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Abstract: The rapid development of social networks has resulted in an increase in

the use of the spatial autoregression model with covariates. However, traditional

estimation methods, such as the maximum likelihood estimation, are practically

infeasible if the network size n is very large. Here, we propose a novel estimation

approach, that reduces the computational complexity from O(n3) to O(n). This

approach is developed by ignoring the endogeneity issue induced by network de-

pendence. We show that the resulting estimator is consistent and asymptotically

normal under certain conditions. Extensive simulation studies are presented to

demonstrate its finite-sample performance, and a real social network data set is

analyzed for illustration purposes.
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1. Introduction

A social network is a collection of nodes (i.e., actors) and the associated

social relationships (Snijders (2011)). These relationships can be based on, for

example, friendship, kinship, common interests, or influence. Social network

data and modeling are important for a number of reasons. First, these has been

a proliferation of social networks, such as Facebook (www.facebook.com) and

Sina Weibo (www.weibo.com), during the past decade. As a result, social network

data are becoming increasingly available, and their associated commercial value is

significant. Second, social network modeling is important because social network

data are typically associated with complex dependence relationships, which pose

serious challenges for traditional modeling techniques. Thus, several approaches

have been developed to model such data. These include, but are not limited to,

the exponential random graph model (Holland and Leinhardt (1981)), stochastic

block model (Wang and Wong (1987); Nowicki and Snijders (2001)), and latent

space model (Hoff, Raftery and Handcock (2002); Sewell and Chen (2015)).
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In this study, we explore a specific type of statistical model used in net-

work data analyses. The model can be viewed as a natural combination of

two components. The first is the traditional linear regression model (Draper

and Smith (1998)), and the second is the popular spatial autoregression (SAR)

model (Ord (1975)). The linear regression component handles traditional covari-

ate information, which is typically specific to each node, and is referred to as

nodal information. If each node represents a user, then the nodal information

(i.e., the covariates) could be, for example, the user’s gender, age, educational

background, or other demographic characteristics. The SAR component handles

network dependence, and relates the response of one node to the responses of its

connected neighbors. Thus, this model can handle both traditional covariates

and network dependence in a convenient manner (Anselin (1988); Lee (2004)).

SAR models can also be applied in fields other than social networks, including

real estate (Dubin, Pace and Thibodeau (1999); Osland (2010)), crime incidents

(Kakamu, Polasek and Wago (2008)), and geospatial data (Chawla et al. (2001)).

The maximum likelihood estimator (MLE) can be used to estimate a SAR

model with covariates (Smirnov and Anselin (2001); Lee (2004)). However, to

compute the MLE, the determinant of an ultrahigh-dimensional matrix also needs

to be computed. The matrix is of the same size as the network, which renders the

computational cost extremely high for large-scale social networks. LeSage and

Pace (2009) developed approximate algorithms to improve the computational

speed. The resulting estimator performs well if the network size is not too large

(e.g., no more than 500). However, its performance deteriorates considerably as

the network size increases (e.g., more than 5,000). Thus, a more computational

efficient estimation procedure for the SAR model with covariates is required.

To this end, we propose a novel method. Our method is motivated by empir-

ical studies, in which the estimated network autocorrelation is practically small

(Chen, Chen and Xiao (2013); Zhou et al. (2017)). Thus, the endogeneity issue

induced by network dependence can probably be ignored. This assumption leads

to a naive least squares estimator (NLSE). We show that the NLSE is consistent

and asymptotically normal under certain conditions. Extensive simulation stud-

ies are presented to demonstrate its finite-sample performance and a real Sina

Weibo data set is analyzed for illustration purposes.

The remainder of the article is organized as follows. Section 2 introduces

the naive least squares method and delineates the asymptotic properties of the

corresponding NLSE. The numerical studies, including the simulation studies

and real-data analysis, are presented in Section 3. Section 4 concludes the paper.



A NAIVE LEAST SQUARES METHOD FOR SAR 655

All technical details are relegated to the Supplementary Material.

2. The Methodology

2.1. Model setup

Assume a network with n nodes, indexed by 1 ≤ i ≤ n. Define aij = 1

if node i follows node j, and 0 otherwise. We do not allow any node to follow

itself directly. Thus, we require aii = 0 for any 1 ≤ i ≤ n, which leads to the

n × n adjacency matrix A = (aij) ∈ Rn×n. Its row-normalized version is given

by W = (wij) ∈ Rn×n, with wij = aij/d
out
i , where dout

i =
∑

j aij is the nodal

out-degree of node i. Correspondingly, we denote din
i =

∑
j aji as the nodal in-

degree of node i (Snijders (2011)). Consider, for example, a Twitter-type social

network. In this case, the nodal in-degree measures the focal node’s popularity,

whereas the nodal out-degree reflects how active it is.

For each node, we assume a continuous response Yi ∈ R1 and an associated p-

dimensional predictor Xi = (Xi1, . . . , Xip)
> ∈ Rp, where p is a fixed number. Let

Y = (Y1, . . . , Yn)> ∈ Rn be the response vector and X = (X1, . . . , Xn)> ∈ Rn×p

be the design matrix. Then, we consider the following SAR model with covariates:

Y = ρWY + Xβ + E , (2.1)

where ρ ∈ R1 is the so-called network autocorrelation coefficient and β = (β1, . . . ,

βp)
> ∈ Rp is the regression coefficient vector. This model is commonly used in

the empirical literature; see, for example, Dubin, Pace and Thibodeau (1999),

Kakamu, Polasek and Wago (2008), and Osland (2010). Now, let θ = (ρ, β>)> ∈
Rp+1, with the true value given by θ0 = (θ01, . . . , θ0p+1)

> = (ρ0, β
>
0 )> and β0 =

(β01, . . . , β0p)
>. Furthermore, denote E = (ε1, . . . , εn)> ∈ Rn as the error vector.

We can further write Yi = ρ
∑n

j=1wijYj +Xiβ+εi, which intuitively implies that

the response of the ith subject is linearly related to its neighbors and covariates.

Thus, ρ can be intuitively interpreted as a measure of the strength of the network

dependence. We assume that εi are independent and i.i.d. as N(0, σ2). As a

result, cov(E) = σ2In, where In ∈ Rn×n is an identity matrix. We thus have

Y = (In − ρW )−1(Xβ + E). (2.2)

To render the foregoing equality valid, it is critical that In − ρW be invertible

for a general W matrix. Because W is a row-normalized adjacency matrix, it

has been proved that its largest singular value is 1 (Banerjee et al. (2004)). As

a result, a necessary and sufficient condition for the invertibility of In − ρW , for

an arbitrary W matrix, is |ρ| < 1. Thus, for the rest of this paper, we assume
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that |ρ| < 1.

2.2. Maximum likelihood estimation

By (2.2), we know that Y|X is jointly normal with mean GXβ and covariance

σ2(GG>), where G = (In−ρW )−1. This leads to the following negative two times

log-likelihood function:

`(θ, σ2) = σ−2(Y−GXβ)>(GG>)−1(Y−GXβ) + 2 log |G|+ n log σ2,

where several constants are ignored. Now, fix θ and optimize `(θ, σ2) with respect

to σ2, which leads to σ̃2 = (Y−GXβ)>(GG>)−1(Y−GXβ)/n. Apply this back

to `(θ, σ2), and we obtain a profiled objective function `(θ) = `(θ, σ̃2). Then,

the MLE of θ can be derived as θ̂mle = argmaxθ`(θ), the asymptotic properties

of which have been rigorously investigated by Anselin (1988), Anselin and Bera

(1998), Lee (2004), and many others.

Under the assumption that the εi are independent and identically normal,

the resulting θ̂mle performs quite well. However, its computational cost is high,

because the log-likelihood function involves log |In − ρW |. The associated com-

putational complexity is O(n3); see Smirnov and Anselin (2001). A number of

suggestions have been made for dealing with the determinant |In − ρW | in a

computationally efficient manner; see, for example, Ord (1975), Barry and Pace

(1999), and Smirnov and Anselin (2001). However, a very restrictive structure

needs to be imposed on W . For instance, Barry and Pace (1999) assumed that all

eigenvalues of weighting matrix W are real, which may not be satisfied when W is

asymmetric. These computational difficulties motivate us to explore alternative

estimation methods that are more computationally feasible.

2.3. Naive least squares estimation

To develop a new estimation method with better computational capability,

we here propose the following novel least squares estimation method. By (2.1),

we know that the response Y is linear in WY, X, and E . It is then natural to

consider the following least squares objective function:

Q(θ) = Q(ρ, β) = ‖Y− ρWY− Xβ‖2. (2.3)

Intuitively, equation (2.3) can be viewed as a least squares problem, with Y
as the response and (WY,X) as the covariates. This leads to a least squares-

type estimator because θ̂ = argminθQ(θ). More specifically, we denote θ̂ =

(ρ̂, β̂>)>. Define X̃ = (WY,X) ∈ Rn×(p+1). It can be easily verified that θ̂ =

(n−1X̃>X̃)−1(n−1X̃>Y). We refer to θ̂ as a naive least squares estimator (NLSE),
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because it ignores the potential endogeneity issue induced by WY and E . One

might expect the consistency of such an estimator to be unlikely under a general

condition. However, to our surprise, we are able to prove that θ̂ is indeed con-

sistent under certain conditions (see below). Although these are not the most

flexible conditions, they are reasonable in many situations. The specific condi-

tions are as follows.

(C1) (Covariate Assumption) Assume that the Xi are i.i.d. with mean 0,

covariance ΣX , and a finite fourth-order moment.

(C2) (Network Structure) Define W̃ = W>W and Ŵ = W> + W . As-

sume that there exist two positive constants, cmax and cmin, such that

λmax(W̃ ) < cmax < ∞, λmax(Ŵ ) < cmax < ∞, and λmin(W̃ ) > cmin,

where λmax(B) and λmin(B) are the largest and smallest singular values,

respectively, for an arbitrary matrix B. Furthermore, we assume that there

exist two positive constants, C1 and C2, such that limn→∞ n
−1tr(W̃ )→ C1

and limn→∞ n
−1tr(Ŵ 2)→ C2.

(C3) (Identification Conditions) Assume that ρ→ 0 as n→∞.

Condition (C1) ensures that the sample covariance matrix computed from

Xi converges in probability toward a positive-definite limit. It can be replaced

by milder conditions (e.g., mixing conditions for Xi). Condition (C2) imposes

constraints on the network structure, and is typically satisfied when the network

structure is sufficiently sparse. To see this, consider, for example, a cycle-type

network structure with ai(i+1) = 1 for 1 ≤ i < n, an1 = 1, and aij = 0 otherwise.

In this case, we can verify that W̃ = (w̃ij), which is an identity matrix. In

addition, Ŵ = (ŵij), where ŵij = 1 if |i − j| = 1, and ŵij = 0 otherwise.

Accordingly, we have λmax(W̃ ) = 1 and λmax(Ŵ ) ≤ 2. Thus, condition (C2)

is satisfied. Intuitively, condition (C3) implies that the network autocorrelation

coefficient ρ is practically small (Chen, Chen and Xiao (2013); Zhou et al. (2017)).

Theorem 1. Assume model (2.1) and conditions (C1)-(C3), as n → ∞, we

have
√
n(θ̂ − θ0) →d N(0,Σ−11 ). Specifically, Σ1 = (σ11, 0; 0, σ22), where σ11 =

C2
1 (β>ΣXβ + σ2)2/{σ2(C1β

>ΣXβ + σ2C2/2)} and σ22 = σ−2ΣX .

By Theorem 1, we know that θ̂, the proposed NLSE of θ, is
√
n-consistent

and asymptotically normal. Moreover, ρ̂ and β̂ are asymptotically independent

of each other. Furthermore, Σ1 can be estimated by Σ̂1 = (σ̂11, 0; 0, σ̂22). Note

that Ĉ1 = n−1tr(W̃ ), Ĉ2 = n−1tr(Ŵ 2), Σ̂X = n−1X>X, and σ̂2 = (Y − ρ̂WY −
Xβ̂)>(Y− ρ̂WY− Xβ̂)/n. Therefore,
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σ̂11 = Ĉ2
1

(β̂>Σ̂X β̂ + σ̂2)2

{σ̂2(Ĉ1β̂>Σ̂X β̂ + σ̂2Ĉ2/2)}
and σ̂22 = σ̂−2Σ̂X . (2.4)

3. Numerical Studies

3.1. Preliminaries

To evaluate the finite-sample performance of our proposed method, we present

a number of simulation models. For each simulation model and parameter

setup, the experiment is randomly replicated M = 5,000 times. Write θ̂(m) =

(θ̂
(m)
1 , . . . , θ̂

(m)
p+1)

> = (ρ̂(m), β̂
(m)
1 , . . . , β̂

(m)
p )> ∈ Rp+1 as the estimate obtained in

the mth simulation replication. For each parameter 1 ≤ j ≤ p + 1, the bias

(BIAS) is calculated as BIASj = M−1
∑M

m=1(θ̂
(m)
j − θ0j) and the root mean

square error (RMSE) calculated as RMSEj =
√
M−1

∑M
m=1(θ̂

(m)
j − θ0j)2. We

next compute its standard error estimate (ŜE) as ŜE
(m)

j , where ŜE
(m)

j is the

square root of the jth diagonal element in Σ̂1. This can be computed ac-

cording to (2.4), but from the mth simulation replication. This leads to the

final average ŜEj = M−1
∑M

m=1 ŜE
(m)

j . The true standard error (SE) is esti-

mated by SEj = {M−1
∑M

m=1(θ̂
(m)
j − θ̄j)2}1/2, where θ̄j = M−1

∑M
m=1 θ̂

(m)
j . A

95% confidence interval is constructed for θj in the mth replication as CI
(m)
j =

(θ̂
(m)
j − z0.975ŜE

(m)

j , θ̂
(m)
j + z0.975ŜE

(m)

j ), where zα is the αth lower quantile of a

standard normal distribution. Then, the empirical coverage probability (CP) is

derived as CPj = M−1
∑M

m=1 I(θj ∈ CI
(m)
j ), where I(·) represents the indicator

function. The original values of BIAS, RMSE, SE, ŜE, and CP are all small. For

case of comparison, we report these values in percentage form (i.e., multiplied

by 100) throughout the paper. They are thus represented as BIAS (%), RMSE

(%), SE (%), ŜE (%), and CP (%), respectively.

For comparison purposes, we also consider the MLE, which we computing

using the algorithm developed by LeSage and Pace (2009). The corresponding

MATLAB toolbox can be found at http://www.spatial-econometrics.com.

We could follow the strict Newton Raphson-type algorithm to compute the MLE,

but doing so would render the computational cost of the MLE extremely high

for a large network size. The CPU times of the two methods (i.e., the NLSE

and MLE) are compared using a PC, Windows 7, CPU E5-1620 V2 @ 3.70GHZ.

The network autocorrelation coefficient ρ is set as 1/ log n to satisfy condition

(C3). Moreover, we compare the independence model Y = Xβ + E with the

http://www.spatial-econometrics.com
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corresponding estimator as the ordinary least squares estimator (OLSE).

To summarize the network structure, we also compute the network den-

sity (i.e., ND =
∑

i,j aij/{n(n − 1)} × 100%) and total number of edges (i.e.,

TNE =
∑

i,j aij) for each simulation replication. The network density is the

percentage of observed edges from the number of all possible edges. The total

number of edges can be viewed as the number of observed connections in the

network. Therefore, the network density falls between zero and one. Intuitively,

if a network has a low density, the nodes should be loosely connected with one

another. Similarly, the nodes in the network are closely related if the network

density is high. These performance measures are averaged across the M = 5,000

simulation replications. We next introduce four different models of network gen-

eration. The corresponding simulation results are summarized in Tables 1–4.

3.2. An ER model

We start with the simplest ER model (Erdös and Rényi (1959)), where edges

are assumed to be independent. Assume that P (aij = 1) = n−0.5, leading to

adjacency matrix A and weighting matrix W . For an intuitive understanding, we

generate a network with 50 nodes and plot the corresponding network structure in

the left panel of Figure 1. As expected, the pattern is quite random. Furthermore,

the histogram of the nodal in-degree in the right panel shows its distribution to

be approximately normal.

Next, we follow Tibshiranit (1996) and fix the predictor dimension to p = 7.

Here, β0 = (3, 1.5, 0, 0, 2, 0, 0)> and εi is generated independently from a standard

normal distribution. Accordingly, predictor Xi = (Xi1, . . . , Xip)
> is simulated

from a multivariate normal distribution with mean 0 and covariance ΣX = (σ̃j1j2),

where σ̃j1j2 = 0.5|j1−j2|. The error term, εi, is generated independently from

N(0, 1), and response Y is then generated according to (2.2). Various network

sizes (i.e., n = 500, 2,000, and 5,000) are considered. As the network size increases

from n = 500 to n = 5,000, the network density drops from 4.5% to 1.4% and

the total number of edges increases from 11,160.1 to 353,487.4, on average. The

simulation results are summarized in Table 1.

In Table 1, the following patterns can be detected for the NLSE. First, the

RMSE (%), SE (%), and ŜE (%) values all decrease toward zero as the network

size n increases. Second, the BIAS (%) values are much smaller than the RMSE

(%) values, and appear to be practically negligible. Third, the estimated ŜE (%)

approximates the true SE (%) quite well. As a consequence, the CP (%) values

(reported coverage probabilities) are fairly close to their nominal level of 95%.
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Figure 1. A randomly simulated ER network structure with 50 nodes. The network
structure is plotted in the left panel. The right panel is the histogram of the nodal
in-degree for the 50 nodes.

These results corroborate the asymptotic theory given in Theorem 1 quite well.

Comparatively speaking, the difference between the NLSE and MSE in terms

of RMSE (%) is small, which implies that the estimation efficiency of the NLSE is

almost as good as that of the MLE. Furthermore, as the network size n increases,

the CP (%) values (reported coverage probabilities) of our estimator (NLSE) are

stable at the nominal level of 95%. However, when the network size n increases, it

becomes far more difficult for the MLE to obtain a reliable ρ̂. For example, when

n = 5,000, the reported coverage probability for the MLE is as low as 17.16%. We

suspect that this problem stems primarily from the fast approximation algorithm.

The strict Newton Raphson-type algorithm can be used to compute the MLE,

but the required computational time would be much greater. In contrast, the

proposed NLSE method is computationally efficient, as demonstrated by the

reported CPU time in Table 1. Moreover, the performance of the OLSE is worse

than that of the NLSE and MLE; therefore we omit it here to save space.

3.3. Dyad independence model

The ER model is a highly simplified network structure, and cannot mimic

the reciprocity phenomenon in real network data. Intuitively, if node j follows

i, the likelihood of node i following back should be large. This suggests that

P (aij = 1|aji = 1) should be well bounded above zero, even if P (aji = 1) could
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Table 1. Detailed simulation results for ER networks with ρ = 1/ log n and predictor
dimension p = 7. In this table, BIAS (%) = bias, RMSE (%) = root mean square error,

SE(%) = estimated true standard error, ŜE (%) = average standard error estimate, and
CP (%) = coverage probability. Computational time (TIME) in seconds is also reported.

BIAS(%) RMSE(%) SE (%) ŜE(%) CP (%) TIME

n Parameter NLSE OLSE MLE NLSE OLSE MLE NLSE OLSE MLE NLSE OLSE MLE NLSE OLSE MLE NLSE MLE

500 ρ 0.12 - 0.11 4.46 - 4.45 4.45 - 4.45 4.41 - 4.34 94.58 - 94.20 0.009 0.202

β1 0.12 0.13 0.12 5.17 5.22 5.17 5.17 5.21 5.17 5.19 5.27 5.16 95.06 95.44 94.92

β2 -0.06 -0.05 -0.06 5.92 6.00 5.92 5.92 6.00 5.92 5.81 5.90 5.78 94.90 94.94 94.86

β3 0.11 0.12 0.11 5.81 5.88 5.81 5.81 5.88 5.81 5.81 5.90 5.77 95.06 94.80 94.94

β4 -0.09 -0.07 -0.09 5.81 5.90 5.81 5.81 5.90 5.81 5.81 5.90 5.78 94.32 94.52 94.22

β5 0.07 0.08 0.07 5.85 5.93 5.85 5.85 5.93 5.85 5.81 5.90 5.78 94.56 94.78 94.32

β6 0.03 0.02 0.03 5.76 5.84 5.76 5.76 5.84 5.76 5.81 5.90 5.78 94.98 95.18 94.90

β7 -0.08 -0.08 -0.08 5.27 5.33 5.27 5.27 5.33 5.27 5.19 5.27 5.16 94.86 95.04 94.82

2,000 ρ 0.04 - 0.04 3.14 - 3.13 3.14 - 3.13 3.14 - 3.17 95.20 - 92.08 0.232 2.929

β1 0.01 0.01 0.01 2.59 2.60 2.59 2.59 2.60 2.59 2.59 2.60 2.58 94.82 94.88 94.78

β2 0.01 0.01 0.01 2.90 2.91 2.90 2.90 2.91 2.90 2.89 2.90 2.89 94.86 94.78 94.84

β3 0.03 0.03 0.03 2.90 2.92 2.90 2.90 2.92 2.90 2.89 2.91 2.89 94.86 94.94 94.84

β4 -0.02 -0.02 -0.02 2.84 2.85 2.84 2.84 2.85 2.84 2.89 2.90 2.89 95.80 95.58 95.78

β5 -0.06 -0.06 -0.06 2.88 2.89 2.88 2.88 2.89 2.88 2.89 2.90 2.89 95.02 95.26 94.94

β6 0.02 0.02 0.02 2.85 2.86 2.85 2.85 2.86 2.85 2.89 2.91 2.89 95.30 95.32 95.28

β7 0.05 0.06 0.05 2.59 2.60 2.59 2.59 2.60 2.59 2.59 2.60 2.58 94.68 94.84 94.66

5,000 ρ -0.03 - -0.51 2.46 - 2.39 2.46 - 2.33 2.50 - 0.27 95.42 - 17.16 2.077 27.073

β1 -0.01 -0.01 -0.01 1.62 1.62 1.62 1.62 1.62 1.62 1.63 1.64 1.63 95.26 95.30 95.26

β2 -0.02 -0.02 -0.02 1.79 1.80 1.79 1.79 1.80 1.79 1.83 1.83 1.82 95.40 95.48 95.42

β3 0.00 0.00 0.00 1.81 1.81 1.81 1.81 1.81 1.81 1.83 1.83 1.82 95.30 95.36 95.30

β4 -0.01 0.00 -0.01 1.83 1.84 1.83 1.83 1.84 1.83 1.83 1.83 1.82 95.26 95.34 95.22

β5 0.01 0.01 0.01 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 94.50 94.44 94.50

β6 0.00 0.00 0.00 1.79 1.79 1.79 1.79 1.79 1.79 1.83 1.83 1.83 95.32 95.44 95.32

β7 0.01 0.00 0.01 1.64 1.64 1.64 1.64 1.64 1.64 1.63 1.64 1.63 94.94 95.00 94.90

be close to zero. Therefore, we are motivated to simulate a network structure

tht demonstrates the reciprocity property. To this end, we consider the p1 model

proposed by Holland and Leinhardt (1981).

In this model, edges form dyads. For two arbitrary nodes i < j, define a

dyad as Dij = (aij , aji). Different from the ER model, the p1 model assumes

that the different dyads are independent. However, within a given dyad Dij ,

the two edges (i.e., aij and aji) can be dependent on each other in an arbitrary

manner. In this simulation example, we generate the dyads according to P (Dij =

(1, 0)) = P (Dij = (0, 1)) = 0.5n−0.6, P (Dij = (1, 1)) = n−0.6, and P (Dij =

(0, 0)) = 1 − 2n−0.6. It can be verified that P (aij = 1|aji = 1) = P (Dij =

(1, 1))/P (aji = 1) = 2/3, which is a constant that does not converge toward

0 as n → ∞, therefore protecting the reciprocity property. For an intuitive

understanding, we generate a network of 50 nodes and plot the corresponding

network structure in the left panel of Figure 2. A large number of reciprocated

pairs (i.e., aij = aji = 1) are evident in the figure. A histogram of the nodal

in-degree, which is approximately normal, is plotted in the right panel of Figure 2.
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Figure 2. A randomly simulated dyad independence model network structure with 50
nodes. The network structure is plotted in the left panel. The right panel is a histogram
of the nodal in-degree.

Next, we follow an example from Fan and Lv (2008) and fix the predictor

dimension to p = 3. Here, β0j = 5, for all 1 ≤ j ≤ p, and εi is generated

independently from N(0, 1). The predictor Xi = (Xi1, . . . , Xip)
> is generated

from a multivariate normal distribution with mean zero and covariance ΣX =

(σ̃j1j2), where σ̃j1j2 = 0.5 for any j1 6= j2 and σ̃jj = 1. The error term εi
is generated independently from N(0, 1) and the response Y is then generated

according to (2.2). Various network sizes are considered (i.e., n = 500, 750, and

2,000). As the network size increases from 500 to 2,000, the network density drops

from 3.6% to 1.6%, whereas the total number of edges increases from 8,991.5 to

62,711.5, on average. The simulation results are summarized in Table 2, and are

qualitatively similar to the results in Table 1. In particular, Table 2 shows that

when the network size n > 500, it becomes difficult for the MLE to obtain a

reliable ρ̂. Specifically, when n = 750, the reported coverage probability for the

MLE is 62.04%, which is far from the nominal level, whereas that for the NLSE

(i.e., 94.90%) remains close to the nominal level of 95%.

3.4. Stochastic block model

In addition to the reciprocity property, many real network structures exhibit

a strong clustering property. As a result, the entire network can be classified

into different groups. Nodes within the same group are much more likely to
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Table 2. Detailed simulation results for dyad independence networks with ρ = 1/ log n
and p = 3. In this table, BIAS (%) = bias, RMSE (%) = root mean square error, SE(%)

= estimated true standard error, ŜE (%) = average standard error estimate, and CP
(%) = coverage probability. Computational time (TIME) in seconds is also reported.

BIAS(%) RMSE(%) SE (%) ŜE(%) CP (%) TIME

n Parameter NLSE OLSE MLE NLSE OLSE MLE NLSE OLSE MLE NLSE OLSE MLE NLSE OLSE MLE NLSE MLE

500 ρ 0.06 - 0.03 1.48 - 1.47 1.48 - 1.47 1.51 - 1.49 95.14 - 94.74 0.011 0.269

β1 -0.05 0.43 -0.05 5.45 6.11 5.45 5.45 6.09 5.45 5.49 6.11 5.48 95.28 95.30 95.24

β2 -0.05 0.39 -0.05 5.49 6.13 5.49 5.49 6.12 5.49 5.49 6.11 5.48 94.86 94.66 94.86

β3 0.08 0.57 0.08 5.49 6.20 5.49 5.49 6.17 5.49 5.48 6.10 5.47 94.78 94.70 94.66

750 ρ 0.05 - 0.02 1.34 - 1.33 1.33 - 1.33 1.34 - 0.59 94.90 - 62.04 0.022 0.389

β1 0.01 0.36 0.01 4.47 4.85 4.47 4.47 4.84 4.47 4.48 4.86 4.47 94.66 95.36 94.62

β2 -0.03 0.35 -0.03 4.44 4.84 4.44 4.44 4.83 4.44 4.48 4.86 4.47 95.06 94.96 95.00

β3 -0.04 0.36 -0.04 4.48 4.91 4.48 4.48 4.90 4.48 4.48 4.86 4.47 95.08 94.72 95.00

2,000 ρ 0.04 - 0.02 1.00 - 0.99 1.00 - 0.99 1.00 - 0.40 94.88 - 57.72 0.216 2.457

β1 0.07 0.25 0.07 2.74 2.85 2.74 2.74 2.84 2.74 2.74 2.86 2.74 94.78 95.08 94.76

β2 -0.01 0.16 -0.01 2.73 2.88 2.73 2.73 2.88 2.73 2.74 2.86 2.74 95.08 95.16 95.08

β3 -0.02 0.16 -0.02 2.67 2.79 2.67 2.67 2.79 2.67 2.74 2.86 2.74 95.34 95.56 95.34

be connected than are from different groups. In the literature, such groups are

also referred to as communities (Girvan and Newman (2002)). To mimic this

type of network structure, we follow Nowicki and Snijders (2001) and simulate

a stochastic block structure, as follows. Assume a total of K = 5 blocks. We

randomly assign node i to one of the five blocks, with equal probability. We then

independently generate aij according to: (1) P (aij = 1) = n−0.4 if i and j are

from the same block; and (2) P (aij = 1) = n−0.8 otherwise. Lastly, set aii = 0 for

every 1 ≤ i ≤ n. This leads to the network adjacency matrix A. We then generate

a network with 300 nodes, the network structure of which is plotted in the left

panel of Figure 3. A structure of five communities is shown. The histogram

of the nodal in-degree plotted in the right panel shows an approximate normal

pattern. In fact, the stochastic model considered here cannot capture a highly

skewed in-degree distribution, primarily because the number of blocks is limited

(only five). Within each block, the edges are generated in a random manner

(i.i.d.), which renders the resulting degree distribution fairly normal, rather than

skewed.

We now simulate the regression model following Zou and Hastie (2005).

Specifically, fix the predictor dimension to p = 7 and set β0j = 0.85, for all

1 ≤ j ≤ p. The predictor Xi = (Xi1, . . . , Xip)
> is generated from a multi-

variate normal distribution with mean zero and covariance ΣX = (σ̃j1j2), where

σ̃j1j2 = 0.5|j1−j2| for any j1 and j2. The error term εi is generated independently

from N(0, 1) and the response Y is then generated according to (2.2). Various

network sizes are considered (i.e., n = 500, 1,000, and 5,000). As the network
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Figure 3. A randomly simulated stochastic block model network structure with 300
nodes and K = 5. The left panel presents the network structure and the right panel is
a histogram of the nodal in-degree.

size increases from 500 to 5,000, the network density declines from 6.7% to 2.7%,

whereas the total number of edges rises from 16,717.7 to 664,400.6, on average.

The simulation results are summarized in Table 3, and are qualitatively similar

to those in Table 1. We find the proposed NLSE to be consistent and asymptot-

ically normal. The performance measures presented in Table 3 all corroborate

our theory quite well.

3.5. Power-law distribution

The three simulation examples above suffer from one common limitation;

that is, their in-degree distributions are approximately normal. As a result, we

are unlikely to observe nodes with very large in-degree values. However, in prac-

tice, most Twitter-type social media platforms (e.g., Twitter and Weibo) con-

tain nodes with extremely large in-degree values, typically representing celebri-

ties or entities of importance. Accordingly, the in-degree distribution can be

highly skewed, and should thus be of the power-law-type (Adamic and Huber-

man (2000)). Hence, we are motivated to simulate a power-law-type network

structure.

Specifically, for each node 1 ≤ i ≤ n, we generate n i.i.d. random variables

according to a power-law distribution with a probability density function given by

ck−α, where c is a normalizing constant, α is the exponent parameter, and α = 2.5

is fixed. We denote these variables by Ei. Then, for the ith node, we randomly
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Table 3. Detailed simulation results for stochastic block networks with ρ = 1/ log n and
p = 7. In this table, BIAS (%) = bias, RMSE (%) = root mean square error, SE(%) =

estimated true standard error, ŜE (%) = average standard error estimate, and CP (%)
= coverage probability. Computational time (TIME) in seconds is also reported.

BIAS(%) RMSE(%) SE (%) ŜE(%) CP (%) TIME

n Parameter NLSE OLSE MLE NLSE OLSE MLE NLSE OLSE MLE NLSE OLSE MLE NLSE OLSE MLE NLSE MLE

500 ρ 0.13 - 0.04 7.02 - 6.96 7.02 - 6.97 7.05 - 6.90 94.96 - 94.82 0.009 0.235

β1 0.13 0.12 0.13 5.16 5.19 5.16 5.16 5.19 5.16 5.19 5.23 5.16 95.14 95.22 94.92

β2 -0.07 -0.06 -0.07 5.92 5.94 5.92 5.92 5.94 5.92 5.81 5.85 5.78 95.00 95.02 94.90

β3 0.11 0.13 0.11 5.81 5.83 5.81 5.81 5.83 5.80 5.81 5.85 5.78 94.92 95.38 94.80

β4 -0.09 -0.09 -0.09 5.82 5.86 5.82 5.82 5.86 5.82 5.81 5.85 5.78 94.46 94.52 94.32

β5 0.08 0.07 0.08 5.85 5.88 5.85 5.85 5.88 5.85 5.81 5.85 5.78 94.52 94.64 94.30

β6 0.03 0.05 0.03 5.76 5.80 5.76 5.76 5.80 5.76 5.81 5.85 5.78 94.98 95.16 94.74

β7 -0.08 -0.07 -0.08 5.27 5.29 5.27 5.27 5.29 5.27 5.19 5.23 5.16 94.86 94.98 94.68

1,000 ρ 0.04 - -0.03 6.09 - 6.06 6.09 - 6.06 6.15 - 2.78 95.18 - 63.48 0.041 0.703

β1 0.04 0.04 0.04 3.71 3.72 3.71 3.71 3.72 3.71 3.66 3.67 3.65 95.00 94.90 94.94

β2 -0.14 -0.14 -0.14 4.07 4.07 4.07 4.07 4.07 4.07 4.09 4.11 4.08 94.72 94.78 94.66

β3 0.06 0.06 0.06 4.12 4.13 4.12 4.12 4.13 4.12 4.09 4.11 4.08 95.14 95.14 94.96

β4 -0.07 -0.06 -0.07 4.04 4.05 4.04 4.04 4.05 4.04 4.09 4.11 4.08 95.62 95.48 95.56

β5 0.00 -0.01 0.00 4.05 4.06 4.05 4.05 4.06 4.05 4.09 4.11 4.08 95.26 95.10 95.16

β6 -0.05 -0.04 -0.05 4.16 4.16 4.16 4.16 4.16 4.16 4.09 4.11 4.08 94.82 94.72 94.68

β7 0.06 0.06 0.06 3.67 3.69 3.67 3.67 3.69 3.67 3.66 3.67 3.65 95.18 95.12 95.08

5,000 ρ -0.01 - -0.78 4.52 - 4.29 4.52 - 4.22 4.46 - 0.40 94.68 - 13.84 2.546 29.085

β1 -0.01 -0.01 -0.01 1.62 1.62 1.62 1.62 1.62 1.62 1.63 1.64 1.63 95.28 95.44 95.28

β2 -0.02 -0.02 -0.02 1.79 1.79 1.79 1.79 1.79 1.79 1.83 1.83 1.82 95.36 95.36 95.36

β3 0.00 -0.01 0.00 1.81 1.81 1.81 1.81 1.81 1.81 1.83 1.83 1.82 95.36 95.20 95.34

β4 0.00 0.00 0.00 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.82 95.22 95.16 95.20

β5 0.01 0.01 0.01 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 94.54 94.46 94.48

β6 0.00 0.00 0.00 1.79 1.79 1.79 1.79 1.79 1.79 1.83 1.83 1.83 95.38 95.48 95.32

β7 0.01 0.01 0.01 1.64 1.64 1.64 1.64 1.64 1.64 1.63 1.64 1.63 94.96 95.16 94.98
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Figure 4. A randomly simulated power-law-type network structure with 300 nodes. The
left panel is the network structure. The right panel is the histogram of the nodal in-
degree.
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select a sample of size [Ei] from SF = {1, 2, . . . , n}, without replacement, where

[Ei] is the largest integer no greater than min{Ei, n}. Denote the sample by Si.
We next define aij = 1 if j ∈ Si, and aij = 0 otherwise. We force aii = 0 for every

1 ≤ i ≤ n, which leads to our final adjacency matrix A. A randomly simulated

network with 300 nodes is generated and the network structure is plotted in the

left panel of Figure 4. Nodes with a large number of in-degree values are shown.

The nodal in-degree histogram is plotted in the right panel. It is highly skewed

and closely matches a power-law-type distribution.

Now, we borrow an example from Fan and Lv (2008) and fix the predictor

dimension to p = 4. Here, β0j = 5, for 1 ≤ j ≤ p − 1, and β0p = −15
√

0.5.

The error term εi is generated independently from N(0, 1). The predictor Xi =

(Xi1, . . . , Xip)
> is generated from a multivariate normal distribution with mean

0 and covariance ΣX = (σ̃j1j2), where σ̃j1j2 = 0.5 for 1 ≤ j1 6= j2 ≤ p − 1. Let

σ̃j1j2 =
√

0.5 for either j1 = p or j2 = p, and σ̃jj = 1 for 1 ≤ j ≤ p. Thus,

Xip has a correlation of
√

0.5 with the other predictors, but is uncorrelated with

the response Yi. The response Y is then generated according to (2.2). Various

network sizes are considered (i.e., n = 500, 1,000, and 2,000).

As the network size increases from 500 to 2,000, the network density decreases

form 0.6% to 0.1%, and the total number of edges increases from 1,455.1 to

5,925.4, on average. We thus have a sparse network structure. The detailed

simulation results are summarized in Table 4. Note that little difference can be

observed between the MLE and the NLSE, except for the computational time.

The NLSE is still much more computationally efficient than the MLE. In other

words, the amount of CPU time consumed by the latter is substantially greater

than that consumed by the NLSE; see the last two columns of Table 4.

3.6. Robustness check

It is clear that the technical condition (C3) requires that ρ → 0 as the net-

work size n→∞. We thus perform a robustness check for this condition. More

specifically, we examine the finite-sample performance of the proposed estima-

tor (NLSE) when condition (C3) is violated (e.g., a fixed ρ). To that end, we

conduct a number of robustness studies. We replicate all of the simulation ex-

amples in the previous subsections, except here we fix ρ = 0.5 instead of allowing

ρ = 1/ log(n) → 0. The results are given in Tables S1–S4 in the Supplementary

Material. The empirical results are qualitatively similar to those of the previous

simulation studies, and the performance of the proposed NLSE remains relatively

good.
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Table 4. Detailed simulation results for power-law-type networks with ρ = 1/ log n and
p = 4. In this table, BIAS (%) = bias, RMSE (%) = root mean square error, SE(%) =

estimated true standard error, ŜE (%) = average standard error estimate, and CP (%)
= coverage probability. Computational time (TIME) in seconds is also reported.

BIAS(%) RMSE(%) SE (%) ŜE(%) CP (%) TIME

n Parameter NLSE OLSE MLE NLSE OLSE MLE NLSE OLSE MLE NLSE OLSE MLE NLSE OLSE MLE NLSE MLE

500 ρ 0.01 - 0.01 0.91 - 0.91 0.91 - 0.91 0.90 - 0.89 94.90 - 94.44 0.009 0.206

β1 0.04 0.12 0.04 6.39 8.05 6.39 6.39 8.05 6.39 6.33 8.16 6.32 94.94 95.28 94.82

β2 0.05 0.21 0.05 6.28 8.12 6.28 6.28 8.12 6.28 6.34 8.16 6.32 95.16 95.16 95.08

β3 -0.01 0.11 -0.01 6.30 8.17 6.30 6.30 8.17 6.30 6.34 8.17 6.32 94.72 94.90 94.68

β4 -0.14 -0.38 -0.14 8.96 11.44 8.96 8.96 11.43 8.96 8.96 11.54 8.94 94.54 95.06 94.50

1,000 ρ 0.01 - 0.01 0.64 - 0.64 0.64 - 0.64 0.64 - 0.63 94.96 - 94.72 0.043 0.617

β1 0.08 0.08 0.08 4.50 5.49 4.50 4.50 5.49 4.50 4.47 5.54 4.47 94.92 94.86 94.90

β2 0.00 0.05 0.00 4.54 5.62 4.54 4.54 5.62 4.54 4.48 5.54 4.47 94.76 94.44 94.74

β3 0.02 0.00 0.02 4.48 5.53 4.48 4.48 5.53 4.48 4.48 5.54 4.47 95.06 95.16 94.96

β4 -0.03 -0.01 -0.03 6.41 7.83 6.41 6.41 7.83 6.41 6.33 7.83 6.32 94.88 94.80 94.80

2,000 ρ 0.01 - 0.01 0.44 - 0.44 0.44 - 0.44 0.45 - 0.45 95.38 - 95.20 0.232 3.100

β1 -0.01 -0.03 -0.01 3.17 3.78 3.17 3.17 3.78 3.17 3.17 3.79 3.16 95.30 95.32 95.28

β2 -0.01 -0.01 -0.01 3.14 3.76 3.14 3.14 3.76 3.14 3.17 3.80 3.17 95.22 95.30 95.22

β3 -0.06 -0.05 -0.06 3.17 3.80 3.17 3.17 3.80 3.17 3.17 3.80 3.17 95.04 94.68 94.98

β4 0.02 0.05 0.02 4.43 5.37 4.43 4.43 5.37 4.43 4.48 5.37 4.47 95.28 94.92 95.22

3.7. A real example

We now illustrate our proposed method using a real example with data col-

lected from Sina Weibo (www.weibo.com), the most popular Twitter-type social

media platform in China. Our data set contains n = 6,916 nodes, all of which

are followers of an official Weibo account of a leading business school in China.

The nodes are observed for a total of T = 116 consecutive days, allowing us to

summarize the total number of tweets posted for each node during that period.

Response Yi is defined as the log(1 + x)-transformed number of tweets. A his-

togram of the response is presented in the left panel of Figure 5, showing it to

be approximately normal. Because the observation period is relatively short, the

follower-followee relationship remains relatively stable. Thus, the social relation-

ships on any observation day can be used to generate network adjacency matrix

A. The analytical results are nearly identical; thus we use the network structure

for the last observation day, for simplicity, leading to a total of
∑

i,j aij = 547,856

edges and
∑

i<j aijaji = 99,678 mutually connected pairs. The network density

is roughly 1.0%. The nodal in-degree histogram plotted in the right panel of

Figure 5 is highly skewed and exhibits a power-law-type distribution.

We next construct a number of predictors, as follows. (1) Define Xi1 as a

given node’s number of followers. (2) Xi2 is defined as tenure, measured in days,

starting from the day the user created his/her Sina Weibo account. (3) Define

Xi3 = 1 if the ith user is an officially verified Sina Weibo member, and Xi3 = 0

www.weibo.com
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Table 5. Detailed estimation results for the Sina Weibo data set.

Regression Coefficient NLSE OLSE MLE SENLSE SEOLSE SEMLE

Network Autocorrelation (ρ) 0.269 - 0.224 0.031 - 0.021
Number of Followers (β1) 0.188 0.159 0.183 0.017 0.016 0.016
Tenure (β2) −0.135 −0.106 −0.130 0.016 0.016 0.016
Verified Account (β3) 0.110 0.125 0.112 0.016 0.016 0.016
Active Level(β4) 0.069 0.070 0.069 0.014 0.015 0.014
Official Account (β5) 0.166 0.175 0.167 0.014 0.014 0.014
Average Absolute Prediction Error 0.757 0.768 0.768 - - -

otherwise. (4) Xi4 is a positive integer reflecting the activity level of the ith user,

and is provided by Sina Weibo. (5) Finally, let Xi5 = 1 if the ith node is an

official account owned by a company or organization (as opposed to a natural

person). These predictors help us to determine the kinds of nodes that are most

likely to post in Sina Weibo.

We now compare the performance of NLSE with that of the MLE (LeSage

and Pace (2009)) and OLSE (the model assuming independence). For evaluation

purposes, the data set is split randomly into two subsets of equal size. One subset

serves as the training sample, and the other is used to test the average absolute

prediction errors. The experiment is randomly replicated 500 times, and the

results are summarized in Table 5. First, all estimates are statistically significant

at the 1% level, and the variance inflation factor (VIF) values are far below 10.

Thus, it is acceptable to ignore collinearity (Belsley et al. (1980)). Second, the

NLSE has the smallest average absolute prediction error of the three estimators.

In addition, the ρ̂ values for the NLSE and MLE are quite close and are all

positive, suggesting that the posting activities of connected nodes are positively

correlated. Third, the signs of the estimated coefficients for the three methods

are consistent. More specifically, β̂1 is positive, which implies that users with a

large number of followers are more likely to post in Sina Weibo, whereas β̂2 is

negative, indicating that users lose interest in Sina Weibo over time. Further,

β̂3 is positive, indicating that verified users are more likely to post, and β̂4 and

β̂5 are both positive, suggesting that active users and official accounts are more

likely to post on the social network.

4. Concluding Remarks

In this study, we employ the classical SAR model to capture the network

dependency. However, the traditional maximum likelihood estimation method
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Figure 5. Real-data analysis with network size n = 6,916. The left panel is a histogram
of responses and the right panel is a histogram of the nodal in-degree.

cannot be applied directly because the computational complexity is O(n3). To

address this problem, we propose a novel estimation method, called the naive

least squares estimation (NLSE), for the SAR model with covariates. Our simu-

lation results suggest that the NLSE performs well across a large range of ρ-values

(|ρ| ≤ 0.5), which seems to cover most practical cases. Moreover, the real exam-

ple results indicate that the NLSE exhibits superior out-of-sample performance

compared with the OLSE and MLE.

We conclude the article by proposing three directions for future research.

First, a richer and more general SAR model, combined with spatial correlated

disturbances can be considered (i.e., Y = ρ1W1Y + Xβ + E1, E1 = ρ2W2E1 + E2).
Here, W1, W2 represent two network structures, and E1, E2 are the disturbances.

The computational complexity of the MLE is O(n3). Thus, determining how to

compute this model may require further effort. Second, our extensive empirical

studies revealed that indirectly connected nodes may also expect to affect one

another. Thus, an SAR model with higher-order neighbors would be a natural

extension of the SAR model with covariates considered here. Third, a community

structure may exist within the network, and different communities may corre-

spond to different network autocorrelation coefficients. Hence, finding a way to

extend the SAR model to a group setting that allows for a group-specific net-

work autocorrelation coefficient is another interesting topic deserving of further

investigation. Finally, note that our limited experience suggests that θ̂ may be

consistent under a fairly general condition. A small ρ should be a sufficient
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condition, but it may not be necessary.

Supplementary Material

The Supplementary Material available at Statistica Sinica online contains

the simulation results for the robustness check, as well as the theoretical proofs

and lemmas.
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