrink

the estimated coefficients and to select variables, simultaneously. Note that the

WLSE β̂wls is a special case of β̂`1 , defined as the solution to (3.1) with λ = 0.

There is a considerable body of literature devoted to studying the conditions

on the covariates xi in order to guarantee certain good oracle properties of β̂`1
in terms of prediction or estimation accuracy, and in terms of variable selec-

tion consistency. Here, well-known conditions include the restricted null space

property (Donoho and Huo (2001)), restricted isometry property (Candes and

Tao (2005, 2007)), restricted eigenvalue condition (Bickel, Ritov and Tsybakov

(2009)), and irrepresentable condition (Zhao and Yu (2006)). The last condition

is quite strong, and is required only if model-selection consistency is of interest.
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The restricted null space property has been shown to successfully recover the

signal in a noiseless setting; that is, εi = 0 for all i in (2.2). When εi in (2.2) is

not degenerated, the restricted isometry property is proved to be sufficient for

bounding the estimation error.

A relatively weaker condition is the restricted eigenvalue (RE) condition

introduced in Bickel, Ritov and Tsybakov (2009), which holds for an n×p matrix

A if
1

K(l,k,A)
= min

J⊂{1,...,p}
|J |≤l

min
v 6=0

‖v−J‖1≤k‖vJ‖1

‖Av‖2
‖vJ‖2

> 0, (3.2)

where vJ is a sub-vector of v with components indexed by elements in J ⊂
{1, . . . , p}, v−J is a sub-vector of v with components not in vJ , |J | is the number

of elements in J , ‖ · ‖2 is the usual `2-norm, and l and k are constants. The

condition is denoted as RE(l, k, A).

The restricted eigenvalue condition requires that A be positive-definite on a

restricted set of vectors in the cone

C(l,k) = {v ∈ Rp : ∃J ⊂ {1, . . . , p}, |J | ≤ l, ‖v−J‖1 ≤ k‖vJ‖1}, (3.3)

hence the name restricted eigenvalue condition. It is shown in the Supplementary

Material that the estimation error β̂`1 − β belongs to the cone C(s,3), that is,

‖(β̂`1 − β)−S‖1 ≤ 3‖(β̂`1 − β)S‖1, where S contains the indices of all nonzero

components of β and s = |S|.
Condition (3.2) was first assumed in Bickel, Ritov and Tsybakov (2009) on a

deterministic design matrix to establish a bound on the estimation loss of the sig-

nal for the Lasso estimator and the Dantzig selector. Rudelson and Zhou (2013)

showed that with high probability and certain conditions, the RE condition holds

for a large class of random matrices, including matrices with uniformly bounded

entries, and those whose rows follow a sub-Gaussian distribution. In this study,

the covariates xi under the model-assisted framework are random vectors, dis-

tributed according to the super-population model. We consider a random design

matrix X, whose ith row is xi, for i ∈ S. If xi follows a sub-Gaussian distribu-

tion and Σ is positive-definite, then under certain assumptions, condition (3.2)

holds for A = X/n1/2 with high probability (Rudelson and Zhou (2013)). The

performance of Ŷgr `1 is stated in the following theorem.

Theorem 2. Assume (A1)–(A2) and the following assumptions:

(A4) εi and xi independently follow sub-Gaussian distributions, with scale fac-
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tors τ and ν, respectively; that is, E{exp(uεi)} ≤ exp(τ2u2/2), for any

real-valued u, and E{exp(tTxi)} ≤ exp(ν2tT t/2) for any p-dimensional vec-

tor t.

(A5) There exist constants b0, b1, b2, b3 not depending on n and p, such that

n ≥ b1r log (b2p/r), for all n ≥ b0, where r = min{s+ b3sM
2K2

(s,9,Σ1/2), p},

M = max
j
‖Σ1/2ej‖2,

and ej = (0, . . . , 1, . . . , 0), for j = 1, . . . , p, form the standard basis of Rp.

(A6) The tuning parameter λ in (3.1) is dτM(n−1 log p)1/2 for a constant d ≥ 8.

(i) If model (2.2) holds, then

‖β̂`1 − β‖1 = Op

{
s(n−1 log p)1/2 MK2

(s,3,Σ1/2)

}
, (3.4)

and

Ŷgr `1 − Y = Ŷ ∗gr − Y +Op

{
n−1/2 s log p MK2

(s,3,Σ1/2)

}
(Ŷ ∗gr − Y ). (3.5)

(ii) If model (2.2) is wrong, and (A4) holds with εi replaced by yi − xTi β, where

β is defined as β = Σ−1E(x1y1), then (3.4) still holds and

Ŷgr `1 − Y = Ŷht − Y + βT (X − X̂ht) +Op

{
Nsn−1 log p MK2

(s,3,Σ1/2)

}
.

The result on the estimation loss ‖β̂`1 − β‖1 was first established in Bickel,

Ritov and Tsybakov (2009) for deterministic xi, where the RE condition was

imposed on the design matrix X. Zhou (2009) showed that an estimation loss

with a similar order to that of (3.4) holds when the rows of the random matrix

X follow a sub-Gaussian distribution with a covariance matrix Σ that satisfies

the RE condition RE(s, 3,Σ1/2). The lower bound of the sample size n in Zhou

(2009), however, depends on a quantity ρ(s), which is defined as the maximum

eigenvalue of Σ, restricted to sparse vectors with at most s nonzero components.

We instead make a similar assumption (A5) to that in Rudelson and Zhou (2013),

in which the lower bound of n does not depend on ρ(s), but instead a slightly

stronger assumption RE(s, 9,Σ1/2) is used.

Theorem 2 indicates that Ŷgr `1 is asymptotically equivalent to Ŷ ∗gr, even when

the working model (2.2) is misspecified, as long as n−1/2s log p MK2
(s,3,Σ1/2) → 0,

which is reasonable because s log p can be much smaller than n. Hence, Ŷgr `1
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asymptotically outperforms Ŷht if model (2.2) holds. When model (2.2) is mis-

specified, both Ŷht and Ŷgr `1 are design-based asymptotically valid, and there

is no definite conclusion on the relative performance of Ŷht and Ŷgr `1 , although

Ŷgr `1 is expected to be better than Ŷht if (2.2) is nearly correct. See the simula-

tion results in Section 4.1.

In the study of Cardot, Goga and Shehzad (2017), who used a calibration

based on the principal components of the covariates, the number of covariates

p was restrictively assumed to satisfy p3r3/n → 0 to establish the consistency

of the calibration estimator, where r is the number of selected principal compo-

nents. This condition is much stronger than p/n → 0, under which the GREG

estimator with the WLSE is asymptotically equivalent to Ŷ ∗gr (Theorem 1). If

the covariate xi is observed for every unit i in the population U , then the as-

sumption p3r3/n → 0 can be relaxed to r3/n → 0. However, such a result has

limited application because complete covariate information for the population is

not usually available, especially when xi has a high dimension.

To assess the estimation variability or to make an inference about Y , we

need a variance estimator for Ŷgr `1 . First, consider Ŷ ∗gr, given by (2.4). If β is

treated as known, then a classical variance estimator for Ŷ ∗gr is

v(β) =
∑
i∈S

∑
j∈S

πij − πiπj
πij

yi − xTi β
πi

yj − xTj β
πj

, (3.6)

where πij is the inclusion probability of units i and j in the sample S, for i 6= j.

When β is unknown, it is substituted by the same estimator β̂ used in the GREG.

In the traditional case where p is fixed, v(β̂) is defined as (3.6), with β replaced

by a consistent β̂, and is consistent for the variance of Ŷgr as n→∞. The next

result shows that this remains true when β is estimated using the Lasso method.

Theorem 3. Assume model (2.2), the conditions of Theorem 2, maxi,j |1 −
πiπj/πij | = O(n−1), and the right-hand side of (3.4) converges to zero. Then,

the variance estimator v(β̂`1) defined as (3.6), is consistent in the sense that

v(β̂`1)/var(Ŷgr `1)→ 1 in probability.

4. Simulation Studies

4.1. Results based on simple random sampling

In the first simulation study, we consider simple random sampling without

replacement (SRSWO). Finite populations of size N = 105 were generated from
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three super-population models, described as follows. Covariate vectors xi were

generated from a multivariate normal distribution N(0,Σ), with

Σ =

[
B 0

0 Ip/2

]
,

where Ip/2 is the identity matrix of order p/2, and B is a p/2 × p/2 symmetric

matrix, with diagonal entries equal to one, and every off-diagonal entry equal to

zero with probability 0.8, and equal to the value of a random variable following

a uniform distribution on (0,1) with probability 0.2. A small positive quantity

was added to the diagonal of B to ensure its positive-definiteness.

Different values of p were considered in each model to observe the effect of

the number of covariates on the estimators’ performance. The following three

super-population models were considered:

Model M1 : yi = µ+ xTi β + εi, as in (2.2), with s = p1/2, β = (2, . . . , 2, 0, . . . , 0),

where εi are i.i.d. N(0, 1), µ =
∑

j βj , and βj is the jth component of β.

In this model, the first p1/2 (with rounding) components of β are set to

two, and all other entries are zero. The number of relevant variables in this

model, therefore, increases as the dimension increases.

Model M2 : the same as M1, but the first 10 entries of β are 1, 2, 3, 4, 5, 0.2, 0.2,

0.2, 0.2, 0.2, and all other entries of β are zeros. Therefore, the underlying

model has dimension s = 10, although p increases. Because the nonzero

components of β take different values, the corresponding covariates are cor-

related with the variable y with different strengths.

Model M3 : yi = µ + β1(x
(1)
i )2 + β2(x

(2)
i )2 + · · · + βp(x

(p)
i )2 + εi, where x

(j)
i is

the jth component of xi, s = 10, β is the same as that in Model 2, εi are

i.i.d. N(0, 1), and µ =
∑

j βj . The parameter β, however, is still estimated

under the assumed model (2.2) in order to investigate the consequences of

a model misspecification.

From each finite population generated according to the models, 500 different

SRSWO samples of size n = 500 were selected. For each sample, Ŷht, Ŷgr wls,

Ŷgr `1 , and the optimal estimator Ŷgr opt proposed in Berger, Tirari and Tille

(2003) were computed. A 10-fold cross-validation was used to select the tuning

parameter λ in the minimization problem (3.1), where we chose the one with the

smallest mean squared error Friedman, Hastie and Tibshirani (2010). Based on

the 500 simulations, the standard deviation (SD) of each estimator Ŷ and the
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Table 1. Standard deviation (SD) and mean squared error (MSE) ratio for Ŷht, Ŷgr wls,

Ŷgr opt, and Ŷgr `1 based on SRSWO.

SD

p s Ŷht Ŷgr wls Ŷgr opt Ŷgr `1
mse(Ŷht)

mse(Ŷgr `1
)

mse(Ŷgr wls)

mse(Ŷgr `1
)

mse(Ŷgr opt)

mse(Ŷgr `1
)

Model M1

10 3 17,099 4,495 4,489 4,477 14.6 1.0 1.0

50 7 29,205 5,559 4,760 4,675 39.0 1.4 1.1

100 10 31,759 7,982 4,988 4,931 41.5 2.6 1.1

200 14 40,717 16,832 5,715 5,019 65.8 11.3 1.6

300 17 44,378 26,973 7,202 5,288 70.4 27.0 2.0

400 20 47,563 38,079 10,121 5,349 79.1 53.2 4.3

Model M2

10 10 36,939 4,604 4,521 4,525 63.8 1.0 1.0

50 10 40,344 6,240 4,730 4,689 74.4 1.8 1.0

100 10 33,658 8,320 5,013 4,755 50.1 3.1 1.1

200 10 35,033 14,837 5,849 4,771 53.9 10.2 1.5

300 10 35,740 21,874 7,304 4,803 55.4 21.2 2.3

400 10 33,369 26,788 10,044 4,720 52.5 32.5 4.5

Model M3

10 10 88,030 51,215 51,227 51313 2.7 1.1 1.1

50 10 83,894 51,969 51,748 50186 2.7 1.1 1.1

100 10 87,616 54,823 53,962 49398 3.1 1.2 1.2

200 10 86,742 62,090 60,671 49839 3.0 1.5 1.5

300 10 86,010 76,002 67,390 49760 3.0 2.3 1.8

400 10 87,531 106,794 77,554 49498 3.1 4.6 2.4

ratio of mse(Ŷ ) for pairs of estimators, where mse(Ŷ ) is the mean squared error

of Ŷ , are reported in Table 1 for all three models, M1–M3. All estimators Ŷht,

Ŷgr wls, Ŷgr opt, and Ŷgr `1 have negligible biases of less than 1% of Y and, hence,

are not shown in the table.

Based on the SD, the GREG estimators, which incorporate data from the

covariates, were more efficient than the Horvitz–Thompson estimator in all but

one case, namely, where p is large (p = 400), the model is misspecified, and

the GREG estimator is based on the WLSE. Under models M1 and M2, the

mean squared error of the Horvitz–Thompson estimator was reduced 18 to 100

times as a result of using the auxiliary information. Under model M3, which is an

incorrect model, the GREG estimators still outperformed the Horvitz–Thompson

estimator in terms of efficiency in most cases, although the improvement was not

as large as that observed in models M1–M2, because no auxiliary information
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was used correctly.

Similarly, based on the SD, not only was Ŷgr `1 more efficient than Ŷgr wls,

but its performance was also more consistent than that of Ŷgr wls when the com-

plexity of the model grows. For instance, under model M2, in which s is fixed,

while p increases, Ŷgr wls deteriorates considerably. Table 1 shows that the ratio

mse(Ŷgr wls)/mse(Ŷgr `1) is no smaller than one in all cases, and that the difference

between the mean squared error ratios becomes more pronounced as p increases.

This suggests that when p is large, using Ŷgr `1 results in a larger efficiency gain

than when using Ŷgr wls, even when p < n.

Furthermore, Ŷgr `1 exhibits comparable performance to that of the optimal

estimator Ŷgr opt when the dimension p ≤ 50, in terms of SD and MSE. However,

when p is large, Ŷgr `1 outperforms Ŷgr opt. This is because Ŷgr opt is not regular-

ized, which means it does not perform well when p is large, although it is still

better than the unregularized Ŷgr wls.

4.2. Results based on probability proportional to size sampling

In the second simulation study, we considered an unequal probability sam-

pling method, namely, the probability proportional to size without replacement

(PPSWO) sampling. The size variable was chosen as five plus the first compo-

nent of xi, for i ∈ U , and (xi, yi) are generated in the same was as in the first

simulation, except that µ = 1 + 5
∑

j βj . More specifically, Tille’s algorithm

(Tille (1996); Deville and Tille (1998)) was employed to select PPS samples with

πi ∝ 5+ as the first component of xi.

Finite populations of size N = 5, 000 were generated, and 500 different sam-

ples of size n = 500 were selected from each generated finite population. Simu-

lated SD values are given in Table 2, with β̂wls or β̂`1 . Two other quantities are

included in Table 2: the estimated SD, that is, the square root of the variance

estimator v(β̂), defined as in (3.6); and the coverage probability (CP) of the 95%

confidence interval for Y , based on a normal approximation with the estimated

SD.

Overall, the results for SD are similar to those in Table 1 for SRSWO. In

addition, the estimated SD is close to the simulated SD, and the CP is close to

the nominal value of 95%, except for the case of Ŷgr wls, when p is large. The

high dimension p has a greater effect on the estimated SD than it does on the

estimated β.
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Table 2. Standard deviation (SD), estimated SD, and coverage probability (CP) for Ŷht,
Ŷgr `1 , and Ŷgr wls based on PPSWO.

p s

SD estimated SD CP

Ŷht Ŷgr wls Ŷgr `1 Ŷht Ŷgr wls Ŷgr `1 Ŷht Ŷgr wls Ŷgr `1

Model M1

10 3 1,113 218 219 1,145 219 223 95 96 96

50 7 2,828 223 227 2,913 210 230 93 96 96

100 10 4,391 263 264 4,279 207 243 88 95 92

200 14 6,235 281 266 6,096 190 253 80 95 95

300 17 7,514 431 325 7,369 248 287 73 94 92

400 20 8,456 585 325 8,741 310 289 66 95 94

Model M2

10 10 3,748 234 244 3,770 224 235 95 94 93

50 10 3,677 244 251 3,748 213 232 95 93 93

100 10 3,793 260 269 3,752 205 245 95 87 92

200 10 3,611 285 249 3,769 188 247 97 81 95

300 10 3,719 378 272 3,748 219 254 95 70 91

400 10 3,885 594 283 3,772 293 262 93 59 92

Model M3

10 10 23,127 18,038 17,673 22,397 17,775 17,425 94 94 94

50 10 22,304 18,345 17,594 22,372 17,895 17,159 97 95 95

100 10 22,570 16,926 16,119 22,439 17,779 16,941 95 97 97

200 10 22,246 18,485 17,400 22,432 17,633 16,760 95 94 94

300 10 21,042 17,596 15,772 22,367 18,464 16,710 96 96 97

400 10 21,819 16,551 15,359 22,444 17,273 16,468 94 96 96

5. Example

As an example, we consider the 1990 Census on law enforcement (http://

archive.ics.uci.edu/ml/datasets/communities+and+crime+unnormalized)

as a population. The data set consists of data on N = 2, 195 communities (units)

with crime related variables (study variables), such as murders, rapes, robberies,

assaults, burglaries, larcenies, auto thefts, and so on. Furthermore, we include

101 covariates, including the population of a community, median household in-

come, per capita income, number of police cars, percentage of officers assigned to

drug units, and so on. A list of all 101 covariates is given in the Supplementary

Material.

We selected the following six samples from this population:

(a) a simple random sample of size n = 200 without replacement;

http://archive.ics.uci.edu/ml/datasets/communities+and+crime+unnormalized
http://archive.ics.uci.edu/ml/datasets/communities+and+crime+unnormalized
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(b) a simple random sample of size n = 150 without replacement;

(c) the first 195 communities, i.e., S = {1, . . . , 195};
(d) the last 195 communities, i.e., S = {2, 001, . . . , 2, 195};
(e) a systematic sample of size n = 220, i.e., S = {1, 11, 21, . . . , 2, 191};
(f) a systematic sample of size n = 439, i.e., S = {1, 6, 11, . . . , 2, 191}.

After the sure independence screening (Fan and Lv (2008)), we estimate the pop-

ulation totals for murders, rapes, robberies, and assaults (four study variables)

using our proposed estimator Ŷgr `1 , the Horvitz–Thompson estimator Ŷht, the

unregularized Ŷgr wls with a weighted least squares estimator, and the regularized

GREG estimator Ŷgr sis with a weighted least squares estimator. The results are

summarized in Table 3, which includes the true population totals. Overall, our

method gives far more accurate estimates of the total crimes in each category

than the competitors do.

6. Discussion

In this study, we established the asymptotic properties of the high-dimensional

GREG estimators. We examine two approaches: the GREG estimators are con-

structed using (a) the WLSE, and (b) the Lasso estimator. When using the

weighted least squares method to estimate the regression coefficient, we prove

that the number of covariates p should increase at a much slower rate than the

sample size n in order for the GREG estimator to perform well. When this

condition is not satisfied, the estimator may not be efficient; indeed, its perfor-

mance deteriorates, as shown in the numerical analysis. Therefore, it is not true

that having more variables or auxiliary information will lead to a better Lasso

estimator.

The GREG estimator constructed using the Lasso estimator, however, does

not suffer from this instability. Because only a small set of variables is retained

after the selection, the estimator still performs efficiently, even when p is large, as

shown in the numerical study. Our simulation results not only support the the-

oretical analysis, but also encourage the use of the regularized GREG estimator,

owing to its robustness and stability, especially when p is large.

In addition, the eigenvalue behavior of the design matrix plays an important

role in the theoretical analysis of both GREG estimators. For the GREG estima-

tor based on the WLSE, a condition is assumed in order to establish the limiting

spectral distribution of the design matrix. However, for the GREG estimator

based on the Lasso estimator, a restricted eigenvalue condition is assumed.
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Table 3. Estimates of the total numbers of murders, rapes, robberies, and assaults in
the crime data.

Scenarios Ŷht Ŷgr wls Ŷgr `1 Ŷgr sis

Total of murders=16,633

(a) 10,580 11,477 14,600 14,043

(b) 7,521 9,983 12,522 9,995

(c) 52,342 24,455 16,462 20,115

(d) 11,774 12,363 14,594 14,402

(e) 10,885 14,916 15,712 15,451

(f) 15,790 15,818 17,458 16,700

Total of rapes=522,378

(a) 308,781 330,875 429,309 393,961

(b) 230,036 307,567 477,431 441,959

(c) 1,923,417 828,442 526,686 507,847

(d) 316,170 350,921 430,486 415,684

(e) 271,172 386,957 423,708 433,617

(f) 420,225 440,654 453,555 461,957

Total of robberies=716,317

(a) 535,361 568,015 643,077 602,668

(b) 404,348 524,835 678,994 592,765

(c) 1,976,468 1,006,262 827,473 716,354

(d) 585,964 596,410 664,838 628,707

(e) 481,852 637,777 698,029 678,851

(f) 593,685 597,974 633,935 652,702

Total of assaults=1,634,471

(a) 1,398,709 1,502,997 1,681,493 1,675,426

(b) 1,000,144 1,283,311 1,704,307 1,368,095

(c) 3,558,106 2,181,098 1,791,385 1,692,598

(d) 1,516,430 1,525,991 1,667,527 1,580,314

(e) 1,166,383 1,506,206 1,523,222 1,595,661

(f) 1,468,040 1,455,648 1,576,333 1,591,371

If the population total X in (2.3) is not available and is replaced by X̂, an es-

timated total from another survey, then the GREG estimators are still consistent,

as long as X̂ is consistent. However, their efficiencies depend on the efficiency

of X̂, even if model (2.2) holds. Another situation in which our result is useful

is when yi has a covariate-dependent nonresponse and xi is always observed. If,
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throughout this paper, we replace S with R the set of units with observed yi,

R ⊂ S ⊂ U , and replace the known X in GREG with X̂ =
∑

i∈S xi/πi, then

Ŷgr wls and Ŷgr `1 are the same as the estimators of Y with every missing yi im-

puted by β̂Twlsxi and β̂T`1xi, respectively. Our Theorems 1–2 still apply. That is,

WLSE works well when p is small relative to n, and the Lasso works well when

β is sparse and p is comparable with n.

Note that similar results may be established if the Lasso estimator is replaced

by a sparse estimator of β obtained using other penalized regression or variable

selection methods. Our results, together with those of in Cardot, Goga and She-

hzad (2017), demonstrate that under certain assumptions, the nice properties of

the model-assisted estimators, such as the asymptotic efficiency and consistency,

are still preserved in high dimensions.

Supplementary Material

The online Supplementary Material contains all theoretical proofs of Theo-

rems 1–3 and, a complete list of the 101 covariates in the data example.
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