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S1 Proof of Theorem 1

First, we state a theorem from McKay (2010) on the asymptotic number of simple graphs with forbidden

edges. Consider simple graphs with m edges and degree sequence d = (d1, . . . , dn). Let X be an n × n

symmetric zero-one matrix that specifies the set of forbidden edges (Xij = Xji = 1 if an edge between

node i and node j is forbidden, and Xij = Xji = 0 otherwise). Write the column sums of X as

x = (x1, . . . , xn), η =
∑
i xi/2 and (x)a = x(x− 1) · · · (x− a+ 1).

Define dmax = maxi di, xmax = maxi xi and ∆ = dmax(dmax+xmax). Let PΣd(X) be the probability

that a simple graph with degree sequence d contains all forbidden edges in X. We have the following

theorem.

Theorem S1. (McKay, 2010) If ∆η = o(m), then

PΣd(X) =

∏n
j=1(dj)xj

2η(m)η
(1 +O(∆η/m)). (S1.1)
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From the development in Section 2.2, we have

E(A
[l]
ij ) =

|Σ
d[l]|A[l]

ij =1
|

|Σd[l] |
, l = 1, 2,

where |Σ
d[l]|A[l]

ij =1
| is the total number of simple homogeneous networks with degree sequence d[l] and a

link between nodes i and j. Consider the matrix X with Xij = Xji = 1 and 0 elsewhere. In this case, we

have η = 1, xl = 1 for l = i, j and xl = 0 otherwise. From (S1.1) and the condition that d
[l]
max = o(m1/2),

we have

E(A
[l]
ij ) =

|Σ
d[l]|A[l]

ij =1
|

|Σd[l] |
= PΣ

d[l]
(D)

=
didj
2m

(1 + o(1)), l = 1, 2.

Next it remains for us to show that as n1, n2 →∞,

E(A
[12]
ij ) =

d
[12]
i d

[21]
j

m[12]
(1 + o(1)).

First, it is easy to derive that

E(A
[12]
ij ) =

|Σ
d[12],d[21]|A[12]

ij =1
|

|Σd[12],d[21] |
,

where |Σ
d[12],d[21]|A[12]

ij =1
| is the total number of bipartite graphs with degree sequences d[12] for type-[1]

nodes, d[21] for type-[2] nodes and a link between the ith node of type-[1] and the jth node of type-[2].

Next, we state the following theorem from McKay (2010). It is an analog of Theorem S1 for bipartite

graphs.

Consider simple bipartite graphs with m edges and degree sequence d = (d1, . . . , dn1) for one type

of nodes, referred to as type-[1] nodes, and d′ = (d′1, . . . , d
′
n2

) for the other type of nodes, referred to

type-[2] nodes. Let X be an n1 × n2 zero-one matrix that specifies the set of forbidden edges (Xij = 1

if an edge between node i of type-[1] and node j of type-[2] is forbidden, and Xij = 0 otherwise). Write

the row sums of X as x = (x1, . . . , xn1), column sums of X as y = (y1, . . . , yn2), η =
∑
i xi =

∑
j yj .
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Define dmax = maxi di, d
′
max = maxj d

′
j , xmax = maxi xi, ymax = maxj yj and ∆′ = (dmax +

d′max)(dmax +d′max +xmax + ymax). Let PΣd,d′ (X) be the probability that a bipartite graph with degree

sequence d and d′ contains all forbidden edges in X. We have the following theorem.

Theorem S2. (McKay, 2010) If ∆′η = o(m), then

PΣd,d′ (X) =

∏n1
i=1(di)xi

∏n2
j=1(d′j)yj

(m)η
(1 +O(∆′η/m)). (S1.2)

Consider the matrix X with Xij = Xji = 1 and 0 elsewhere. In this case, we have η = 1, xi = 1,

yj = 1, xl = 0 for l 6= i and yl = 0 for l 6= j. From (S1.1), the condition that d
[12]
max = o((m[12]1/2) and

d
[21]
max = o(m[12]1/2), we have

E(A
[12]
ij ) =

|Σ
d[12],d[21]|A[12]

ij =1
|

|Σd[12],d[21] |
= PΣ

d[1],d[2]
(D)

=
d

[12]
i d

[21]
j

m
(1 + o(1)), l = 1, 2.

S2 Proof of Theorem 2

First we formalize the notations that will be used in the proof. Consider a heterogeneous network

G(
⋃L
i=1 V

[i], E ∪ E+). For a community assignment label E = (e[1], . . . , e[L]) with e[l] = (e
[l]
1 , . . . , e

[l]
nl),

l = 1, . . . , L, define K ×K matrices O[l], l = 1, . . . , L, and O[l1l2], 1 ≤ l1 6= l2 ≤ L, such that

O
[l]
kh(E) =

∑
ij

A
[l]
ij I(e

[l]
i = k, e

[l]
j = h),

O
[l1l2]
kh (E) =

∑
ij

A
[l1l2]
ij I(e

[l1]
i = k, e

[l2]
j = h).

Define O
[l]
k =

∑
hO

[l]
kh and O

[l1l2]
k =

∑
hO

[l1l2]
kh , l = 1, . . . , L, 1 ≤ l1 6= l2 ≤ L. Define K ×K matrices

R[l](E), V [l](E), l = 1, . . . , L, such that

R
[l]
ab(E) =

1

n

nl∑
l=1

I(e
[l]
i = a, c

[l]
i = b)
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V
[l]
ab (E) =

∑nl
l=1 I(e

[l]
i = a, c

[l]
i = b)∑nl

l=1 I(c
[l]
i = b)

.

Write O = {O[l], O[l1l2], l = 1, . . . , L, 1 ≤ l1 6= l2 ≤ L} and R = {R[1], . . . , R[L]}.

For community assignment label E , the contribution of the bipartite graph Gl1l2 to the modularity

function Q′(E ,G) is

ql1l2 =
1

L2

∑
ij

(
A

[l1l2]
ij −

d
[l1l2]
i d

[l2l1]
j

m[l1l2]

)
δ(e

[l1]
i , e

[l2]
j ),

where δ(·, ·) is the Kronecker function. We have

ql1l2 =
1

L2

(∑
ij

A
[l1l2]
ij δ(e

[l1]
i , e

[l2]
j )− 1

m[l1l2]

∑
k

∑
ij

d
[l1l2]
i d

[l2l1]
j I(e

[l1]
i = k)I(e

[l2]
j = k))

)

=
1

L2

(∑
k

O
[l1l2]
k − 1

m[l1l2]

∑
k

O
[l1l2]
k O

[l2l1]
k

)
.

Following similar arguments, it is easy to show that the modularity function Q′(E ,G) can be expressed

as

1

L2

 L∑
l=1

K∑
k=1

(
O

[l]
kk −

O
[l]
k

2∑
khO

[l]
kh

)
+

L∑
l1 6=l2

K∑
k=1

(
O

[l1l2]
kk −

O
[l1l2]
k O

[l2l1]
k∑

khO
[l1l2]
kh

) .
Here we suppress the argument E for brevity. Define

J(O) =

L∑
l=1

J1(O[l]) +

L∑
l1 6=l2

J2(O[l1l2], O[l2l1]),

where

J1(O[l]) =

K∑
k=1

(
O

[l]
kk −

O
[l]
k

2∑
khO

[l]
kh

)
,

and

J2(O[l1l2], O[l2l1]) =

K∑
k=1

(
O

[l1l2]
kk −

O
[l1l2]
k O

[l2l1]
k∑

khO
[l1l2]
kh

)
.

We show the consistency property by showing that there exists δn → 0 such that

P

(
max

E: η(E,C)≥δn
J

(
O(E)

µn

)
≤ J

(
O(C)
µn

))
→ 1 as n→∞,

where η(E , C) =
∑L
l=1

∑
ab |V

[l]
ab (E)− V [l]

ab (C)|.
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Define µn = n2ρn, we have

1

µn
E(O

[l1l2]
kh (E) | C)

=
1

µn
E

(∑
ij

A
[l1l2]
ij I(e

[l1]
i = k, e

[l2]
j = h) | C

)

=
1

n2

∑
ij

∑
ab

P
[l1l2]
ab I(e

[l1]
i = k, c

[l1]
i = a)I(e

[l2]
j = h, e

[l2]
j = b).

Define H [l1l2](R(E)) = 1
µn
E(O[l1l2](E) | C), we have

H [l1l2](R(E)) = R[l1](E)P [l1l2]R[l2](E)′, 1 ≤ l1 6= l2 ≤ L.

Similarly, we can define H [l](R(E)) = 1
µn
E(O[l](E) | C) and write

H [l](R(E)) = R[l](E)P [l]R[l](E)′, l = 1, . . . , L.

Write H = {H [l], H [l1l2], l = 1, . . . , L, 1 ≤ l1 6= l2 ≤ L}. Since J(.) is Lipschitz in all its arguments, we

have

∣∣∣∣J (O(E)

µn

)
− J (H(R))

∣∣∣∣ ≤M1

[
max
l
‖ O

[l](E)

µn
−H [l](R) ‖∞ + max

l1 6=l2
‖ O

[l1l2](E)

µn
−H [l1l2](R) ‖∞

]
.

Here ||X||∞ = maxkh |Xkh|. To continue with the proof, we need to use the Bernstein’s inequality

(Bernstein, 1924).

Bernstein’s inequality: Let X1, . . . , Xn be independent variables. Suppose that |Xi| ≤ M for all i.

Then, for all positive t,

P

(∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E(Xi)

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t2/2∑

var(Xi) +Mt/3

)
.

Since A
[l]
ij ’s in O[l](E) are independent Bernoulli random variables, applying the Bernstein’s inequality,

we have

P
(
|O[l]
kh(E)/µn −H [l]

kh(R)| > ω
)
≤ 2 exp

(
− ω2/2

var(O
[l]
kh(E)) + 2ω/3

)
.
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Notice that var(O
[l]
kh(E)) ≤ 2n2 maxij var(A

[l]
ij ).

Define τ = maxij var(A
[l]
ij ). For any ε < 3τ , if we write ω = εn2ρn, then we have

P

(∣∣∣∣∣O[l]
kh(E)

µn
−H [l]

kh(R)

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− ω2/2

var(O
[l]
kh(E)) + 2ω/3

)

≤ 2 exp

(
− ε

2n4ρ2
n

8n2ρnτ

)
= 2 exp

(
− ε

2µn
8τ

)
.

The left hand side of the inequality converges to 0 in probability uniformly over E as λn →∞. Following

similar arguments, we can show that

P

(∣∣∣∣∣O[l1l2]
kh (E)

µn
−H [l1l2]

kh (R)

∣∣∣∣∣ > ε

)

also converges to 0 in probability uniformly as λn →∞. Thus, there exists εn → 0, such that

P

(
max
E

∣∣∣∣J (O(E)

µn

)
− J (H(R))

∣∣∣∣ ≤ εn)→ 1 as λn →∞. (S2.3)

Next we show that J (H(R)) is uniquely maximized over {R : R[l] ≥ 0, R[l]′1 = π[l], l = 1, . . . , L}

at S = R(C). Since J (H(R)) is the population version of J
(
O(E)
µn

)
, if J

(
O(E)
µn

)
is maximized by the

true community label C, J (H(R)) should also be maximized by the true assignment S.

Define

4kh =


1 for k = h,

−1 for k 6= h.

Using the equalities

∑
k

(
H

[l]
kk −

H
[l]
k

2∑
khH

[l]
kh

)
+
∑
k 6=l

(
H

[l]
kh −

H
[l]
k H

[l]
h∑

khH
[l]
kh

)
= 0, l = 1, . . . , L,

and ∑
k

(
H

[l1l2]
kk −

H
[l1l2]
k H

[l2l1]
k∑

khH
[l1l2]
kh

)
+
∑
k 6=h

(
H

[l1l2]
kh −

H
[l1l2]
k H

[l2l1]
h∑

khH
[l1l2]
kh

)
= 0, 1 ≤ l1 6= l2 ≤ L.
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we have

J(H(R)) =

L∑
l=1

J1(H [l](R)) +

L∑
l1 6=l2

J2(H [l1l2](R), H [l2l1](R))

=
1

2

L∑
l=1

∑
kh

4kh

(
H

[l]
kh(R)−

H
[l]
k (R)H

[l]
h (R)∑

khH
[l]
kh(R)

)
+

1

2

L∑
l1 6=l2

∑
kh

4kh

(
H

[l1l2]
kh (R)−

H
[l1l2]
k (R)H

[l2l1]
h (R)∑

khH
[l1l2]
kh (R)

)

=
1

2

L∑
l=1

∑
kh

4kh

(∑
ab

P
[l]
abR

[l]
ka(E)R

[l]
hb(E)−

(
∑
as P

[l]
asR

[l]
ka(E)π

[l]
s )(

∑
bt P

[l]
bt R

[l]
hb(E)π

[l]
t )∑

khH
[l]
kh(R)

)

+
1

2

L∑
l1 6=l2

∑
kh

4kh

(∑
ab

P
[l1l2]
ab R

[l1]
ka (E)R

[l2]
hb (E)−

(
∑
as P

[l1l2]
as R

[l1]
ka (E)π

[l2]
s )(

∑
bt P

[l2l1]
bt R

[l2]
hb (E)π

[l1]
t )∑

khH
[l1l2]
kh (R)

)

=
1

2

L∑
l=1

∑
kh

∑
ab

4khR[l]
ka(E)R

[l]
hb(E)

(
P

[l]
ab −

(
∑
s P

[l]
asπ

[l]
s )(

∑
t P

[l]
bt π

[l]
t )∑

khH
[l]
kh(R)

)

+
1

2

L∑
l1 6=l2

∑
kh

∑
ab

4khR[l1]
ka (E)R

[l2]
hb (E)

(
P

[l1l2]
ab −

(
∑
s P

[l1l2]
as π

[l2]
s )(

∑
t P

[l2l1]
bt π

[l1]
t )∑

khH
[l1l2]
kh (R)

)

≤ 1

2

L∑
l=1

∑
kh

∑
ab

4abR[l]
ka(E)R

[l]
hb(E)

(
P

[l]
ab −

(
∑
s P

[l]
asπ

[l]
s )(

∑
t P

[l]
bt π

[l]
t )∑

khH
[l]
kh(R)

)

+
1

2

L∑
l1 6=l2

∑
kh

∑
ab

4abR[l1]
ka (E)R

[l2]
hb (E)

(
P

[l1l2]
ab −

(
∑
s P

[l1l2]
as π

[l2]
s )(

∑
t P

[l1l2]
bt π

[l1]
t )∑

khH
[l1l2]
kh (R)

)

=
1

2

L∑
l=1

∑
ab

4abπ[l]
a π

[l]
b

(
P

[l]
ab −

(
∑
s P

[l]
asπ

[l]
s )(

∑
t P

[l]
bt π

[l]
t )∑

khH
[l]
kh(S)

)

+
1

2

L∑
l1 6=l2

∑
ab

4abπ[l1]
a π

[l2]
b

(
P

[l1l2]
ab −

(
∑
s P

[l2l1]
as π

[l2]
s )(

∑
t P

[l1l2]
bt π

[l1]
t )∑

khH
[l1l2]
kh (S)

)

=

L∑
l=1

J1(H [l](S)) +

L∑
l1 6=l2

J2(H [l1l2](S), H [l2l1](S)) = J(H(S)).

Here we used the conditions in Theorem 2 for the inequality, and the relationship that

∑
kh

H
[l]
kh(R) =

∑
kh

∑
ab

P
[l]
abR

[l]
ka(E)R

[l]
hb(E) =

∑
ab

P
[l]
abπ

[l]
a π

[l]
b =

∑
kh

H
[l]
kh(S)

and ∑
kh

H
[l1l2]
kh (R) =

∑
kh

∑
ab

P
[l1l2]
ab R

[l1]
ka (E)R

[l2]
hb (E) =

∑
ab

P
[l1l2]
ab π[l1]

a π
[l2]
b =

∑
kh

H
[l1l2]
kh (S).

We have shown that S is a maximizer of J(H(R)).
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Next we need to show that S is the unique maximizer of J(H(R)). This can be shown using Lemma

3.2 in Bickel and Chen (2009). Since the inequality J(H(R)) ≤ J(H(S)) holds only if 4kh = 4ab

whenever R
[l]
ka(E)R

[l]
hb(E) > 0, l = 1, . . . , L, and 4 does not have two identical columns, using the results

in Lemma 3.2, we have S uniquely maximizes J(H(R)).

Now that we have shown that J (H(R)) is uniquely maximized by S. By the continuity of J(.) in

the neighborhood of S, there exists δn →∞, such that

J (H(R))− J (H(S)) ≥ 2εn for η(E , C) ≥ δn.

Here we used the fact that

η(R(E),S) =

L∑
l=1

∑
ab

|π[l]
b V

[l]
ab (E)− π[l]

b V
[l]
ab (C)|

≥ (min
l,b

π
[l]
b )×

L∑
l=1

∑
ab

|V [l]
ab (E)− V [l]

ab (C)| = (min
l,b

π
[l]
b )× η(E , C).

Thus, with (S2.3), we have that

P

(
max

E: η(E,C)≥δn
J

(
O(E)

µn

)
≤ J

(
O(C)
µn

))
≥ P

(∣∣∣∣ max
E: η(E,C)≥δn

J

(
O(E)

µn

)
− max
E: η(E,C)≥δn

J(H(R))

∣∣∣∣ < εn,

∣∣∣∣J (O(C)
µn

)
− J(H(S))

∣∣∣∣ ≤ εn)→ 1.

This implies that

P (η(Ĉ, C) ≤ δn)→ 1,

where

Ĉ = arg max
E

J

(
O(E)

µn

)
Since

1

n

L∑
l=1

nl∑
i=1

I(ĉ
[l]
i 6= c

[l]
i ) =

L∑
l=1

∑
k

π
[l]
k (1− V [l]

kk (Ĉ)) ≤
L∑
l

∑
k

(1− V [l]
kk (Ĉ))

=
1

2

L∑
l=1

∑
k

(1− V [l]
kk (Ĉ)) +

∑
k 6=h

V
[l]
kh(Ĉ)


= η(Ĉ, C)/2,
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we have thus established the consistency property of Ĉ.

If we replace our proposed null model with the null model for a homogeneous network (as proposed

in Zhang and Chen (2016)), it is easy to show that the new homogeneous modularity function can be

written as

J∗(O) =

K∑
k=1

 L∑
l=1

O
[l]
kk +

L∑
l1 6=l2

O
[l1l2]
kk

− K∑
k=1


(∑L

l=1 O
[l]
k +

∑L
l1 6=l2 O

[l1l2]
k

)2

∑L
l=1

∑
khO

[l]
kh +

∑L
l1 6=l2

∑
khO

[l1l2]
kh

 . (S2.4)

In this case, we can still show that J∗(O) is uniformly close to its population version. However, due

to the complicated formulation of J∗(O) (especially the second term in (S2.4)), we cannot find an

interpretable assortative condition that guarantees the population version of J∗(O) is maximized by the

true community membership.

S3 Additional Simulation Results

In the following example, we consider heterogeneous networks with two types of nodes (L = 2) and

two communities (K = 2). We consider a heterogeneous SBM structure with probability matrix P = P [1] P [12]

P [21] P [2]

 , where P [1] = p11K1′K +r1IK , P [2] = p21K1′K +r2IK , P [12] = P [21] = p31K1′K +r3IK ,

1K is the K-vector of 1’s and IK is the K-by-K identity matrix. We can see that the strength of the

community structure is regulated by r1, r2 and r3. This setting is similar to the ones considered in Section

5 of the paper. In this simulation, we set the parameters p1 = 0.1, r1 = 0.05, p2 = 0.2, r2 = 0.1, p3 = 0.05

and gradually change r3 from 0.025 to 0.125. We set the number of nodes for each type to 200, and

assign 100 to each community. We compare our proposed method to a homogeneous model with K = 4,

estimated using regularized spectral clustering (Rohe et al., 2011). For each r3 value, we simulate 50

heterogeneous networks from the model. For each heterogeneous network, we apply the proposed method

and the homogeneous method. We then calculate the normalized mutual information (NMI) between
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Figure 1: Average NMI between the true community membership and the community

membership obtained from the proposed method (dashed line) and the homogenous

model with K = 4 (solid line).

the obtained community detection results and the true community membership. The average NMI from

the 50 simulations is summarized in Figure 1. We can see that the proposed method outperforms the

homogeneous method on all values of r3. This is because type-[1] nodes and type-[2] nodes behave

very differently; compared to type-[1] nodes, type-[2] nodes are much more densely connected amongst

themselves. The homogenous method does not take into consideration such information and treat all

nodes equally. Note that our proposed method has good performance even when edges between type-[1]

nodes and type-[2] nodes only have a weak community structure with r3 = 0.025.
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