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Abstract: Large economic and financial networks may experience stage-wise changes

as a result of external shocks. To detect and infer a structural change, we consider

an inference problem within a framework of multiple Gaussian Graphical Models

when the number of graphs and the dimension of graphs increase with the sam-

ple size. In this setting, two major challenges emerge as a result of the bias and

uncertainty inherent in the regularization required to treat such overparameterized

models. To deal with these challenges, the bootstrap method is utilized to ap-

proximate the sampling distribution of a likelihood ratio test statistic. We show

theoretically that the proposed method leads to a correct asymptotic inference in a

high-dimensional setting, regardless of the distribution of the test statistic. Simu-

lations show that the proposed method compares favorably to its competitors such

as the Likelihood Ratio Test. Finally, our statistical analysis of a network of 200

stocks reveals that the interacting units in the financial network become more con-

nected as a result of the financial crisis between 2007 and 2009. More importantly,

certain units respond more strongly than others. Furthermore, after the crisis, some

changes weaken, while others strengthen.

Key words and phrases: Bootstrap, graphical models, high-dimensional inference,

model selection, regularization.

1. Introduction

In economics, network analyses play a fundamental role in studying consumer

behavior and international trade. In finance, network analyses help to identify

financial contagion and minimize systemic risk, thus preventing future crises

(Diebold and Yılmaz (2015)). However, estimations and inferences involving

large networks often face problems related to high dimensionality (Fan, Fan and

Lv (2008); Fan, Liao and Liu (2016)). For example, exploring a network of

200 stocks involves (2002 + 200)/2 = 20,100 pairwise edges when the sample

size is in the hundreds. In such cases, classical inference approaches become

invalid or break down. Refer to Fan, Lv and Qi (2011) for a discussion on
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the problems high dimensions cause in inferences. Even worse, as the number

of graphs increases with the sample size or the number of nodes in a multiple

graphical model (MGM), which is often used to model networks that experience

stage-wise change as a result of external forces, estimations and inferences become

more difficult. The additional challenges when estimating an MGM, over and

above those of a single graphical model, are studied in Zhu, Shen and Pan (2014);

Cai et al. (2016); Qiu et al. (2016). To respond to these challenges, we develop

inference tools for large stage-wise networks defined by MGMs.

We employ a multiple Gaussian graphical model (MGGM) to model stage-

wise networks. Here, the number of model parameters may greatly exceed the

sample size, and the number of stages may increase with the numbers of nodes

and/or observations. Two major challenges emerge. First, regularization is often

used to treat overparameterized models in a high-dimensional setting, introduc-

ing bias into the estimation and, thus a biased inference. Moreover, the usual

asymptotic approximations for the sampling distribution of a test statistic be-

come inadequate (Jankova and De Geer (2015)). Second, the selection uncer-

tainty inherent in regularization is mathematically intractable, even in a low-

dimensional setting (Zhang and Shen (2015)). For graphical model inferences,

Zhu, Shen and Pan (2016) proposed a maximum likelihood inference approach

for a simple Gaussian graphical model (GGM). Furthermore, they derived the

asymptotic distribution of the constrained likelihood ratio as a chi-square or a

normal distribution, depending on the size of the co-dimension of the inference

space.

In this study, we develop a likelihood ratio inference approach for MGGMs,

where the bootstrap method is utilized to approximate the sampling distribution

of a test statistic in order to account for the bias and selection uncertainty caused

by the regularization. The benefits of this approach are demonstrated numeri-

cally and theoretically. As shown in Theorem 1, the bootstrap likelihood ratio

test is asymptotically valid when the size of graph p grows in an order slightly

smaller than exp(cn), for some small c > 0, in the sample size n. In contrast,

an asymptotic chi-square or normal approximation of the sampling distribution

of the likelihood ratio may work when p is roughly of smaller order of n1/2 (Bai

et al. (2009); Zhu, Shen and Pan (2016)). However, such approximation becomes

inadequate when p is larger, as shown by our simulations in Figures 1–4. In

this sense, the bootstrap method offers an attractive alternative to asymptotic

high-dimensional inferences.

Relatively few studies have applied GGMs within the fields of economics and
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finance. (Fan, Fan and Lv (2008)) developed methods for estimating large co-

variance and precision matrices for economic and financial data. To the best of

our knowledge, the proposed method is the first attempt to infer a large multiple

graphical model, where both the number of graphs and the number of linkages

may increase. Importantly, our method enables us to identify the type, origin,

and evolution of the interactions between nodes. With the help of the proposed

inference method, we examine the impact of the Lehman Brothers bankruptcy on

financial networks by analyzing the historical prices of 200 stocks traded publicly

in the United States between January 1, 2005, and December 31, 2010. In par-

ticular, we investigate the changes in the structure and strength of the network

over time as a result of the Lehman Brothers collapse. We compare our results

with those of Liu, Han and Zhang (2012), who examined a static network of 452

stocks during the boom cycle between January 1, 2003, and January 1, 2008.

As suggested by our analysis, the financial network has experienced profound

changes since the Lehman Brothers bankruptcy. Overall, connectivity becomes

more widespread and strong, although individual sectors exhibit disparate pat-

terns.

The remainder of this paper is organized as follows. Section 2 formulates

the problem and proposes our inference method. The theoretical validity of the

method is proved in Section 3. Section 4 discusses our simulation results, and

Section 5 presents a data analysis. Section 6 concludes the paper.

2. Inference

This section develops a likelihood inference method for large networks based

on MGGMs.

2.1. MGGMs

To model a stock network that experiences stages t = 1, . . . , T , we consider

an MGGM of T graphs (GR1, . . . , GRT ), each of which represents a network at

different stages. For an inference, T independent random samples Y = (Yt)Tt=1

are obtained, where Yt = (Yt
1, . . . ,Y

t
nt

) are nt independent and identically dis-

tributed (i.i.d.) p-dimensional random vectors. Here, Yt
k ∼ N(0,Σt), for 1 ≤

k ≤ nt, where 0 is a p-dimensional zero vector, Σt = (σi,j,t)1≤i,j≤p is a p×p covari-

ance matrix, and the sample size is N =
∑T

t=1 nt. Suppose maxt tr(Σt)/p
2 → 0.

In this case, the precision matrix Ωt = (ωi,j,t)1≤i,j≤p = (Σt)
−1 is the inverse of

the covariance matrix, which has an off-diagonal entry ωi,j,t of zero if and only
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if the nodes i and j are conditionally independent, given all other p − 2 nodes

at time t, for t = 1, . . . , T (Whittaker (1990)). Thus, Ωt uniquely encodes an

undirected graph at t, for t = 1, . . . , T . Both the number of stages T and the

number of nodes p are allowed to increase.

We suppose the sample mean Ȳt = n−1t
∑nt

k=1 Yt
k = 0 (t = 1, . . . , T ). The

sample covariance matrix of stage t is defined as St = n−1t
∑nt

k=1(Y
t
k)(Y

t
k)
′, and

Ωt is a positive-definite and symmetric p × p matrix, for t = 1, . . . , T . Let

Ztk = Ω
1/2
t Yt

k. Then, Ztk ∼MVN(0, Ip), where Ip is a p× p identity matrix and

‖Ztk‖22 ∼ χ2
p.

Our goal is to infer whether a network stays the same across all T stages. To

achieve this, we approximate the test statistic, which is based on the logarithm

of the likelihood ratio, by bootstrapping. Then, we establish its theoretical va-

lidity in the high-dimensional case, in which regularization is imposed to achieve

sparsity, thus introducing bias to the inference.

In the low-dimensional case, the precision matrix is estimated by minimizing

the negative log-likelihood or the empirical loss function L(S; G)

L(S; G) = tr(SG)− log det(G) (2.1)

over G, which is positive-definite for a given sample covariance matrix S, which

may be singular. In the context of MGMs in the high-dimensional case (i.e., large

p), the negative log-likelihood is often regularized, collectively or individually, to

yield a unique solution for the overparameterized model:

C(G1, . . . ,GT ) =

T∑
t=1

nt
(
L(St; Gt) + F υλ (Gt)

)
, (2.2)

where L(St; Gt), the negative log-likelihood, is the empirical loss function, and

F υλ (Gt) is a penalty regularizing (G1, . . . ,GT ). Here, we consider the following

L1 (υ = 1) and L2 (υ = 2) penalties: (1) F 1
λ (Gt) = λ‖Gt‖1 = λ

∑
i,j |gi,j,t|; (2)

F 2
λ (Gt) = λ‖Gt‖2F = λ

∑
i,j g

2
i,j,t. Third, the optimal choice of the regulariza-

tion parameters for an inference may depend on the sample size, which must be

estimated from the data. Here, we adopt λ =
√

log p/n (Jankova and De Geer

(2015); Zhang and Zhang (2014)) for the L1-regularization (i.e., graphical Lasso

(GLasso)) to guard against introducing an overly large bias in the pursuit of spar-

sity. The penalized maximum likelihood estimate (Ω̂1, . . . , Ω̂T ) is then defined

as argminG1,...,GT
C(G1, . . . ,GT ).
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2.2. Inference

High-dimensional inferences may involve hypothesis testing, the construction

of confidence intervals or regions, and the derivation of sampling distributions.

In our case study, the number of unknown parameters (p2 + p)T/2 = 60,300

(p = 200, T = 3) is much greater than the grand sample size N = 750 (n1 =

n2 = n3 = 250), which imposes several challenges. First, an asymptotic approxi-

mation is usually inadequate in a context of “large p, but small n,” which could

lead to a biased inference. Second, a form of regularization is often necessary for

estimation, which undoubtedly introduces bias and selection uncertainty to an

inference, particularly when L1-regularization is employed. This is analogous to

the problem often encountered in inferences after model selection (Efron (2014);

Zhang and Shen (2015)), which, as expected, yields highly biased inferences, ei-

ther optimistically or pessimistically, depending highly on whether the parameter

of interest is included in the final model after regularization. To deal with these

challenges, we use the bootstrap method to provide an alternative. As such, we

do not need to derive asymptotic approximations as part of the inference, but

can still account for the effect of the bias and selection uncertainty caused by

regularization.

Our bootstrap procedure proceeds as follows:

Step 1: Draw B bootstrap samples (Y ∗1 , . . . ,Y
∗
B) from the original sample

Y under H0.

Step 2: Derive the estimates of the precision matrices, Ω̂0∗
t,b and Ω̂1∗

t,b, under

H0 and H0
⋃
Ha by minimizing (2.2) based on Y ∗b (b = 1, . . . , B; t = 1, . . . , T )

for a preselected regularization coefficient λ.

Step 3: The original test statistic is

D =
1

Np2

∑
t

(
ntL(St; Ω̂

0
t,b)− ntL(St; Ω̂

1
t,b)
)
, (2.3)

and the bootstrapping test statistic is

D∗b =
1

Np2

∑
t

(
ntL(S∗t ; Ω̂

0∗
t,b)− ntL(S∗t ; Ω̂

1∗
t,b)
)
. (2.4)

An inference is made based on the empirical distribution of the B bootstrapped

test statistics {D∗1, . . . , D∗B}. The null hypothesis H0 is rejected when D > q∗1−α,

with a Type-I error at α, where q∗1−α is the (1 − α) percentile of {D∗1, . . . , D∗B}.
For this test, the P-value is #{D∗b > D}/B (Shao and Tu (1995, Sec. 4.5)).

Next, we discuss some of the steps in greater detail.

Consider the null hypothesis H0 : Ω1 = · · · = ΩT versus its alternative, Ha :
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H0 is not true. There are T (p2+p)/2 parameters and (T−1)(p2+p)/2 constraints

involved in H0. This is a composite test; thus, all parameters are regularized.

Our bootstrap method generates B bootstrap samples (Y ∗1 , . . . ,Y
∗
B) of size N

from the combined sample Y = (Y1, . . . ,YT ) under H0 : Ω1 = · · · = ΩT .

Under H0, Ω̂0∗
b is obtained from the combined bootstrap sample Y ∗b , which is

an N × p matrix, and the negative log-likelihood; that is, the loss is L(S∗b ; Ω̂
0∗
b ),

where S∗b = (1/N)(Y ∗b )′Y ∗b . To calculate the likelihood under H0
⋃
Ha, partition

Y ∗b into T disjoint subsamples Y∗1b , . . . ,Y
∗T
b of size n1, . . . , nT , and derive the

negative log-likelihood L(S∗t,b; Ω̂
1∗
t,b), where Ω̂1∗

t,b is the estimated precision matrix

based on S∗t,b = (1/nt)(Y
∗t
b )′(Y∗tb ), for t = 1 . . . , T ; b = 1, . . . , B.

For a global inference of a single precision matrix, the log-likelihood ratio

converges to a chi-square distribution (Zhu, Shen and Pan (2016)) when the

co-dimension of the test is fixed. However, when the co-dimension varies with

the sample size n, the log-likelihood ratio can be approximated by a normal

distribution (Zhu, Shen and Pan (2016)), provided that the rate of growth of the

co-dimension is not too fast. As shown in our simulations, the likelihood ratio

cannot be well approximated by either the chi-square or the normal distribution

in a high-dimensional setting. In this sense, the bootstrap method becomes

attractive. Note that our method allows T and p in the MGGMs to increase

with the sample size. In contrast, the usual asymptotic chi-square approximation

breaks down for a global inference, whereas the bootstrap method continues

to work, as illustrated in Figure 8. Finally, the proposed method is justified

theoretically in Section 3, and demonstrated numerically in Section 4.

3. Theory

The validity of our procedure is summarized in the following theorem. The-

orem 1 establishes a consistency result for the sampling distribution of boot-

strapped likelihood ratios.

The empirical loss function L(S; G), as a function of a positive definite and

symmetric matrix G, is convex. Its expectation h(G) = EL(S; G) = tr(Σ; G)−
log det(G) is also convex for a positive-definite p×p matrix G, and h(G) achieves

a minimum at Ω, which is the true precision matrix.

Next, we establish the closeness between the likelihood ratio test statistic and

its bootstrapped version, where the precision matrices are both estimated using

the GLasso method with the regularization parameter λ =
√

log p/n, in terms

of the Mallows’ distance (Bickel and Freedman (1981); Shao and Tu (1995)).
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Theorem 1 (Distribution of bootstrapped penalized likelihood ratios). Let (Y1,

. . . , Yn) be a random sample from the multivariate normal distribution MVN(0,

Σ), where 0 is a p-dimensional vector of zeros and the p × p covariance matrix

Σ = Ω−1 is positive-definite. Suppose Y = 0. Let (Y∗1, . . . ,Y
∗
n) be a boot-

strapping random sample from (Y1, . . . ,Yn). Let S = (1/n)
∑n

k=1 YkY
′
k and

S∗ = (1/n)
∑n

k=1 Y∗k(Y
∗
k)
′. Suppose p−2 tr Σ, λ, and p−1 log(1/λ) all converge

to 0 as n→∞. Let

Ω̂ = argminΩ

(
L(S; Ω) + F 1

λ (Ω)
)
; (3.1)

Ω̂∗ = argminΩ

(
L(S∗; Ω) + F 1

λ (Ω)
)
. (3.2)

Then, the scaled L1 Mallows’ distance between L(S; Ω̂) and L(S∗; Ω̂∗)

1

p2
d1
(
L(S; Ω̂),L(S∗; Ω̂∗)

)
→ 0, almost surely. (3.3)

Theorem 1 implies that the (conditional) distribution of the bootstrap test

statistic (2.4) converges to the distribution of the original test statistic (2.3),

almost surely. In establishing convergence, no assumption is imposed about the

asymptotic distribution of the test statistics. Furthermore, we do not require

sparsity of the true precision matrix Ω, which can be dense. In addition, the

trace of Ω is allowed to go to infinity at a higher order of p, say tr(Ω) = O(p2).

Theorem 1 states that the bootstrapped test statistic is distributed in the

same way as the sampling distribution of the original test statistic in a high-

dimensional setting (both p and T →∞). In other words, the bootstrap method

continues to work, even when regularization is imposed, as long as a certain

condition is met for the penalty functions. The proof of Theorem 1 is presented

in the Supplementary Material.

4. Simulations

This section presents the simulation studies to examine the operating char-

acteristics of the proposed method with respect to detecting changes in struc-

ture/strength.

Three methods are compared:

• Original Likelihood Ratio Test: This method is only examined for the

case p < n. The precision matrix is estimated by inverting the sample

covariance matrix. A chi-square test is employed, and the degrees of freedom

is set as the number of constraints in the hypotheses.

• Penalized Likelihood Ratio Test: The precision matrix is estimated
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using the GLasso method (Friedman, Hastie and Tibshirani (2008)), where

the penalty coefficient is set as λ =
√

log p/n (Jankova and De Geer (2015)).

A chi-square test is employed, and the degrees of freedom is set as the

number of constraints in the hypotheses.

• Bootstrapped Penalized Likelihood Ratio Test: The precision ma-

trix is estimated using the GLasso method in each bootstrapped sample,

where the penalty coefficient is set as λ =
√

log p/n (Jankova and De Geer

(2015)). The test is performed following the proposed procedure, described

in Section 2. The bootstrap size B is set to 1,000.

Several simulation examples are examined. In each example, 100 replications

are performed. Them, we compare the averaged empirical nominal levels and the

rejection rates at α = 0.05.

Consider a network of p nodes, with T = 4 stages. A random sample of

size n1 = · · · = nT = n is generated according to the Gaussian graphical model

introduced at the beginning of Section 2.1. In all examples, we test H0 : Ω1 =

Ω2 = Ω3 = Ω4 versus Ha : H0 is not true.

4.1. Performance comparison under H0

Example 1. The following cases are considered: n = 100 and p = 5, 10, 20, 30,

40, 50, 100, 200. We set Ω1 = Ω2 = Ω3 = Ω4, with ωi,j,1 = ωi,j,2 = ωi,j,3 =

ωi,j,4 = 0.5|i−j|, for 1 ≤ i, j ≤ p.

Example 2. The parameters (n, p, T ) are the same as those in Example 1.

However, Ω1 = Ω2 = Ω3 = Ω4, and ωi,j,t = 0.4 as |i − j| = p − 1, and zero,

otherwise, for t = 1, 2, 3, 4; 1 ≤ i, j ≤ p.

As shown in Table 1 (Example 1), the Type-I error of the bootstrapped test

statistic is close to or below the nominal level under H0. The penalized LR

test and penalized bootstrap LR test exhibit similar performance, whereas the

original LR test does not perform well as p ≥ 10. Prior studies have shown that

the chi-square approximation fails even when p2 is of the same order as that of

n Bai et al. (2009); Zhu, Shen and Pan (2016).

As shown in Table 2 (Example 2), all four precision matrices are the same

and sparse. The results are similar to those of Example 1, although the penalized

LR and Bootstrapped penalized LR tests perform slightly better than they do in

Example 1, where the precision matrix is dense.
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Table 1. Example 1: Proportions of rejections based on 100 simulation replications with
T = 4. Ω1 = Ω2 = Ω3 = Ω4 and ωi,j,t = 0.5|i−j|; t = 1, 2, 3, 4; 1 ≤ i, j ≤ p. Three
methods are compared: the original likelihood ratio test, penalized likelihood ratio test,
and penalized bootstrapped likelihood ratio test.

parameters penalized Lr original Lr bootstrap Lr
n p Empirical level Rej Empirical level Rej Empirical level Rej

100 5 0.522 0.03 0.422 0.05 0.442 0.04
100 10 0.821 0 0.377 0.12 0.495 0.03
100 20 0.999 0 0.087 0.63 0.498 0.01
100 30 1 0 0.002 0.99 0.55 0
100 40 1 0 0 1 0.563 0
100 50 1 0 0 1 0.544 0
100 100 1 0 NA NA 0.368 0
100 200 1 0 NA NA 0.227 0

Table 2. Example 2: Proportions of rejections based on 100 simulation replications with
T = 4. Ω1 = Ω2 = Ω3 = Ω4 and ωi,j,t = 0.4 as |i − j| = p − 1 and zero otherwise;
t = 1, 2, 3, 4; 1 ≤ i, j ≤ p. Three methods are compared: the original likelihood ratio
test, penalized likelihood ratio test, and penalized bootstrapped likelihood ratio test.

parameters penalized Lr original Lr bootstrap Lr
n p Empirical level Rej Empirical level Rej Empirical level Rej

100 5 0.661 0.01 0.455 0.07 0.517 0.01
100 10 0.954 0 0.367 0.08 0.633 0.01
100 20 1 0 0.083 0.62 0.783 0
100 30 1 0 0.001 1 0.88 0
100 40 1 0 0 1 0.94 0
100 50 1 0 0 1 0.961 0
100 100 1 0 NA NA 0.986 0
100 200 1 0 NA NA 0.958 0

4.2. Performance comparison under Ha

Example 3. Let Ω1 = Ω2 6= Ω3 = Ω4, where all diagonal elements are ones.

ωi,j,1 = ωi,j,2 = 0.4 as |i − j| = 1, and zero otherwise; ωi,j,3 = ωi,j,4 = 0.4 as

|i− j| = 2, and zero otherwise, for 1 ≤ i, j ≤ p.

Example 4. Let Ω1 = Ω2 6= Ω3 = Ω4, where all diagonal elements are ones,

and ωi,j,1 = ωi,j,2 = 0.5|i−j| and ωi,j,3 = ωi,j,4 = 0.2|i−j|, for 1 ≤ i, j ≤ p.

The precision matrix is denser than that in Example 3, and thus brings more

challenges.

As shown in Table 3 (Example 3), the proposed method achieves high power

in that H0 is rejected in all cases when H0 is not true.
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Table 3. Example 3: Proportions of rejections based on 100 simulation replications with
T = 4. Ω1 = Ω2 6= Ω3 = Ω4: All diagonal elements are ones. ωi,j,1 = ωi,j,2 = 0.4 as
|i − j| = 1, and zero otherwise; ωi,j,3 = ωi,j,4 = 0.4 as |i − j| = 2, and zero otherwise;
1 ≤ i, j ≤ p. Three methods are compared: the original likelihood ratio test, penalized
likelihood ratio test, and penalized bootstrapped likelihood ratio test.

parameters penalized Lr original Lr bootstrap Lr
n p Empirical level Rej Empirical level Rej Empirical level Rej

100 5 0 1 0 1 0 1
100 10 0 1 0 1 0 1
100 20 0 1 0 1 0 1
100 30 0 1 0 1 0 1
100 40 0 1 0 1 0 1
100 50 0 1 0 1 0 1
100 100 1 0 NA NA 0 1
100 200 1 0 NA NA 0 1

With denser precision matrices, all three approaches lost power at different

measures, as shown in Table 4 (Example 4). In particular, the penalized LR

test rejects H0 with proportion 33% when p ≥ 20, and with proportion 0% when

p ≥ 30. The bootstrap LR test rejects H0 with proportion close to 100% (above

95% in all cases).

Overall, the bootstrapped log-likelihood ratio test performs well in that it

yields high power, while keeping the Type-I error under control at the nominal

level.

Finally, we examine the distribution of the test statistic (2.3) in Examples 1

and 2, where the precision matrix is estimated by inverting the sample covariance

matrix. As shown in Figures 1–4, the distribution of D may not be chi-square

or normal. Evidently, the test statistic is quite different to the chi-square distri-

bution with degrees of freedom (p2 + p)(L− 1)/2, which suggests that the Wilks

test is no longer valid.

We also studied the case where the precision matrix is estimated using the

GLasso method and an approximation using a normal or chi-square distribution

still falls apart. The corresponding Q–Q plots are not included. Note that the

test statistic (2.3) estimated using the GLasso method may give negative values;

this case is not presented here.

In summary, the proposed procedure achieves high power under the nominal

level and shows advantages over other methods.
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Figure 1. The Q-Q plots of test statistics of 100 independent repetitions as of Example
1 under H0 : Ω1 = · · · = Ω4 holds. The precision matrix is estimated by by inverting
the sample covariance matrix. In the chi-square Q-Q plots, the degrees of freedom are
determined by the number of constraints, (p2 + p)(T − 1)/2.
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Figure 2. The Q-Q plots of test statistics of 100 independent repetitions as of Example
1 under H0 : Ω1 = · · · = Ω4 holds. The precision matrix is estimated by by inverting
the sample covariance matrix.
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Figure 3. The Q-Q plots of test statistics of 100 independent repetitions as of Example
2 under H0 : Ω1 = · · · = Ω4 holds. The precision matrix is estimated by by inverting
the sample covariance matrix. In the chi-square Q-Q plots, the degrees of freedom are
determined by the number of constraints, (p2 + p)(T − 1)/2.
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Figure 4. The Q-Q plots of test statistics of 100 independent repetitions as of Example
2 under H0 : Ω1 = · · · = Ω4 holds. The precision matrix is estimated by inverting the
sample covariance matrix.
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Table 4. Example 4: Proportions of rejections based on 100 simulation replications
with T = 4. Ω1 = Ω2 6= Ω3 = Ω4: All diagonal elements are ones. ωi,j,1 = ωi,j,2 =
0.5|i−j|; ωi,j,3 = ωi,j,4 = 0.2|i−j|; 1 ≤ i, j ≤ p. Three methods are compared: the
original likelihood ratio test, penalized likelihood ratio test, and penalized bootstrapped
likelihood ratio test.

parameters penalized Lr original Lr bootstrap Lr
n p Empirical level Rej Empirical level Rej Empirical level Rej

100 5 0.003 0.99 0.001 1 0.002 1
100 10 0.002 0.99 0 1 0 1
100 20 0.181 0.33 0 1 0.001 0.99
100 30 0.956 0 0 1 0.001 1
100 40 1 0 0 1 0.005 0.98
100 50 1 0 0 1 0.011 0.96
100 100 1 0 NA NA 0.019 0.99
100 200 1 0 NA NA 0.018 1

5. Financial Network Inference

This section investigates the effect of the Lehman Brothers bankruptcy on a

network of 200 publicly traded stocks. As in the foregoing discussion, a network

is described by the corresponding precision matrix. Let Ω1, Ω2, and Ω3 be the

precision matrices corresponding to the three phases. Of particular interest are

the changes in the financial networks over three periods: pre-crisis, crisis, and

post-crisis.

5.1. Background

As described in the introduction, we extract log-returns of daily adjusted

closing prices of 200 US stocks for the period January 1, 2005 to December 31,

2010; see Table 5.

The top 20 of the p = 200 stocks by market capitalization, as of Decem-

ber 31, 2010, are selected from each of 10 sectors: basic industries, consumer

durables, consumer nondurables, consumer services, energy, finance, health care,

public utilities, technology, and transportation (http://www.nasdaq.com). Each

sector is divided further into several industries. For example, the finance sector

comprises three major industries: major banks, investment banks, and insurance.

The energy sector is composed of oil and gas production, consumer electronics,

and other industries.

Three periods (T = 3) are considered: Pre-crisis (1/1/2005–12/31/2005):

before the Lehman Brothers collapse; Crisis (7/1/2008–6/30/2009), the period

http://www.nasdaq.com
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Table 5. Stock list from 10 sectors.

Basic PG DOW DD MON PCP ECL PX APD PPG GLW
Industries SCCO IP VMC NUE CHD SRCL EMN IFF LEN NEM
Consumer BA UTX HON LMT DHR TMO F GD RTN CAT
Durables NOC ILMN DE ROP PCAR APH SWK A PH ROK

Consumer KO PEP MO NKE RAI MDLZ CL GIS EL STZ
Non-Durables MNST K VFC SYY HRL ADM TSN HSY CAG CPB
Consumer AMZN WMT DIS HD CMCSA MCD SBUX COST LOW SPG
Services TWX FOX TJX NFLX TGT PSA CCL AMT KR FOXA
Energy XOM GE CVX OXY COP EOG VLO EMR HAL BHI

APC PXD CMI APA NBL NOV CAM HES TSO DVN
Finance WFC JPM BAC C AIG USB GS AXP BLK MS

MET PNC BK SCHW COF TRV PRU CME MMC BBT
Healthcare JNJ PFE MRK MDT GILD AMGN AGN UNH BMY CVS

LLY MMM CELG BIIB ABT REGN ESRX MCK AET ALXN
Public T VZ DUK NEE SO D AEP EXC PCG WM
Utilities SRE PPL PEG ED EIX XEL LVLT WEC RSG WMB

Technology AAPL MSFT ORCL INTC IBM CSCO QCOM TXN EMC ADBE
ADP CTSH ITW YHOO ATVI INTU EA FISV CERN AMAT

Transportation UPS UNP FDX LUV CSX NSC CHRW ALK EXPD JBHT
KSU JBLU ODFL GWR LSTR HA WERN AIRM HTLD BCO

during which Lehman Brothers filed for bankruptcy; and Post-crisis (1/1/2010–

12/31/2010), the recovery after the Lehman Brothers collapse. Accordingly, a

network is assumed to be constant within each period, with nt = 250 (t = 1, 2, 3)

observations.

Our preliminary analysis of the sample covariance/correlation matrices of

each of the three periods suggests that the pairwise correlations of these stocks

became strong during the crisis period, but weak in the other two periods, owing

to the effect of dominant systemic factors, such as market panic. However, it

remains unclear how the pairwise associations may behave after the effects of

systemic or common factors are removed. To make a formal inference, we em-

ploy MGGMs with three periods. This seems appropriate in that the normality

assumption is approximately satisfied, as indicated by the Q–Q plots in Figure 5.

MGGMs are used to model pairwise conditional dependencies, where each

stock corresponds one node in a graph at one time point; that is, a lack of a

connecting edge between two nodes implies pairwise independence, conditioning

on all other p− 2 nodes (Lauritzen (1996)). Furthermore, the strength and sign

of a pairwise conditional dependency between two nodes, given all other p − 2

nodes, is measured by the partial correlation coefficient in a GGM (Whittaker

(1990)). Roughly, “conditioning on all other p− 2 nodes” can be interpreted as

“conditioning on the overall performance of all these stocks,” or in some sense,

“conditioning on the macroeconomic environment.” Of particular interest is es-
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Figure 5. Q-Q plots of log return of daily closing prices of twenty stocks.
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− − − − −

Figure 6. Estimated network of all sectors by graphical Lasso from 200 stock’s log return
of daily closing prices during three periods. The nodes are colored according to their
sectors.

tablishing how the network structure evolves after 2005 by inferring an MGGM.

First, we test whether the financial network remains the same across the three

periods, which is an example of a global inference in a high-dimensional set-

ting. Second, we study how the linkage between two specific stocks, such as an

investment bank and a retail bank, evolves.

The precision matrices are estimated using the GLasso method (Friedman,

Hastie and Tibshirani (2008)) for each period. In the following graphs, the size

of a vertex denotes the estimated conditional (or partial) variance (Whittaker

(1990)) of each stock, and an edge denotes an estimated partial correlation coef-

ficient (Whittaker (1990)) with an absolute value above 0.1.

5.2. Major findings

We perform a global hypothesis test to determine whether our financial net-

work became more interconnected after the Lehman Brothers collapse.

As shown in Figure 6, the pre-crisis node size is larger than those of the

following two periods, indicating that the conditional variance of most stocks

decreased during the crisis and post-crisis periods owing to increasing correlations

between the 200 stocks. Consequently, the systemic risk plays a more dominant

role in financial risk during recessions. Moreover, as displayed in Figure 6, the

pre-crisis period differs from the other two periods. There are many small and

pure sub-communities in the pre-crisis period, which implies that the connections

occur mainly between stocks of the same sector, whereas inter-sector linkages are

rare and weak. Strong intra-sector linkages exist in just four sectors: public

utilities (gray), energy (cyan), finance (magenta), and capital goods (red), which
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Figure 7. Estimated network of the Finance sector by graphical Lasso from 200 stock’s
log return of daily closing prices during three periods.

are more or less related to raw materials and infrastructure. During the crisis

and post-crisis periods, one large diversified community is formed, in addition

to several small sub-communities. Thus, strong inter-sector connections occur

much more frequently during a period of economic contraction.

Finally, note that in the post-crisis period, the economy is expanding and

the stock market is a bull market; however, the topological structure is similar

to that of the crisis era, but significantly different to that of the pre-crisis era.

Next, we perform the hypothesis tests at a significance level α = 0.05 using

the method developed in Section 2, with B = 1,000 for the bootstrap. Consider

a null hypothesis of no changes, H0 : Ω1 = Ω2 = Ω3, versus its alternative,

Ha : not H0. The p-value for this test is 0.000; thus H0 is rejected in favor of

the hypothesis that a change has occurred. To further identify where a change

occurs, consider a simultaneous test for three hypotheses: H0 : Ω2 = Ω3 versus

Ha : Ω2 6= Ω3, to determine whether a change occurs after period two; H0 :

Ω1 = Ω3 versus Ha : Ω1 6= Ω3; and H0 : Ω1 = Ω2 versus Ha : Ω1 6= Ω2. The

corresponding empirical nominal levels are 0.000, 0.000 and 0.000, respectively.

After adjusting for multiplicity, all three tests are simultaneously rejected at

the overall level of 0.05. Therefore, the bankruptcy event affects the post-crisis

period and the recovery period, because the financial network’s structure varies

significantly.

Next we focus on two sectors, namely, finance and energy.

As shown in Figure 7, the finance section is more fragmented in a boom-

ing economy than it is in a recession. The pre-crisis period includes two major

sub-communities: “major banks,” including WFC, BAC, and BK, among oth-

ers, and “insurance,” including MMC, PRL, and AIC, among others. However,
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Figure 8. Estimated network of the Energy sector by graphical Lasso from 200 stock’s
log return of daily closing prices during three periods.

the investment banks are well separated from these communities. As the crisis

unfolded and Lehman Brothers filed for bankruptcy in September, 2008, almost

all banks merged into a single network. When the economy entered the recovery

period in 2010, the insurance industry and major banks broke up again, but some

investment banks connected with major banks, forming a larger sub-community.

Before the financial crisis of 2007-2009, investment banks, including Lehman

Brothers, raised capital and invested much as other major banks did. However,

by avoiding regulation, they were able to over-leverage, thus exacerbating the

system-wide contagion. During the financial crisis, however, the pure investment

banks had to transform themselves to bank holding companies (BHC) in order

to obtain government bailout money, and their BHC status means they are now

subject to the additional oversight. Because these investment banks restructured

their assets and have to act under stricter scrutiny by the government, they are

being forced to operate as full-service banks. Thus, investment banks began to

correlate with major banks.

In all three phases, as displayed in Figure 8, there is always a large sub-

community comprising “oil and natural gas production” companies, in addition

to some small sub-communities and isolated points for the other industries. Un-

doubtedly, the major driving force in energy is the crude oil price, which leads

to strong intra-sector correlation, regardless of the macroeconomic performance.

In contrast to the finance sector, the energy sector was not affected by reorgani-

zation.
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5.3. Conclusion

The financial network has experienced a substantial transition, and the level

of connectivity has increased and intensified significantly since the Lehman Broth-

ers collapse. In a booming economy, sectorial factors mainly drive price move-

ments, which means inter-sector connections seldom happen. In a financial crisis,

two types of schemes contribute to the expansion and intensification of both intra-

and inter-sector connections: systemic factors, and partial correlation coefficients.

However, the partial correlation coefficients of the stocks of some sectors, such

as Energy, do not change as other sectors do. When the economy recovered in

the wake of the Lehman Brothers bankruptcy, the network did not return to its

pre-crisis status. The Lehman Brothers collapse has deeply affected the network,

because far-ranging and extreme financial and monetary measures have been im-

posed by the government on the stock market, especially for stocks in the finance

sector.

6. Discussion

Globalization and the advancement of information-sharing technology have

resulted in financial markets and institutions merging into a large network, which

presents challenges to all aspects of risk management and policy-making. Infer-

ences on large networks are becoming increasingly important as the financial sys-

tem becomes characterized by greater connectivity and complexity, particularly

when the network structure experiences sharp changes and exhibits stage-wise

patterns owing to unexpected external shocks. Today, graphical models provide

new ways of dealing with these challenges.

The proposed inferential tools allow us to study how the financial network

evolved over three periods (i.e., pre-crisis, crisis, and post-crisis), based on daily

prices of 200 stocks from 10 sectors. We justify theoretically that the bootstrap

approximation of the sampling distribution is valid in a high-dimensional setting

where the number of stages T and the number of nodes p increase with the sample

size. Using simulations, we demonstrate that the proposed method compares

favorably to its competitors in terms of Type-I and Type-II errors. To make the

proposed method useful in practice, further investigation is necessary.

Supplementary Material

The proof of Theorem 1 is presented in the online Supplementary Material.
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