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S1 Proof of (4.31)

In order to establish the claim (4.31), define the events

E1 : =
{
Tn ≥ τmin

(
4qn
)}
, and E2 : =

{
FNPn

(
τmin

(
4qn
))
≥

FNRn

(
τmin

(
4qn
))

2

}
.

The following lemma guarantees that both of these events have a non-

vanishing probability:

Lemma S1. For any threshold Tn such that FDRn(Tn) ≤ qn, we have

P[E1]
(a)

≥ 3/8, and P[E2]
(b)

≥ 3/4. (S1.1a)
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We prove this lemma below. Using it, we can complete the proof of claim (4.31).

Define the event

E : =

{
FNPn(Tn) ≥

FNRn

(
τmin(4qn)

)
2

}
.

The monotonicity of the function t 7→ FNPn(t) ensures that the inclusion

E ⊇ E1 ∩ E2 must hold. Consequently, we have

P[E ] ≥ P[E1 ∩ E2] ≥ P[E2]− P[Ec1 ]
(i)

≥ 3

4
− 5

8
= 1/8,

where step (i) follows by applying the probability bounds from Lemma S1.

Finally, by Markov’s inequality, we have

FNRn(Tn) = E[FNPn(Tn)] ≥ P[E ]
FNRn

(
τmin(4qn)

)
2

≥
FNRn

(
τmin(4qn)

)
16

,

which establishes the claim (4.31).

S1.1 Proof of Lemma S1

Our proof makes use of the following auxiliary lemma:

Lemma S2. For qn ∈ (0, 1/24), we have

P
[
FDPn

(
t
)
≥ 8qn for all t ∈ [0, τmin(4qn)]

]
≥ 1

2
. (S1.2)

We return to prove this claim in Appendix S1.2. For the moment, we take

it as given and complete the proof of Lemma S1.
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Control of E1: Let us now prove the first bound in Lemma S1, namely that

P[E1] ≥ 3
8

where E1 : =
{
Tn ≥ τmin(4qn)

}
. So as to simplify notation, let us

define the event

D : =
{

FDPn

(
t
)
≥ 8qn for all t ∈ [0, τmin(4qn)]

}
. (S1.3a)

Now observe that

P
[
Tn ≥ τmin

(
4qn
)]
≥ P

[
Tn ≥ τmin

(
4qn
)

and D
]

= P[D]− P
[
Tn ≤ τmin

(
4qn
)

and D
]
.

(S1.3b)

Now by the definition (S1.3a) of the event D, we have the inclusion

{
Tn ≤ τmin

(
4qn
)

and D
}
⊆
{

FDPn(Tn) ≥ 8qn

}
.

Combining with our earlier bound (S1.3b), we see that

P
[
Tn ≥ τmin

(
4qn
)]
≥ P[D]− P

[
FDPn(Tn) ≥ 8qn

]
.

It remains to control the two probabilities on the right-hand side of this

bound. Applying Lemma S2 guarantees that P[D] ≥ 1
2
. On the other hand,

by Markov’s inequality, the assumed lower bound FDRn

(
Tn
)
≤ qn implies

that P
[
FDPn

(
Tn
)
≥ 8qn

]
≤ 1

8
. Putting together the pieces, we conclude

that

P[E1] = P
[
Tn ≥ τmin

(
4qn
)]
≥ 1

2
− 1

8
=

3

8
,

as claimed.
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Control of E2: Let us now prove the lower bound P[E2] ≥ 3/4. We split

our analysis into two cases.

Case 1: First, suppose that rn > rmin. In this case, we can write

FNPn(t) =
Fn(t)

n1−βn
, where Fn

(
t
)
∼ Bin

(
1−Ψ

(
t− µ

)
, n1−βn

)
.

Since rmin > βn, we have
∣∣t− µ∣∣ = µ− τmin and

µ− τmin ≤
(
γ log n

)1/γ[
r1/γ
n − β1/γ

n

]
≤
(
γ log n

)1/γ ·
(
rn − βn

)1/γ
,

from which it follows that

E[Fn]

n1−βn
= 1−Ψ

(
t− µ

)
≥ nβn−rn

Z`
. (S1.4)

Now by applying the Bernstein bound to the binomial random variable Fn,

we have

1− P[E2] = P
[
Fn ≤

E[Fn]

2

]
≤ exp

(
− E[Fn]

12

)
(i)

≤ exp
(
− n1−rn

12Z`

)
(ii)

≤ exp
(
− n1−rmax

12Z`

)
, (S1.5)

where step (i) follows from the lower bound (S1.4), and step (ii) follows

since rn < rmax by assumption.

Case 2: Otherwise, we may assume that rn ∈
(
βn, rmin

)
. In this regime,

we have the lower bound τmin − µ ≥ 0, so that the binomial random vari-
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able Fn stochastically dominates a second binomial distributed as F̃n ∼

Bin
(

1
2
, n1−βn

)
. By this stochastic domination condition, it follows that

1− P
[
E2

]
≤ P

[
Fn ≤

n1−βn

4

]
≤ P

[
F̃n ≤

E
[
F̃n

]
2

]
.

By applying the Bernstein bound to F̃n, we find that

1− P
[
E2

]
≤ exp

(
− n1−βn

24

)
≤ exp

(
− n1−rmax

24

)
, (S1.6)

where the final step follows since rmax > βn.

Putting together the two bounds (S1.5) and (S1.6), we conclude that P[E2] ≥

3
4

for all sample sizes n large enough to ensure that

max
{

exp
(
− n1−rmax

24Z`

)
, exp

(
− n1−rmax

24

)}
≤ 1

4
, (S1.7)

as was claimed. Note that condition (S1.7) is identical to condition (3.18),

so that our definition of nmin guarantees that (S1.7) is satisfied. This com-

pletes the proof.

S1.2 Proof of Lemma S2

It remains to prove our auxiliary result stated in Lemma S2. For notational

economy, let τ = τmin(s) and let β = βn. The FDP at a threshold t can be
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expressed in terms of two binomial random variables

Ln
(
t
)

=
∑
i∈H0

1
(
Xi ≥ t

)
and Wn

(
t
)

=
∑
i/∈H0

1
(
Xi ≥ t

)
≤ n1−β.

Here Ln(t) and Wn(t) correspond (respectively) to the number of nulls, and

the number of signals that exceed the threshold t. In terms of these two

binomial random variables, we have the expression

FDPn(t) =
Ln(t)

Ln(t) +Wn(t)
≥ Ln(t)

Ln(t) + n1−β .

Note that the inequality here follows by replacing Wn(t) by the potentially

very loose upper bound n1−β; doing so allows us to reduce the problem of

bounding the FDP to control of Ln(t) uniformly for t ∈ [0, τ ]. By definition

of Ln(t), we have the lower bound

Ln(t)

Ln(t) + n1−β ≥
Ln(τ)

Ln(τ) + n1−β for all t ∈ [0, τ ].

Moreover, observe that

3s

1 + 3s
≥ 12

5
s ≥ 2s for all s ∈ (0, 1/6).

Combining these bounds, we find that

P
[
FDPn(t) ≥ 2s for all t ∈ [0, τ ]

]
≥ P

[ Ln
(
τ
)

Ln
(
τ
)

+ n1−β ≥
3s

1 + 3s

]
= P

[
Ln(τ) ≥ 3sn1−β].



S1. PROOF OF (4.31)

Consequently, the remainder of our proof is devoted to proving that

P
[
Ln(τ) ≥ 3sn1−β] ≥ 1/2, (S1.8)

where s = 4qn ∈
(
0, 1/6

)
by assumption. We split our analysis into two

cases:

Case 1: First, suppose that qn ≥ 2 log 4
3n1−β In this case, we have

α : = Ψ
(
τ
)
≥ 6s

nβ
>

16 log 4

n
. (S1.9)

A simple calculation based on this inequality yields

αn− 3sn1−β ≥ αn

2
≥
√(

4 log 4
)
α
(
1− α

)
n : = aσ, (S1.10)

where a =
√

4 log 4 and σ =
√
α
(
1− α

)
n. Notice that σ2 = Var [Ln(τ)].

We now apply the Bernstein inequality to Ln(τ) to obtain

P
(
Ln ≤ 3sn1−β) ≤ P

(
Ln ≤ αn− aσ

)
≤ 2 · exp

(
− a2σ2

2
[
σ2 + aσ

])
≤ 2 · exp

(
− a2

2
(
1 + a

σ

)).
≤ exp

(
− a2

4

)
=

1

4
,

where we have used the fact that a < σ. We conclude that

P
(
Ln ≥ 3sn1−β) ≥ 1

2
,

as desired.
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Case 2: Otherwise, we may assume that qn <
2 log 4
3n1−β . The definition of τ

implies that

α ≥ 24

n
and 3sn1−β ≤ 8 log 4.

It follows that E[Ln(τ)] ≥ 24. On the other hand, given that 8 log 4 < 12,

it suffices to prove that

P
[
Ln(τ) ≤ 12

]
≤ 1

2
.

This is straightforward, however, since Bernstein’s inequality gives

P
[
Ln(τ) ≤ 12

]
= P

[
Ln(τ) ≤ E[Ln(τ)]

2

]
≤ exp

(
− 24

12

)
= e−2

<
1

2
,

which completes the proof.

S2 Proof of Lemmas 1 and 2

This appendix is devoted to the proofs of Lemmas 1 and 2 from the main

paper. We combine the proofs, since these two lemmas provide lower and

upper bounds, respectively, on the because they are matching lower and

upper bounds, respectively, on the FNR for a fixed threshold procedure,

and their proofs involve extremely similar calculations.
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So as to simplify notation, we make use of the convenient shorthands

let τ = τmin(qn), β = βn, and µ = µn throughout the proof. Recall that the

FNP can be written as the ratio FNPn(t) = Fn(t)
n1−β , where

Fn(t) =
∑
i/∈H0

1
(
Xi ≤ t

)
∼ Bin

(
1−Ψ

(
t− µ

)
, n1−β

)
(S2.11)

is a binomial random variable. We split the remainder of the analysis into

two cases.

Case 1: First, suppose that τ ≥ µ. In this case, we only seek to prove

a lower bound. For this, observe that Ψ (τ − µ) ≤ Ψ (0) = 1
2
, so 1 −

Ψ (τ − µ) ≥ 1
2
. Thus,

FNRn (τ) =
E [Fn]

n1−β = 1−Ψ (τ − µ) ≥ 1

2
,

as claimed.

Case 2: Otherwise, we may assume that µ > τ . Recall the parameter-

ization (3.13) of µ in terms of r, the definition (3.15) of rmin, and the

definition (3.19) of the Dγ distance. In terms of these quantities, we have

µ− τ =
(
γ log n

)1/γ {
r1/γ − rmin(κn)

}1/γ

=
{
γDγ

(
rmin(κn), r

)
log n

}1/γ

=
[
γDγ

(
β + κn +

log 1
6Z`

log n
, r
)

log n
]1/γ

,
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which shows how the quantity Dγ determines the rate. In order to complete

the proof, we need to show that the additional order of 1
logn

term inside Dγ

can be removed.

More precisely, it suffices to establish the sandwich relation

ζ2β
1−γ
γ

Zu
· n−Dγ(β+κn,r) ≥ 1−Ψ

(
τ − µ

)
≥ ζ2β

1−γ
γ

Z`
· n−Dγ(β+κn,r),

where ζ = max
{

6Z`,
1

6Z`

}
as in (3.24). But now note that

τ − µ =
(
γ log n

)1/γ[(
rmin

)1/γ − r
]

= −
[
γDγ (rmin, r) log n

]1/γ
,

allowing us to deduce that

1

Zu
· n−Dγ(rmin,r) ≥ 1−Ψ

(
τ − µ

)
≥ 1

Z`
· nDγ(rmin,r),

so we need only show

∣∣Dγ (β + κn, r)−Dγ (rmin, r)
∣∣ ≤ β

1−γ
γ log ζ

log n
.

To prove this, we let

r̃ : = min
(
β + κn, rmin

)
and note that by (3.16), we must have r̃ ∈ [β, r]. Under this definition,

we consider the function f(x) = Dγ (r̃ + x, r). A simple calculation shows

that for x ≥ 0, we have

f ′(x) =


−
(
r̃ + x

) 1−γ
γ Dγ (r̃ + x, r)

γ−1
γ if r̃ + x ≤ r,

(
r̃ + x

) 1−γ
γ Dγ (r̃ + x, r)

γ−1
γ o.w.
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We observe that we only need to allow 0 ≤ x ≤ max
(
β + κn, rmin

)
−

r̃ =: R̃ − r̃, so in particular, we will always have r̃ + x ≤ R̃ ≤ 2. This,

together with the lower bound r̃ ≥ β, yields

sup
0≤x≤R̃−r̃

∣∣f ′(x)
∣∣ ≤ 2β

1−γ
γ .

Applying this result, we find

∣∣Dγ (β + κn, r)−Dγ (rmin, r)
∣∣ =

∣∣Dγ

(
R̃, r

)
−Dγ (r̃, r)

∣∣
≤ 2β

1−γ
γ ·

(
R̃− r̃

)
= 2β

1−γ
γ · log ζ

log n
.

If we now consider q′n = cqn, we can recover the more refined statements

in Lemmas 1 and 2, simply by noting that the same reasoning as above

shows

∣∣Dγ (β + κn, r)−Dγ (β + κ′n, r)
∣∣ ≤ 2β

1−γ
γ ·

∣∣ log c
∣∣

log n
,

concluding the argument.

S3 Proof of Corollary 1

Although Corollary 1 can be proved from the statement of Theorem 1, we

instead prove it more directly, as this allows us to reuse parts of the proof

of Lemma 1, thereby saving some additional messy calculations.
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First, we verify that there is indeed a unique solution κ∗ to the fixed

point equation (3.21). Define the function as g(κ) : = Dγ (β + κ, r)1/γ−κ1/γ.

Clearly the solutions to (3.21) are the roots of g. We would like to argue that

any such root must occur in [0, r− β) and that in fact g has a unique root

in this interval. For the first claim, note that g(r − β) = −(r − β)1/γ < 0.

On the other hand, we have

g′(κ) =


− 1
γ

[
(β + κ)−

γ−1
γ + κ−

γ−1
γ

]
if 0 ≤ κ < r − β,

1
γ

[
(β + κ)−

γ−1
γ − κ−

γ−1
γ

]
if κ > r − β.

It is immediately clear that g′(κ) < 0 for 0 ≤ κ < r−β and, since β+κ > κ,

we may also deduce that g′(κ) < 0 for κ > r − β, so g is decreasing on its

domain. Therefore, g(κ) < g(r − β) < 0 for all κ > r − β. We conclude

that any root of g must occur on [0, r − β). To finish the argument, note

that g(0) > 0 > g(r − β), so that g does indeed have a root on [0, r − β).

Turning now to the proof of the lower bound (3.22), let I be an arbitrary

threshold-based multiple testing procedure. We may assume without loss

of generality that

FDRn(I) ≤ min
{
n−κ∗ ,

1

24

}
≤ c(β, γ)n−κ∗ , (S3.12)

Note that we have suppressed the issue of non-differentiability of g at κ = r − β. We may do so

because it is left- and right-differentiable at this point, and we argue separately for the intervals [0, r−β)

and [r − β, ∞).
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where the quantity c(β, γ) ≥ 1 was defined in the statement of Theorem 1

(otherwise, the claimed lower bound (3.22) follows immediately).

Applying the second part of Lemma 1 and defining c̃ = 4c(β, γ) , we

conclude that

FNRn

(
Tn
)
≥

FNRn

(
τmin

(
c̃n−κ∗

))
16

≥
(
c̃ζ
)2β

1−γ
γ

Z`
· n−Dγ(β+κ∗,r)

=

(
c̃ζ
)2β

1−γ
γ

Z`
· n−κ∗

= c′n−κ∗ .

S4 Proof details for Theorem 2

S4.1 Achievability for the BH procedure

In this section, we prove that BH achieves the lower bound whenever rn >

rmin

(
cBHqn

)
. Specifically, we prove the claim (3.26) stated in Theorem 2.

We first show how to derive the upper bound (3.26) from the probability

bound (4.33) and then prove the probability bound itself. Note that since

BH is a valid FDR control procedure, we necessarily have FDRn(tBH) ≤ qn.

To bound the FNR, first let E = {tBH ≤ τmin,BH} and let FNRn(· | E) and

FNRn(· | Ec) denote the FNRn conditional on the event and its complement,
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respectively. In this notation, the bound (4.33), together with Lemma 2,

implies that

FNRn(tBH) ≤ P
(
E
)
· FNRn

(
τmin,BH | E

)
+ P

(
Ec
)

≤ FNRn

(
τmin,BH

)
+ P

(
Ec
)

≤ FNRn

(
τmin,BH

)
+ exp

(
− n1−rmax

24

)
≤ ζ2β

1−γ
γ

n

BH

Zu
· n−Dγ(βn+κn,rn) + exp

(
− n1−rmax

24

)
≤ 2ζ2β

1−γ
γ

n

BH

Zu
· n−Dγ(βn+κn,rn),

where the final step uses the definition (3.23) of nmin,u, and the fact that

1
Zun
≤ ζ

2β

1−γ
γ

n
BH

Zu
·n−Dγ(βn+κn,rn), which is easily verified by noting that ζ2β

1−γ
γ

n

BH ≥

1 and Dγ (βn + κn, rn) ≤ 1.

We now prove the probability bound with an argument using p-values

and survival functions that parallels that of Arias-Castro and Chen (2017)

but that sidesteps CDF asymptotics. To carry out the analysis, we first

study the relationship between the population survival function Ψ and the

empirical survival function Ψ̂, defined by

Ψ̂
(
t
)

=
(
1− 1

nβn

)
· Ψ̂0

(
t
)

+
1

nβn
· Ψ̂1

(
t
)
, (S4.13)

where Ψ̂0

(
t
)

=
1

n− n1−βn

∑
i∈H0

1
(
Xi ≥ t

)
and Ψ̂1

(
t
)

=
1

n1−βn

∑
i/∈H0

1
(
Xi ≥ t

)
.

Now, sort the observations in decreasing order, so that X(1) ≥ X(2) ≥ · · · ≥
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X(n), and define p-values

p(i) = Ψ
(
X(i)

)
and Ψ̂

(
X(i)

)
=
i

n
, (S4.14)

so that p(1) ≤ p(2) ≤ · · · ≤ p(n) are in increasing order. Then, we may

characterize the indices rejected by BH as those satisfying Xi ≥ X(iBH),

where

iBH = max
{

1 ≤ i ≤ n : Ψ
(
X(i)

)
≤ qnΨ̂

(
X(i)

) }
. (S4.15)

Moving tBH within
(
X(iBH+1), X(iBH)

]
if necessary, we may therefore as-

sume Ψ(t) > qnΨ̂(t) whenever t < tBH, and combining this knowledge

with (S4.13), we obtain the chain of inclusions

Ec = {tBH > τmin,BH} ⊂
{

Ψ
(
τmin,BH

)
> qnΨ̂

(
τmin,BH

)}
⊂
{

Ψ
(
τmin,BH

)
>

qn
nβn
· Wn

n1−βn

}
=: Ẽc, (S4.16)

where Wn =
∑

i/∈H0
1
(
Xi ≥ τmin,BH

)
∼ Bin

(
Ψ
(
τmin,BH − µn

)
, n1−βn

)
.

We now argue that Ψ
(
τmin,BH

)
≤ qn

4nβn
, so that P (Ec) ≤ P

(
Ẽc
)
≤

P
(
Wn ≤ n1−βn

4

)
. For this, observe that by the definition of rmin in (3.15)
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and the upper tail bound (2.5), we have

log Ψ
(
τmin,BH

)
≤ −rmin (cBHqn) log n+ log

1

Zu

≤ −βn log n+ log(cBHqn)− log
1

6Z`
+ log

1

Zu

= −βn log n+ log qn + log
6cBHZ`
Zu

= log
qn

6nβn
< log

qn
4nβn

.

We conclude

P (tBH > τmin,BH) ≤ P
(
Ẽc
)
≤ 1− P

(
Wn >

n1−βn

4

)
= P

(
Wn ≤

n1−βn

4

)
.

Finally, by a Bernstein bound, we find

P
(
Wn ≤

n1−βn

4

)
≤ P

(
Wn ≤

E [Wn]

2

)
≤ exp

(
− E [Wn]

12

)
≤ exp

(
− n1−βn

24

)
≤ exp

(
− n1−rmax

24

)
,

where we have used the fact that τmin,BH ≤ µn to conclude that Ψ (τmin,BH − µn) ≥

1
2

and therefore E[Wn] ≥ n1−βn

2
. We have therefore established the required

claim (4.33), concluding the proof of optimality of the BH procedure.
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S4.2 Achievability for the BC procedure

Our overall strategy for analyzing BC procedure resembles the one we used

for the BH procedure. As with our analysis of the BH procedure, we define

τmin,BC := τmin(cBCqn) and derive the bound (3.26) by controlling the algo-

rithm’s threshold as Since the proof of equation (3.27) from the bound (4.34)

is essentially identical to the corresponding derivation for the BH procedure,

we omit it. We now prove the bound (4.34) by an argument somewhat dif-

ferent than that used in analyzing the BH procedure. Define the integers

N+

(
t
)

=
n∑
i=1

1
(
Xi ≥ t

)
and N−

(
t
)

=
n∑
i=1

1
(
Xi ≤ −t

)
.

Then, the definition of the BC procedure gives

tBC = inf
{
t ∈ R :

1 +N−(t)

1 ∨N+(t)
≤ qn

}
.

To prove (4.34), it therefore suffices to show that

P

(
1 +N−(τmin,BC)

1 ∨N+(τmin,BC)
> qn

)
≤ qn + exp

(
− n1−rmax

24

)
. (S4.17)

We prove the bound (S4.17) in two parts:

P
(
1 ∨N+(τmin,BC) <

n1−βn

4

)
≤ exp

(
− n1−rmax

24

)
, (S4.18a)

P

(
1 +N−(τmin,BC) > qn ·

n1−βn

4

)
≤ qn. (S4.18b)

These bounds are a straightforward consequence of elementary Bernstein

bounds, and together they imply the claim (S4.17). We explain them below.



Maxim Rabinovich, Aaditya Ramdas, Michael I. Jordan, Martin J. Wainwright

The lower bound (S4.18a) follows because 1∨N+(τmin,BC) ≥ N+(τmin,BC)

and N+(τmin,BC) is the sum of two binomial random variables, corresponding

to nulls and signals, respectively, and the latter has a Ψ
(
τmin,BC − µ

)
≥ 1

2

probability of success. More precisely, we may write N+ (τmin,BC) = Nnull
+ +

N signal
+ , with

Nnull
+ ∼ Bin

(
Ψ (τmin,BC) , n− n1−βn

)
and N signal

+ ∼ Bin
(
Ψ (τmin,BC − µn) , n1−βn

)
,

implying N+ (τmin,BC) ≥ N signal
+ , whence

E
[
N+(τmin,BC)

]
≥ E

[
N signal

+

]
= n1−βn ·Ψ

(
τmin,BC − µn

)
≥ n1−βn

2
,

where we have used the fact that τmin,BC ≤ µn. With this bound in hand,

a Bernstein bound yields

P
(
N+(τmin,BC) <

n1−βn

4

)
≤ P

(
N+(τmin,BC) ≤ E [N+(τmin,BC)]

2

)
≤ exp

(
− n1−βn

24

)
≤ exp

(
− n1−rmax

24

)
,

as required to prove equation (S4.18a). The proof of equation (S4.18b)

follows a similar pattern. Here, we note that N−(τmin,BC) is a sum of two

binomial random variables, with a total of n trials, such that—using the

definition (3.15) of rmin and the upper bound on the tail (2.5)—each one

has probability of success upper bounded by 1 − Ψ
(
− τmin,BC

)
≤ 6Z`

Zu
·

cBCqnn
−βn = 1

8
· qnn−βn . Formally, we may write N−(τmin,BC) = Nnull

− +
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N signal
− , with

Nnull
− ∼ Bin

(
1−Ψ (−τmin,BC) , n− n1−βn

)
and N signal

− ∼ Bin
(
1−Ψ (−τmin,BC − µ) , n1−βn

)
.

Since 1−Ψ (−τmin,BC − µ) ≤ 1−Ψ (−τmin,BC), we deduce

E
[
N−(τmin,BC)

]
≤
[
1−Ψ (−τmin,BC)

]
· n ≤ qn

2
· n

1−βn

4
.

On the other hand, using the lower bound in (2.5), we find 1 − Ψ
(
−

τmin,BC

)
≥ 6cBCqnn

−βn . Using the additional fact that n − n1−βn ≥ n
2

by (3.14a), we may conclude that

E
[
N−(τmin,BC)

]
≥ E

[
Nnull
−
]

=
(
n− n1−βn

)
·
[
1−Ψ

(
− τmin,BC

)]
≥ n

2
· 6cBCqnn

−βn

≥ 3cBCqnn
1−βn .

By a Bernstein bound, it follows that

P

(
N−(τmin,BC) ≥ qn ·

n1−βn

4

)
≤ P

(
N−(τmin,BC) ≥ 2E

[
N−(τmin,BC)

])

≤ exp

(
−

E
[
N−(τmin,BC)

]
4

)

≤ exp
(
− 3cBC

4
· qnn1−βn

)
≤ qn,

where we have invoked the decay condition (3.25) for the last step.
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S5 Proof of Corollary 2

The corollary is a nearly immediate consequence of Theorem 2. We will

prove it for both algorithms simultaneously. Observe that

rmin(κn(cAq∗)) = β + κ∗ +
log 1

6c∗cAZ`

log n
. (S5.19)

Suppose for now that the decay condition (3.25) holds for q∗ and some

choice of nmin,BC. Then, using (S5.19) and the fact that r > β + κ∗, we

may choose n′min ≥ nmin,BC large enough so that r > rmin(κn(cAq∗)) for all

n ≥ n′min and A ∈ {BH, BC}. From Theorem 2, we conclude that there

exists a constant c′ such that both algorithms satisfy

n ≥ n′min =⇒ Rn ≤ c′n−κ∗ .

By replacing c′ by c̃ = max {c′, (n′min)κ∗} (and recalling Rn ≤ 1 always),

we obtain Rn ≤ c̃n−κ∗ for all n ≥ 1, obtaining the claimed result.

In order to check the decay condition (3.25), note that, as κ∗ ≤ r−β ≤

1− β, we have for sufficiently large n that

qn
log 1

qn

=
n−κ∗

κ∗ log n
≥ 4

3cBC

· n−(1−β),

which completes the proof.
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