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Abstract: Heterogeneous networks consist of different types of nodes and multiple

types of edges linking such nodes. While numerous community detection techniques

exist for analyzing networks that contain only one type of node, very few such

techniques have been developed for heterogeneous networks. Therefore, we propose

a modularity-based community detection framework for heterogeneous networks.

Unlike existing methods, the proposed approach has the flexibility of treating the

number of communities as an unknown quantity. We describe a Louvain-type max-

imization method for determining the community structure that maximizes the

modularity function. Our simulation results show the advantages of the proposed

method over the existing methods. Moreover, the proposed modularity function

is shown to be consistent under a heterogeneous stochastic blockmodel framework.

Analyses of a DBLP four-area data set and a MovieLens data set demonstrate the

usefulness of the proposed method.

Key words and phrases: Community detection, consistency, heterogeneous network,

modularity function, null model.

1. Introduction

Network community detection is attracting attention from various scientific

communities, including statistics, physics, information technology, biology, social

science, and many others. A real-world network often displays a high level of

inhomogeneity in its edge distribution, with a high edge density within certain

groups of nodes, and a low edge density between these groups. This feature is

often referred to as the community structure (Fortunato (2010)). Community

structures have been observed in networks in social science, biology, political

science, and so on. For example, in a gene-regulation network, communities are

groups of genes that function together in biological processes to carry out specific

functions (Zhang and Cao (2018)). Detecting communities in real-world networks

can help us better understand the architecture of a network. Furthermore, it

allows us to investigate the property in individual communities, which may differ

from the aggregated property for the network as a whole.
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Figure 1. Two communities in a heterogeneous Facebook network with two types of
nodes: users and events.

Many community detection techniques have been proposed in recent years.

See Fortunato (2010) for a comprehensive review. One class of methods max-

imizes a partition quality function over all possible partitions of the network

(Shi and Malik (2000); Newman and Girvan (2004); Newman (2006)). Another

uses spectral clustering techniques (Rohe, Chatterjee and Yu (2011); Rohe, Qin

and Yu (2016)), and a third class includes model-based approaches that estimate

community structures by fitting probabilistic models to the observed networks

(Airoldi et al. (2008); Bickel and Chen (2009); Jin (2015)). In the second and

third classes of approaches, we need to know the number of communities a priori.

Existing community detection approaches focus primarily on homogeneous

networks, that is, networks with only one type of node. However, networks that

represent real-world complex systems often contain different types of nodes and

different types of edges linking such nodes; we refer to such networks as hetero-

geneous networks. For example, in a healthcare network, nodes can be patients,

diseases, doctors, or hospitals. The edges might reflect the type of patient–disease

relationship (patient treated for disease), patient–doctor relationship (patient

treated by doctor), or doctor–hospital relationship (doctor works at hospital).

Figure 1 provides a simple illustration of a heterogeneous network. In this illus-

trative heterogeneous Facebook network, there are two types of nodes, namely,

users and events. Furthermore, there are two types of interactions in this net-

work. A user is linked to another user through friendship, and a user is linked

to an event through attendance.

There are two approaches to identifying communities in a heterogeneous

network using the methods developed for homogeneous networks. The first ap-
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proach treats the heterogeneous network as a homogeneous network. Here, we

do not differentiate between the different types of nodes and edges. The sec-

ond approach considers each type of node in the network separately; that is, it

discards information about the edges linking different types of nodes. In both

approaches, we lose important information. In the first approach, we ignore the

fact that different types of nodes may behave differently. For example, in Figure

1, users and events behave in different ways; a user can become friends with other

users, but an event cannot link to other events. Using the first approach, the

community detection algorithm does not distinguish between the two different

types of nodes. Losing such important information may lead to poor commu-

nity detection results. In the second approach, valuable information about the

edges that link different types of nodes is ignored. For example, in Figure 1, the

user–event links show how users are attracted to events. Including such informa-

tion can help us better identify the communities in users. Moreover, it provides

important insights into the types of events that each community of users are

attracted to.

To find community structures in a heterogeneous network, a preferable ap-

proach should take into account all information contained in the network, in-

cluding the different types of nodes, homogeneous edges (edges that connect two

nodes of the same type), and heterogeneous edges (edges that connect two nodes

of different types). The objective of the approach is to cluster the nodes in the

heterogeneous network into several nonoverlapping groups, such that there are

more homogeneous and heterogeneous edges within these groups, and fewer ho-

mogeneous and heterogeneous edges between these groups; see Figure 1 for a

simple illustration of a heterogeneous Facebook network with two communities.

Several methods have been proposed for detecting communities in hetero-

geneous networks (Sun and Han (2012); Liu et al. (2014); Sengupta and Chen

(2015)). A limitation of these methods is that they may stipulate requirements

on the numbers of node types or edge types in the network (e.g., see Sun and

Han (2012) and Liu et al. (2014)). Another limitation of existing methods is that

they may require the number of communities in the network to be prespecified

(e.g., see Sengupta and Chen (2015)). This requirement could be difficult to

meet in practice, because, in general, we do not know the number of communi-

ties in a real-world network. Lastly, very large networks can be computationally

challenging for some existing methods, such as the spectral clustering approach

proposed in Sengupta and Chen (2015).

We propose a modularity-based heterogeneous network community detection
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framework. Our contribution to the literature is threefold. First, we formally

define a null model for a heterogeneous network. Under the proposed null model,

we calculate the probability of having a homogeneous edge between two nodes

of the same type, and that of having a heterogeneous edge between two nodes of

different types. Second, we propose a Louvain-type maximization method that

efficiently maximizes the proposed modularity function. Applying the maximiza-

tion method on a real-world network with about 20,000 nodes takes less than 20

seconds on a standard PC. Our proposed approach can be applied to hetero-

geneous networks of any type. Furthermore, the number of communities does

not need to be specified and can be treated as an unknown quantity. Third, we

show that the proposed modularity function for heterogeneous networks is consis-

tent under a heterogeneous stochastic blockmodel framework. The consistency

properties of the modularity functions formulated for bipartite or multipartite

networks follow as special cases. This theoretical result fills an existing gap in

the literature.

The reminder of this paper is organized as follows. Section 2 introduces the

null model for a heterogeneous network and the definition of a modularity func-

tion. Section 3 discusses the Louvain-type modularity maximization technique.

Section 4 shows the consistency of the modularity function under a heterogeneous

stochastic blockmodel framework. Section 5 demonstrates the advantages of our

proposed method through simulation studies. In Section 6, we apply the appli-

cation of the proposed method to a DBLP four-area data set and to a MovieLens

data set. Section 7 concludes the paper.

2. Modularity Function for Heterogeneous Networks

Let G = (
⋃L

i=1 V
[i], E ∪ E+) denote a simple heterogeneous network (no self

loops or multiple edges) with L types of nodes. Node set V [i] contains all nodes of

the ith type, for i = 1, . . . , L. Edge set E denotes the set of edges between nodes

of the same type, and E+ denotes the set of edges between nodes of different

types. A homogeneous network Gi(V
[i], E[i]) can be formed within each node set

V [i], where E[i] is the set of edges between nodes in V [i]. By definition, we have

E =
⋃L

i=1E
[i]. When E = ∅, the heterogeneous network G forms a multipartite

network, that is, edges are only established between different types of nodes. In

this paper, we use the terms network and graph interchangeably.

Newman and Girvan (2004) defined a quality function, usually referred to

as the modularity function, for measuring the strength of the division of a ho-
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mogeneous network into communities. Given a homogeneous network G(V,E)

with n nodes, m edges, and a community assignment e = (e1, . . . , en), where

ei ∈ {1, . . . ,K} is the community to which node i belongs, the modularity func-

tion is defined as

Q(e, G) =
1

2m

∑
i,j

[Aij − E(Aij)] δ(ei, ej), (2.1)

where δ(r, s) = 1 if r = s, and zero otherwise. Here, Aij is the (i, j)th entry of

the adjacency matrix A of the network, and the expectation E(Aij) is calculated

under some null model that describes networks with no community structure. It

is easy to see that Q(e, G) ∈ [−1, 1].

The modularity function for homogeneous networks measures the difference

between the observed and the expected numbers of intra-community edges under

the null model. If the observed number of intra-community edges is close to

the expected value, the modularity Q is close to zero. When Q approaches one,

the observed number of intra-community edges is much higher than the expected

value, indicating a strong community structure. Because the modularity function

measures the “strength” of a community structure with respect to a network

partition, the community membership of a network is identified by maximizing

the modularity function Q(e, G) with respect to e. The number of communities

K does not need to be prespecified in this approach, and can be treated as an

unknown quantity.

To introduce the modularity-based community detection framework for het-

erogeneous networks, we focus on the case with only two types of nodes (L = 2).

The framework can be generalized easily to networks of more than two types of

nodes. For a heterogeneous network G = (V [1]∪V [2], E∪E+), let G1 = (V [1], E[1])

and G2 = (V [2], E[2]) denote the two homogeneous networks within node sets

V [1] = (v
[1]
1 , . . . , v

[1]
n1 ) and V [2] = (v

[2]
1 , . . . , v

[2]
n2 ), respectively. Furthermore, let

G12 = (V [1] ∪ V [2], E+) denote the bipartite network formed between node sets

V [1] and V [2]. In what follows, we refer to nodes in V [1] (V [2]) as type-[1] (type-

[2]) nodes, edges in E[1] (E[2]) as type-[1] (type-[2]) edges, and edges in E[12] as

type-[12] edges. We consider the following three matrices:

• A[1], the n1 × n1 0-1 adjacency matrix of G1 = (V [1], E[1]), where A
[1]
ij = 1

if and only if there is an edge between v
[1]
i and v

[1]
j .

• A[2], the n2 × n2 0-1 adjacency matrix of G2 = (V [2], E[2]), where A
[2]
ij = 1

if and only if there is an edge between v
[2]
i and v

[2]
j .

• A[12], the n1 × n2 0-1 matrix of G12 = (V [1] ∪ V [2], E+), where A
[12]
ij = 1 if
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and only if there is an edge between v
[1]
i and v

[2]
j .

Note that A[12] is a submatrix, but not the adjacency matrix of G12 = (V [1] ∪
V [2], E+). The adjacency matrix of G12 is(

0 A[12]

A[21] 0

)
,

where A[21] = A[12]T . We use AT to denote the transpose of matrix A. The

matrix A[12] is usually referred to as the bi-adjacency matrix of G12. Because

we only focus on networks with undirected edges, the adjacency matrices A[1]

and A[2] are both symmetric. The heterogeneous network G can be uniquely

represented by its (n1 + n2)× (n1 + n2) adjacency matrix A,

A =

(
A[1] A[12]

A[21] A[2]

)
.

2.1. Null model for heterogeneous networks

The modularity function measures the difference between the observed net-

work and the null model that characterizes networks with no community struc-

ture. To define the modularity function for a heterogeneous network, we need to

formulate a null model for heterogeneous networks.

We introduce the following notation on degree sequences:

• d[1] = (d
[1]
1 , . . . , d

[1]
n1), where d

[1]
i =

∑n1

j=1A
[1]
ij , for i = 1, . . . , n1, is the number

of links incident to v
[1]
i from V [1].

• d[2] = (d
[2]
1 , . . . , d

[2]
n2), where d

[2]
i =

∑n2

j=1A
[2]
ij , for i = 1, . . . , n2, is the number

of links incident to v
[2]
i from V [2].

• d[12] = (d
[12]
1 , . . . , d

[12]
n1 ), where d

[12]
i =

∑n2

j=1A
[12]
ij , for i = 1, . . . , n1, is the

number of links incident to v
[1]
i from V [2].

• d[21] = (d
[21]
1 , . . . , d

[21]
n2 ), where d

[21]
i =

∑n1

j=1A
[21]
ij , for i = 1, . . . , n2, is the

number of links incident to v
[2]
i from V [1].

From the definitions, we see that d[1] is the vector of column (row) sums

of A[1], d[12] is the vector of row sums of A[12], d[21] is the vector of column

sums of A[12], and d[2] is the vector of column (row) sums of A[2]. Write the

number of edges in G1 as m[1] =
∑n1

i=1 d
[1]
i /2, the number of edges in G12 as

m[12] =
∑n1

i=1 d
[12]
i , and the number of edges in G2 as m[2] =

∑n2

i=1 d
[2]
i /2. Define

D = (d[1],d[12],d[2],d[21]).
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An appropriate null model should satisfy the following two conditions. First,

it should describe a random heterogeneous network with no community structure.

Second, the networks from the null model should share basic structural properties

with the observed network (Newman (2006); Zhang and Chen (2016)). For the

null model of a heterogeneous network, we propose preserving the observed degree

sequence (d[1],d[12],d[2],d[21]). That is, the degrees d
[1]
i and d

[12]
i for each node

v
[1]
i , i = 1 . . . , n1, are fixed. Similarly, the degrees d

[2]
i and d

[21]
i for each node v

[2]
i ,

i = 1 . . . , n2, are fixed.

Preserving the observed degree sequence has been considered in various ho-

mogeneous network models in the literature (Chung and Lu (2002); Newman and

Girvan (2004); Perry and Wolfe (2012)). The edge distribution in real-world net-

works often displays high global inhomogeneity and local inhomogeneity. Global

inhomogeneity refers to the feature that most nodes have low degrees, while a

few have high degrees. Local inhomogeneity refers to the high concentration of

edges within certain groups of edges and the low concentration of edges between

these groups. Local inhomogeneity is also referred to as the community struc-

ture. When studying the local inhomogeneity, it is important to control for global

inhomogeneity. That is, to study the community structure, it is important to

control for the degree sequence.

The sample space in our null model is defined as

ΣD = {G : G is a simple heterogeneous network with degree sequence D}.

For a heterogeneous network G from the sample space, the null distribution is

defined as

p(G) =
1

|ΣD|
. (2.2)

Under the null model, every heterogeneous network from ΣD is equally likely

to occur and there is no preference for any network configuration. Using the

defined null model, we need to calculate the expectations Ep(A
[1]
ij ), Ep(A

[12]
ij ),

and Ep(A
[2]
ij ) for the modularity function defined in the Section 2.2. Here the

expectation Ep(·) is taken with respect to p(·) in (2.2).

To calculate E(A
[l]
ij ) under the null model, note that

E(A
[l]
ij ) =

|ΣD|A[l]
ij=1|

|ΣD|
,

where ΣD|A[l]
ij=1 is the set of all simple heterogeneous networks in ΣD, with A

[l]
ij=1,

for l = 1, 2. Denote Σd[1] as the set of all simple homogeneous graphs with

degree sequence d[1], Σd[2] as the set of all simple homogeneous graphs with
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degree sequence d[2], and Σd[12],d[21] as the set of all bipartite graphs with degree

sequence d[12] for type-[1] nodes and degree sequence d[21] for type-[2] nodes. We

have |ΣD| = |Σd[1] | × |Σd[2] | × |Σd[12],d[21] |. It is easy to see that

E(A
[l]
ij ) =

|Σd[l]|A[l]
ij=1|

|Σd[l] |
, l = 1, 2, (2.3)

where |Σd[l]|A[l]
ij=1| is the total number of simple homogeneous networks with

degree sequence d[l] and a link between nodes i and j. Similarly, we can show

that

E(A
[12]
ij ) =

|Σd[12],d[21]|A[12]
ij =1|

|Σd[12],d[21] |
, (2.4)

and

E(A
[21]
ij ) =

|Σd[12],d[21]|A[21]
ij =1|

|Σd[12],d[21] |
, (2.5)

where |Σd[12],d[21]|A[12]
ij =1| is the total number of bipartite graphs with degree se-

quences d[12] for type-[1] nodes and d[21] for type-[2] nodes, and a link between

the ith node of type-[1] and the jth node of type-[2].

Calculating the numerators and denominators in (2.3), (2.4), and (2.5) is a

difficult problem. Bender and Canfield (1978) and McKay (2010) derived asymp-

totic formulae for the number of simple graphs with a fixed degree sequence and

prespecified structure zeroes (a structure zero at Aij means no edge can be placed

between node i and node j). Based on these asymptotic formulae, we have the

following approximations for the expectations.

Theorem 1. Define d
[l]
max = maxnl

i=1 d
[l]
i , l = 1, 2, d

[12]
max = maxn1

i=1 d
[12]
i , and

d
[21]
max = maxn2

i=1 d
[21]
i . Suppose that d

[l]
max = o(m[l]1/2), l = 1, 2, d

[12]
max = o(m[12]1/2),

and d
[21]
max = o(m[12]1/2). Then, we have

E(A
[l]
ij ) =

d
[l]
i d

[l]
j

2m[l]
(1 + o(1)), E(A

[12]
ij ) =

d
[12]
i d

[21]
j

m[12]
(1 + o(1)), l = 1, 2.

Refer to the online Supplementary Material for the proof. The conditions

in Theorem 1 describe the density of the network as the network size tends to

infinity. Because d
[l]
max ≥ 2m[l]/nl, the condition d

[l]
max = o(m[l]1/2) also implies

that d
[l]
max = o(nl), which describes the rates at which the maximum node degrees

increase. These conditions ensure that the network does not become extremely

dense as the network size increases. Similarly, we can derive that d
[12]
max = o(n1)

and d
[21]
max = o(n2).

The results in Theorem 1 indicate that E(A
[l]
ij ) can be well approximated by
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(d
[l]
i d

[l]
j )/(2m[l]), and E(A

[12]
ij ) can be well approximated by (d

[12]
i d

[21]
j )/m[12]. As

such, we use these approximations in the modularity function defined in the next

section.

2.2. Modularity function

We first consider heterogeneous networks with only two types of nodes (L =

2). Later in this section, we generalize the results to heterogeneous networks

with any L ≥ 2. We define the (n1 + n2) × (n1 + n2) modularity matrix M for

the heterogeneous network G as

M =


M [1]

2m[1]

M [12]

m[12]

M [21]

m[21]

M [2]

2m[2]

 ,

where M [1] = A[1]−E(A[1]), M [2] = A[2]−E(A[2]), M [12] = A[12]−E(A[12]), and

M [21] = A[21] −E(A[21]). If there are no edges between the type-[1] (or type-[2])

nodes, we set M [1]/2m[1] = 0n1×n1
(or M [2]/2m[2] = 0n2×n2

). Similarly, if there

are no edges between type-[1] and type-[2] nodes, we set M [12]/m[12] = 0n1×n2

and M [21]/m[21] = 0n2×n1
.

Define a 0-1 assignment matrix B of dimension (n1 + n2)×K as

B =

(
B[1]

B[2]

)
, (2.6)

where B[1] is an n1×K matrix, with B
[1]
ij = 1 if node v

[1]
i is in the jth community,

and zero otherwise, and B[2] is an n2×K matrix, with B
[2]
ij = 1 if node v

[2]
i is in the

jth community, and zero otherwise. The modularity function of a heterogeneous

network is defined as

Q(B,G) =
1

4
tr(BTMB)

=
1

4

[
1

2m[1]
tr(B[1]TM [1]B[1]) +

2

m[12]
× tr(B[1]TM [12]B[2])

+
1

2m[2]
tr(B[2]TM [2]B[2])

]
, (2.7)

where tr(·) denotes the trace of a square matrix. With some calculations, we can

derive that
1

2m[1]
tr(B[1]TM [1]B[1]) =

1

2m[1]

∑
i,j

[A
[1]
ij − E(A

[1]
ij )]I(B

[1]
i. = B

[1]
j. ),
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2

m[12]
tr(B[1]TM [12]B[2]) =

2

m[12]

∑
i,j

[A
[12]
ij − E(A

[12]
ij )]I(B

[1]
i. = B

[2]
j. ),

1

2m[2]
tr(B[2]TM [2]B[2]) =

1

2m[2]

∑
i,j

[A
[2]
ij − E(A

[2]
ij )]I(B

[2]
i. = B

[2]
j. ).

Here Bi. denotes the ith row of matrix B, and I(·) is an indicator function. For

example, I(B
[1]
i. = B

[1]
j. ) = 1 only when nodes i and j are both of type-[1] and they

are in the same community. The first component tr(B[1]TM [1]B[1])/2m[1] and the

third component tr(B[2]TM [2]B[2])/2m[2] calculate the differences between the

observed number of intra-community edges and the expected number of intra-

community edges in networks G1 and G2, respectively. The second component

tr(B[1]TM [12]B[2])/m[12] calculates the difference between the observed number

of intra-community edges and the expected number of intra-community edges in

the bipartite network G12.

From the definition, we have the modularity function Q(B,G) ∈ [−1, 1].

When Q(B,G) approaches one, the observed numbers of type-[1], type-[2], and

type-[12] intra-community edges are much higher than the expected values, in-

dicating a strong community structure. On the other hand, when Q(B,G) ap-

proaches zero, the observed numbers of type-[1], type-[2], and type-[12] intra-

community edges are close to the expected values, indicating a weak community

structure. Note that when there is only one type of node in the network, the

proposed modularity reduces to the Newman–Girvan modularity.

To generalize the modularity function to a heterogeneous network with L

types of nodes, we denote the adjacency matrix of Gi(V
[i], E[i]) as A[i], and the

bi-adjacency matrix of Gij(V
[i] ∪ V [j], E[ij]) as A[ij], for 1 ≤ i 6= j ≤ L. Write

the number of nodes in each type as ni = |V [i]|, for i = 1, . . . , L. In addition,

write the number of edges in Gi(V
[i], E[i]) as m[i], and the number of edges in

Gij(V
[i] ∪ V [j], E[ij]) as m[ij], for 1 ≤ i 6= j ≤ L. The modularity function is

defined as

Q(B,G) =
1

L2
tr(BTMB), (2.8)

where

M =


M [1]

2m[1]
. . .

M [1L]

m[1L]

...
. . .

...

M [L1]

m[L1]
. . .

M [L]

2m[L]

 , B =

B
[1]

...

B[L]

 .

Here, M [i] = A[i] − E(A[i]) and M [ij] = A[ij] − E(A[ij]), for 1 ≤ i 6= j ≤ L.
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Matrix B is a (n1 + · · ·+ nL)×K assignment matrix defined similarly to that in

(2.6). The expectations in the modularity function are approximated using the

following corollary.

Corollary 1. Define d
[l1]
max = max

nl1

i=1 d
[l1]
i and d

[l1l2]
max = max

nl1

i=1 d
[l1l2]
i , for 1 ≤

l1 6= l2 ≤ L. Suppose that d
[l1]
max = o(m[l]1/2) and d

[l1l2]
max = o(m[l1l2]1/2), for

1 ≤ l1 6= l2 ≤ L. Then, we have

E
(
A

[l1]
ij

)
=
d
[l1]
i d

[l1]
j

2m[l1]
(1+o(1)), E

(
A

[l1l2]
ij

)
=
d
[l1l2]
i d

[l2l1]
j

m[l1l2]
(1+o(1)), 1 ≤ l1 6= l2 ≤ L.

The corollary follows directly from Theorem 1. Because a larger modularity

value indicates a stronger community structure, the community assignment of

nodes in the heterogeneous network G is identified by maximizing the modularity

function with respect to B. In the next section, we introduce a Louvain-type

method for efficiently maximizing the modularity function.

3. Modularity Maximization

Our goal is to find the community assignment matrix B that maximizes the

modularity function in (2.8), that is,

arg max
B(n1+···+nL)×K

K∈Z+

tr(BTMB).

Maximizing this objective function is a difficult problem, especially because the

number of communities K is usually unknown. Brandes et al. (2008) showed that

finding the partition that maximizes the modularity function for a homogeneous

network is NP-hard. Existing heuristic approaches for maximizing the modular-

ity function come from various fields, including computer science, physics, and

sociology (Clauset, Newman and Moore (2004); Massen and Doye (2005); New-

man (2006); Reichardt and Bornholdt (2006); Agrawal and Kempe (2008)). In

this study, we adopt a Louvain-type maximization method.

The Louvain maximization method is a hierarchical clustering method pro-

posed by Blondel et al. (2008). The technique was developed to maximize the

modularity function of a homogeneous network. The optimization procedure is

carried out in two phases, which are repeated iteratively. The first phase starts

by assigning each node in the network to its own community (each community

contains one and only one node). Then, each node i is moved to the neighboring

community that results in the largest increase in modularity (if no increase is

possible, then node i remains in its original community). A neighboring com-
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munity of node i is defined as a community to which node i is linked. In the

second phase, the algorithm aggregates the nodes in the same communities and

“constructs” a new network, the nodes of which are the communities from the

first phase. The edges between the new nodes are calculated using the edges con-

necting the two corresponding communities (see Blondel et al. (2008) for details).

These steps are repeated until the modularity reaches its local maximum.

The Louvain method has been applied successfully to various homogeneous

networks of sizes up to 100 million nodes and billions of links. Using the method

for community detection in a typical network with two million nodes takes only a

few minutes on a standard PC (Blondel (2011)). Fortunato (2010) noted that the

modularity maximum found by the Louvain method often compares favorably

with those found by the methods in Clauset, Newman and Moore (2004) and

Wakita and Tsurumi (2007).

Similarly to the Louvain method, finding the maximizer of the proposed

heterogeneous network modularity function can also be carried out by repeating

two phases. For ease of presentation, we focus on the case where L = 2; that is,

there are two types of nodes. First we define the term “unit.” A unit may contain

one node of any type or two nodes of different types. A community consists of

several units. To initialize, we assign each node in the network to its own unit.

Therefore, if there are n1 type-[1] nodes and n2 type-[2] nodes, the algorithm

starts with n1 + n2 units. In the first phase, we start by assigning each unit to

its own community. Then, we calculate the change in modularity when unit i is

assigned to each one of its neighboring communities. A neighboring community

of unit i is defined as a community to which unit i is linked. Once this value is

calculated for every community to which unit i is linked, we assign unit i to the

community that leads to the largest increase in modularity. If no move increases

the modularity, unit i remains in its original community. This step is applied

repeatedly to the units in the network until no increase in modularity can be

achieved. In the second phase, we examine each community from the first phase

and merge nodes of the same type in each community. This community then

becomes a new unit in the next step. If two communities are linked, then there

is an edge between the two new units; if two communities are not linked, then

there is no edge between the two new units. We repeat these two phases until no

move is possible, in which case, the modularity has reached a local maximum.

As an example, Figure 2 shows the application of the proposed algorithm to

a heterogeneous network with two types of nodes. Each iteration contains two

phases. In the first iteration, the number of communities changes from 11 to 4.
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Figure 2. A visualization of the steps in the proposed algorithm. The two types of
nodes are represented by squares and circles, respectively. Nodes of the same color are
in the same community. After each iteration, each node in the graph shows the nodes it
contains from the original graph in parentheses.

After the first iteration, nodes 1 and 2 are merged and treated as one node, say

v∗1,2, in the second iteration; similarly, nodes 7 and 8 are merged and treated as

one node, say v∗7,8; node 3 does not merge with any node and is treated as one

node, say v∗3. In the second iteration, nodes {v∗3, v∗7,8} form a unit and node v∗1,2
is a unit. During the first phase in the second iteration, we compute the change

in modularity when we place unit v∗1,2 and unit {v∗3, v∗7,8} in one community. If

the modularity increases, we place v∗1,2 and {v∗3, v∗7,8} in one community; if the

modularity decreases, the two units remain in their original communities. In

the second iteration, the number of communities changes from four to two. The

algorithm outputs two communities, with the first community including nodes 1,

2, 3, 7 and 8, and the second community including nodes 4, 5, 6, 9, 10 and 11.

The algorithm is summarized as follows.

Algorithm 1. Take the modularity matrix M as input:

1. Assign each node to its own unit.

2. Assign each unit to its own community.

3. For each unit i, place it with the neighboring community that leads to the
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largest modularity increase. If no such move is possible, unit i remains in

its current community.

4. Apply Step 3 repeatedly to the units in the network until no units can be

moved.

5. If the modularity is higher than that of the previous iteration, then merge

the nodes of the same type in each community, such that each community

is treated as a unit, and return to Step 2. If not, output the community

assignment and the modularity value from the previous iteration.

The result of the algorithm depends on the initial ordering of the nodes.

In addition, in Step 3, each node is assigned to the community that leads to

the largest modularity increase. If several communities all lead to the largest

increase, one community is selected randomly. Hence, the Louvain method may

not arrive at the same result in successive runs. In our analysis, we apply the

Louvain method κ times, with random node orderings, to find the maximum of

the modularity function. In general, κ should increase with the size and the

complexity of the network. In our simulation and real-data analysis, we set

κ = 100. Note that although we did not observe notable improvements in the

maximized modularity function for κ > 100. Other networks of comparable or

larger sizes may benefit from larger values of κ.

In the implementation of the Louvain method, deciding whether and where

to move a node can be computed in O(1) time. Consequently, the complexity

per iteration is O(m), where m is the total number of edges in the network. An

upper bound on the total running time of the algorithm is O(rm), where r is the

total number of iterations. A trivial upper bound on r, which gives the worst

case, is O(m2). Although no nontrivial upper bound has been established on the

number of iterations, in practice, the method converges with tens of iterations.

Note that the Louvain maximization method does not require the number of

communities to be prespecified. In cases where it is desirable to fix the number

of communities at K∗ in the procedure, the Louvain method can still be applied.

Specifically, if K∗ is reached during the iterations in the algorithm, we would

stop the procedure and output the community assignment. If K∗ is not reached

after the algorithm finishes (i.e., the algorithm finds K > K∗), then we would

continue with the algorithm and stop once K∗ is reached. In this case, we need

to modify Step 3, by moving unit i into the neighboring community that leads to

the smallest modularity decrease. Recently, several data-driven approaches for

estimating the number of communities have been proposed, including the spectral
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method of Le and Levina (2015), penalized likelihood method of Wang and Bickel

(2017), hypothesis testing method of Karwa et al. (2016), and cross-validation

approach of Li, Levina and Zhu (2016).

Note that bipartite networks are special cases of the heterogeneous networks

considered here (with L = 2, A[1] = 0 and A[2] = 0). Hence, our proposed

method can be used to find communities in bipartite networks (also referred

to as bi-clustering). Many work have investigated community detection in bi-

partite networks. For example, Barber (2007) and Pesantez and Kalyanaraman

(2017) considered a modularity-based approach and used spectral methods for

maximization. Larremore, Clauset and Jacobs (2014) considered a stochastic

blockmodel approach, and Rohe, Qin and Yu (2016) considered a spectral clus-

tering approach. Compared with existing methods, our approach can be applied

to very large bipartite networks and the number of communities K does not need

to prespecified.

4. Consistency

The consistency of community detection approaches for homogeneous net-

works has been studied extensively (Bickel and Chen (2009); Rohe, Chatter-

jee and Yu (2011); Zhao, Levina and Zhu (2012); Jin (2015)). However, few

studies have addressed the theoretical properties of such methods for hetero-

geneous networks. In this section, we investigate the consistency property of

our proposed method under a heterogeneous stochastic blockmodel framework.

The consistency of community detection is often investigated under a stochas-

tic blockmodel framework (Rohe, Chatterjee and Yu (2011); Zhao, Levina and

Zhu (2012); Abbe and Sandon (2015); Zhang and Chen (2016); Abbe (2017); Vu

(2018)). The consistency property of our method when applied to bipartite or

multipartite networks follows as special case.

Consider a heterogeneous network G = (
⋃L

i=1 V
[i], E ∪ E+) with latent com-

munity labels c[l] = (c
[l]
1 , . . . , c

[l]
nl), l = 1, . . . , L, where c

[l]
i ∈ {1, . . . ,K} is the

community to which the ith node of type-[l] belongs. Write C = (c[1], . . . , c[L])

and n =
∑L

l=1 nl. We assume that the sizes of V [l], for l = 1, . . . , L, are balanced;

that is, minl nl/n is bounded away from zero. We define a community detection

criterion F (C,G) as consistent if

Ĉ = arg max
C

F (C,G)

satisfies
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∀ε > 0, P

[
1

n

L∑
l=1

nl∑
i=1

I
(
ĉ
[l]
i 6= c

[l]
i

)
< ε

]
→ 1 as n→∞.

This definition of consistency is a generalization of that proposed by Zhao, Levina

and Zhu (2012) for homogeneous networks. The definition requires that the error

rate tends to zero in probability as the number of nodes goes to infinity.

Next, we introduce the heterogeneous stochastic blockmodel, which serves as

the framework of our theoretical development. Consider a heterogeneous network

G = (
⋃L

i=1 V
[i], E ∪ E+) with latent community label C. Write the adjacency

matrix of Gl(V
[l], E[l]) as A[l], for l = 1, . . . , L, and the bi-adjacency matrix of

Gl1l2(V
[l1]
⋃
V [l2], E[l1l2]) as A

[l1l2]
ij , for 1 ≤ l1 6= l2 ≤ L. In a heterogeneous

stochastic blockmodel, each A
[l]
ij is an independent Bernoulli random variable

with

E
(
A

[l]
ij | c

[l]
i = a, c

[l]
j = b

)
= P

[l]
ab ,

and each A
[l1l2]
ij is an independent Bernoulli random variable with

E
(
A

[l1l2]
ij | c[l1]i = a, c

[l2]
j = b

)
= P

[l1l2]
ab ,

where P [l] is a symmetric K × K probability matrix specifying the connecting

probabilities between different communities of type-[l] nodes, and P [l1l2] is a

K×K probability matrix specifying the connecting probabilities between type-[l1]

nodes and type-[l2] nodes in different communities. Note that, by definition, we

have P [l1l2] = P [l2l1]′. Define π[l] = (π
[l]
1 , . . . , π

[l]
K), where π

[l]
k = 1

n

∑nl

i=1 I(c
[l]
i = k),

for l = 1, . . . , L.

To ensure sparsity, the entries in the probability matrices need to tend to

zero as the network grows in size. Otherwise, the network is going to become

unrealistically dense. Following Bickel and Chen (2009), we define the expected

degree λn = nρn, where ρn ≡ P (Edge) → 0. We can reparameterize P [l] as

P̃ [l] = ρnP
[l], where P [l] is fixed as n→∞. This reparameterization allows us to

separate ρn from the structure of the network. See Bickel and Chen (2009) for a

more detailed discussion of the reparameterization.

Consider the modularity function Q(B,G) in (2.8). The assignment matrix

B and the assignment vector E = (e[1], . . . , e[L]) with e[l] = (e
[l]
1 , . . . , e

[l]
nl), for

l = 1, . . . , L, have a one to one correspondence. To simplify the notation, we

write the modularity function Q(B,G) as Q′(E ,G) in this section. The consistency

property of the proposed heterogeneous network community detection criterion

Q′(E ,G) is introduced in the following theorem.
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Theorem 2. Consider G(
⋃L

i=1 V
[i], E∪E+) from a heterogeneous stochastic block-

model with parameters P [l] and P [l1l2], for l = 1, . . . , L, 1 ≤ l1 6= l2 ≤ L. Define

T
[l]
ab =

π
[l]
a π

[l]
b P

[l]
ab∑

ab π
[l]
a π

[l]
b P

[l]
ab

, and T
[l1l2]
ab =

π
[l1]
a π

[l2]
b P

[l1l2]
ab∑

ab π
[l1]
a π

[l2]
b P

[l1l2]
ab

.

Write W [l] = T [l]− (T [l]1)(T [l]1)′ and W [l1l2] = T [l1l2]− (T [l1l2]1)(T [l1l2]1)′. If the

parameters satisfy

L∑
l=1

W [l]
aa +

L∑
l1 6=l2

W [l1l2]
aa > 0,

L∑
l=1

W
[l]
ab +

L∑
l1 6=l2

W
[l1l2]
ab < 0 for all a 6= b, (4.1)

then the proposed modularity function Q′(E ,G) is consistent as λn →∞.

Refer to the online Supplementary Material for the proof. This result on

consistency suggests that if networks are from a heterogeneous stochastic block-

model with K communities, the community labels obtained from maximizing

the modularity function Q′(E ,G) will approach the true community labels as the

number of nodes goes to infinity. The consistency properties of the modularity

functions formulated for bipartite or multipartite networks follow as special cases

of Theorem 2. This fills an existing gap in the literature of modularity function-

based network community detection. The consistency of bipartite network com-

munity detection was investigated recently by Rohe, Qin and Yu (2016), who

derive the upper bound of the misclassification rate for spectral clustering-based

approaches.

The conditions defined in (4.1) in Theorem 2 essentially require that, on

average, edges are more likely to be established within communities than they

are between communities, even though community structures may not exist for

all types of edges. For example, see the parameters in Simulation Setting 3 (Sec-

tion 5), where the edges between type-[1] or type-[2] nodes have no community

structure, but the edges linking type-[1] and type-[2] nodes do. Note that this

type of assortative condition, that is, more edges within communities than be-

tween communities, is often required for algorithm-based community detection

methods, such as modularity maximization and minimum-cut. For probabilis-

tic model-based approaches, such as the stochastic block model, a community is

defined based on nodes that are stochastically equivalent (Fienberg, Meyer and

Wasserman (1985)). Two nodes are stochastically equivalent if the probability

of any event pertaining to the graph remains unchanged if the two nodes are

exchanged. In model-based approaches, assortative conditions are generally not

required to identify communities.
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In the case when L = 2 and K = 2, the conditions in (4.1) are satisfied if

P
[1]
11 + P

[2]
11 + P

[12]
11 + P

[21]
11 > P

[1]
12 + P

[2]
12 + P

[12]
12 + P

[21]
12 ,

P
[1]
22 + P

[2]
22 + P

[12]
22 + P

[21]
22 > P

[1]
12 + P

[2]
12 + P

[12]
12 + P

[21]
12 .

These conditions describe that, on average, edges are more likely to be established

within communities.

In a bipartite graph with K communities, we have L = 2, P
[1]
ab = 0, and

P
[2]
ab = 0, for 1 ≤ a ≤ b ≤ K. Define

T
[12]
ab =

π
[1]
a π

[2]
b P

[12]
ab∑

ab π
[1]
a π

[2]
b P

[12]
ab

, 1 ≤ a 6= b ≤ K.

Write W [12] = T [12] − (T [12]1)(T [12]1)′. In this case, the assortative mixing con-

dition (4.1) simplifies to

W [12]
aa > 0, W

[12]
ab < 0 for all 1 ≤ a 6= b ≤ K. (4.2)

In the simple case of K = 2, the conditions in (4.2) simplify to

P
[12]
11 P

[12]
22 > (P

[12]
12 )2, P

[12]
11 P

[12]
22 > (P

[12]
21 )2,

which are satisfied if P
[12]
11 > P

[12]
12 , P

[12]
11 > P

[12]
21 , P

[12]
22 > P

[12]
12 , and P

[12]
22 >

P
[12]
21 . These conditions describe the settings in which edges are more likely to be

established within communities than they are between communities.

Consider the homogeneous method in which the heterogeneous network with

L types of nodes is divided into L homogeneous networks. In the lth homogeneous

network, to correctly label the type-[l] nodes with K communities, a sufficient

condition (Zhao, Levina and Zhu (2012)) is

W [l]
aa > 0, W

[l]
ab < 0 for all a 6= b, (4.3)

where T
[l]
ab = (π

[l]
a π

[l]
b P

[l]
ab)/(

∑
ab π

[l]
a π

[l]
b P

[l]
ab), W [l] = T [l] − (T [l]1)(T [l]1)′. Hence,

to achieve the consistency result in Theorem 2, it requires W
[l]
aa > 0, W

[l]
ab < 0,

for all l = 1, . . . , L. In comparison, Condition (4.1) only requires
∑L

l=1W
[l]
aa +∑L

l1 6=l2
W

[l1l2]
aa > 0 and

∑L
l=1W

[l]
ab +

∑L
l1 6=l2

W
[l1l2]
ab < 0, for all a 6= b. Essentially,

(4.3) requires that a community structure exists for each type of edge.

5. Simulation Study

In this section, we evaluate the performance of the proposed method using

simulated heterogeneous networks. Then, we compare this to the performance

of the following methods:
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• Method 1 (homogeneous method): treat the whole heterogeneous net-

work as one homogeneous network; that is, do not distinguish between types

of nodes or edges;

• Method 2 (homogeneous method): decompose the heterogeneous net-

work with L types of nodes into L homogeneous networks, and consider

each homogeneous network separately, that is, discard information on the

edges linking different types of nodes.

The community assignments from Method 1 and Method 2 are obtained by maxi-

mizing the modularity functions defined on the homogeneous networks (Newman

and Girvan (2004)). When finding communities using the three methods, we do

not fix the number of the communities, instead treating it as an unknown quan-

tity.

The model used to generate heterogeneous networks has two types of nodes

(L = 2) and three communities (K = 3). We consider a stochastic block model

type of structure with the probability matrix

P =

(
P [1] P [12]

P [21] P [2]

)
,

where

P [1] = p11K1′K + r1IK ,

P [2] = p21K1′K + r2IK ,

P [12] = P [21] = p31K1′K + r3IK ,

where 1K is a K-vector of ones, and IK is a K-by-K identity matrix. Here P [1]

is a 3× 3 probability matrix characterizing the connection probabilities between

type-[1] nodes in the three communities. For example, P
[1]
22 is the probability of

there being an edge between two type-[1] nodes that are both in the second com-

munity. Similarly, P [2] is the probability matrix characterizing the connection

probabilities between type-[2] nodes in the three communities, and P [12] and P [21]

characterize the connection probabilities between nodes of different types. In the

type-[1] (type-[2]) homogeneous network, p1 (p2) represents the inter-community

connection probability, and p1 +r1 (p2 +r2) represents the intra-community con-

nection probability. In the type-[1] to type-[2] bipartite network, p3 describes

the inter-community connection probability, and p3 + r3 describes the intra-

community connection probability. Therefore, the strength of the community

structure is regulated by r1, r2, and r3.

Our main goal in this simulation is to investigate how the clustering results
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from the three methods change with r3 under different settings. A higher value

for r3 results in a stronger intra-community connection between a type-[1] node

and a type-[2] node; that is, more information is contained in the edges linking

different types of nodes.

We consider three simulation settings. In all three settings, we gradually

increase r3 and compare the performance of the proposed method, Method 1,

and Method 2. In Simulation 1, the two homogeneous networks of type-[1] nodes

and type-[2] nodes both have weak community structures. In Simulation 2, the

homogeneous network of type-[1] nodes has a weak community structure and the

homogeneous network of type-[2] nodes has no community structure. In Simula-

tion 3, neither of the two homogeneous networks has a community structure. We

set the number of type-[1] nodes to 600 and assign 200 nodes to each commu-

nity, and set the number of type-[2] nodes to 300 and assign 100 nodes to each

community.

Before we discuss the results from the simulations, we first introduce a nu-

merical measure for quantifying the difference between two partitions. In this

work, we adopt the normalized mutual information (NMI) measure (Danon et

al. (2005)). Consider the community assignment {xi} and {yi}, where xi and yi
indicate the cluster labels of vertex i in partitions X and Y, respectively. Assume

that the labels x and y are the observed values of two random variables X and

Y , respectively. The NMI is defined as

NMI(X ,Y) =
2I(X,Y )

H(X) +H(Y )
,

where I(X,Y ) = H(X) − H(X|Y ) is the mutual information and H(X) =

−
∑

x P (x) logP (x) is the Shannon entropy of X. The NMI is equal to one if the

two partitions are identical, and its expected value is zero if the two partitions

are independent.

Simulation Setting 1:

In this simulation, we set the parameters as follows: p1 = 0.1, r1 = 0.05,

p2 = 0.2, r2 = 0.1, and p3 = 0.05. Under this setting, there are weak commu-

nity structures within both node types. We can see type-[1] nodes and type-[2]

nodes behave quite differently. Compared with type-[1] nodes, type-[2] nodes

are much more densely connected amongst themselves. In this simulation, we

gradually change r3 from 0.05 to 0.15. For each r3 value, we simulate 100 het-

erogeneous networks from the model. For each heterogeneous network, we apply

the proposed method, Method 1, and Method 2, and calculate the NMI between

the obtained community detection results and the true community membership.
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The average of the NMI from the 100 simulations is summarized in the top panel

of Figure 3.

We can see that the proposed method outperforms Method 1 and Method 2

on all values of r3. Method 2 does not have satisfactory performance, with an

average NMI below 0.25 for both types of nodes. This is because the two homo-

geneous networks of type-[1] and type-[2] nodes both have very weak community

structures, and Method 2 does not consider the edges linking different types of

nodes. Note that our proposed method performs well even when the connections

between type-[1] nodes and type-[2] nodes display a weak community structure

for r3 = 0.05.

Simulation Setting 2:

In this simulation, we set the parameters as follows: p1 = 0.1, r1 = 0.05,

p2 = 0.2, r2 = 0, and p3 = 0.05. Under this setting, the homogeneous network

of type-[2] nodes has no community structure. Similarly to Simulation 1, we

gradually increase r3 from 0.05 to 0.15 and simulate 100 heterogeneous networks

from the model. The average NMI from the 100 simulations is summarized in

the middle panel of Figure 3.

We can see the proposed method outperforms Method 1 and Method 2 for all

values of r3. For type-[2] nodes, the NMI from Method 2 is zero because r2 = 0.

When r3 = 0.05, the proposed method yields unsatisfactory performance. This

is because the community structure is very weak between type-[1] nodes and

between type-[1] and type-[2] nodes. When r3 increases slightly to 0.075, we see

a notable improvement in the performance of the proposed method.

Simulation Setting 3:

In this simulation, we set the parameters as follows: p1 = 0.1, r1 = 0, p2 =

0.2, r2 = 0, and p3 = 0.05. Under this setting, there are no community structures

within type-[1] nodes or type-[2] nodes. We gradually increase r3 from 0.05 to

0.20. The average NMI from 100 simulations between the true membership and

the community membership, calculated using the proposed method, Method 1,

and Method 2, are summarized in the bottom panel of Figure 3.

We can see that the proposed method performs best consistently. The NMI

from Method 2 is zero for both types of nodes, because there are no community

structures within either type of node. For r3 = 0.05 and 0.075, the proposed

method yields an NMI below 0.4 for both types of nodes. The low NMI is a

result of the weak community structure in the simulated heterogeneous networks,

with both r1 and r2 equal to zero. When r3 increases to 0.1, we see a significant

improvement in the performance of the proposed method, whereas Method 1 still
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Figure 3. Average NMI between the true community membership and the community
membership obtained from the proposed method (black dashed line), Method 1 (red solid
line), and Method 2 (red dashed line). Top panel: results from Simulation 1; middle
panel: results from Simulation 2; bottom panel: results from Simulation 3.
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Table 1. The conferences in each community and the research areas they cover.

Community Conferences Research Area
1 PODS, ICDE, SIGMOD, EDBT, VLDB Database
2 ICDM, PAKDD, PKDD, KDD, SDM Data Mining
3 AAAI, IJCAI, ECML, ICML, CVPR Artificial Intelligence
4 WWW, WSDM, CIKM, ECIR, SIGIR Information Retrieval

performs poorly.

6. Real-Data Application

6.1. The digital bibliography & library project (DBLP) data set

The DBLP is a computer science bibliography website, listing more than 3.4

million journal articles, conference papers, and other publications in computer

science. Gao et al. (2009) and Ji et al. (2010) extracted a connected subset of

the DBLP data set, containing bibliographical records from four research areas:

databases, data mining, information retrieval, and artificial intelligence. This

network contains three types of nodes: paper, conference, and author. Between

the three types of nodes, there are two types of edges: paper–conference (pa-

per published at conference), and paper–author (paper written by author). This

data set consists of 14,376 papers, written by 14,475 authors and published at

20 conferences. Each conference is labeled with the research area it covers. Each

research area has five conferences. The true research area is available for 4,057

authors who are connected to a subset of 14,328 papers, covering all 20 con-

ferences. The objective in this real-data application is to correctly identify the

research areas of the authors. Because the error rates can be calculated for

labeled authors only, we focus our analysis on this subset of the data.

Applying the proposed maximization method to the heterogeneous network

modularity function with K = 4 and κ = 100, we cluster the heterogeneous

network into four communities, with the maximized modularity value 0.65. One

application of the proposed maximization procedure completes in less than 20

seconds on an iMac with 3.2 GHz Intel Core i5. We label the research area of

each community using the conferences each community contains (see Table 1).

The misclassification rate for the conferences is 0%. We label the authors in

each community with the research area to which the community belongs, and

compare the labels and the ground truth. The misclassification rate for the

authors is 8.84%.
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We also considered Method 1 and Method 2, described in Section 5. Method

1 considers a homogeneous model in which the heterogeneous network is treated

as a homogeneous network; that is, it does not distinguish between types of nodes

or edges. To find the community structure in the homogeneous model, we used

the standard Newman–Girvan modularity function and the Louvain maximiza-

tion approach, with K fixed at the ground truth (i.e., K = 4). The identified

communities are very difficult to interpret. For example, one community contains

only papers and one community contains only conferences. This is not surprising,

because the homogeneous method treats author nodes, paper nodes, and confer-

ence nodes equally, even though they behave differently in the DBLP network.

In comparison, our proposed heterogeneous model clusters authors, papers, and

conferences into the four known research areas, with misclassification rates of 0%

and 8.84% for conferences and authors, respectively. Method 2 cannot be ap-

plied because there are no author–author, paper–paper, or conference–conference

connections.

6.2. MovieLens data set

MovieLens (https://movielens.org/) is a website that allows users to

review movies. Based on their reviews, users can receive personalized movie

recommendations. The website was created in 1997 by a research lab in the

Department of Computer Science and Engineering at the University of Min-

nesota in order to collect research data (Harper and Konstan (2016)). The

MovieLens data set (https://grouplens.org/datasets/movielens/) contains

reviews from 943 users on 1,682 movies from 18 movie genres (action, adventure,

animation, children’s, comedy, crime, documentary, drama, fantasy, film-noir,

horror, musical, mystery, romance, sci-fi, thriller, war, and western). Using the

MovieLens data set, we construct a heterogeneous network with three types of

nodes (user, movie, and genre), and two types of edges (user–movie (movie re-

viewed by user), and movie–genre (movie contained in genre)). The objective in

this real-data application is to identify communities within this heterogeneous

network. The identified communities can be used to classify movies and users,

and make movie recommendations because users are more likely to watch the

movies that are in the same community.

Applying the proposed heterogeneous network community detection tech-

nique with κ = 100, we identified seven communities, with a maximized modu-

larity value of 0.33. Table 2 shows the genre node(s) and the numbers of movies

and users (percentage of the total) contained in each community. We can see that

https://movielens.org/
https://grouplens.org/datasets/movielens/
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Table 2. Movie genre, number of movies, and number of users by community.

Community Movie Genre
# of movies
(% of total)

# of users
(% of total)

1 Drama, War 27% 21%
2 Crime, Film-Noir, Mystery, Thriller 16% 36%
3 Horror 5% 3%
4 Action, Adventure, Sci-Fi, Western 14% 17%
5 Comedy, Romance 26% 16%
6 Animation, Children’s, Fantasy, Muscial 9% 6%
7 Documentary 3% 1%

Community 2 is the most popular community (about 36% of all users), and that

Community 7 is the least popular community (less than 2% of all users). Inter-

estingly, each community contains distinctive types of movies, which can help us

understand the users’ movie preferences in each community. For example, users

in Community 6 watch movies from the animation, children’s, fantasy, and mu-

sical genres. This preference is quite different to that of users in Community 2,

who watch movies from the crime, file-noir, mystery, and thriller genres. We can

also see that horror and documentary each form their own small communities.

In the MovieLens data set, demographic information (e.g., on gender and

occupation) is available for some users. Over 70% of the identified male users

are in Communities 1, 2, and 4; over 60% of the identified female users are in

Communities 1 and 2. We find that Communities 3 and 7 are the least popular

among users who are listed as students (the two communities together contain less

than 4% of the student users). Communities 1 and 2 are the most popular among

users who are listed as educators or administrators (the two communities together

contain over 70% of the educator users and 55% of the administrator users).

Community 4 is the most popular among users who are listed as programmers

or engineers (this community contains over 30% of the engineer users and over

30% of the programmer users).

We also considered the same homogeneous model (Method 1) as in Section

6.1. In this data set, we do not know the ground truth; therefore, the number

of communities K is not fixed. The homogeneous method found K = 5 clusters.

However, the result is difficult to interpret. For example, one cluster contains only

movies, but no users or genres. One cluster contains only movies and users, but no

movie genres. This is not entirely surprising, because the homogeneous method

treats users, movies, and genres equally, even though they behave differently in

the heterogeneous network.



626 ZHANG AND CHEN

7. Discussion

We propose a modularity-based framework for community detection on het-

erogeneous networks. Specifically, we define a null model for heterogeneous net-

works. Furthermore, we propose a modularity maximization method that can

handle very large networks. We show that under a heterogeneous stochastic

blockmodel, the proposed modularity function is consistent as a community de-

tection criterion. The proposed community detection approach performs well

with both simulated and real-world networks.

With regard to other heterogeneous network-based methods, a spectral clus-

tering approach was proposed by Sengupta and Chen (2015). Spectral clus-

tering methods assume that the number of communities K is known a priori,

whereas, we do not require that K be prespecified. Moreover, the heterogeneous

spectral clustering method clusters each type of node into K homogeneous clus-

ters, whereas we cluster all nodes into K heterogeneous clusters. Therefore, the

two methods are not directly comparable. For the finite-sample performance

of modularity-based methods and spectral clustering-based methods for network

community detection, please see Yang et al. (2016), and the references therein.

If we treat the heterogeneous network with L types of nodes and K communi-

ties as a homogeneous network with L×K communities, modularity-based com-

munity detection would require that all L×K communities be assortative, that

is, more edges within communities and fewer edges between communities (Zhao,

Levina and Zhu (2012); Zhang and Chen (2016)). This is in fact a much stronger

condition than that needed for heterogeneous community detection, which only

requires, on average, that more edges are placed within the K heterogeneous

communities and fewer edges are placed between these communities. Please find

additional simulation results in the Supplementary material.

Note that the maximization of the proposed modularity function is not tied

to the Louvain method. In fact, several existing modularity maximization tech-

niques can be applied to our setting, with some modifications, such as the spectral

method based on the eigen decomposition of the modularity matrix (Newman

(2006)) or the stochastic maximization method (Massen and Doye (2005)). How-

ever, in practice, we find that the Louvain method yields a better modularity

maximum than the other methods do, and is computationally more efficient.

Another suitable approach is to apply the spectral method proposed in Sengupta

and Chen (2015), which performs a K-means clustering of the K eigenvectors

corresponding to the K largest eigenvalues of the regularized graph Laplacian
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matrix.

It is important to point out that in our work, we are interested in finding

K assortative communities that are heterogeneous, that is, communities with L

different types of nodes. However, if one is interested in finding K communities

such that each community is homogeneous and the communities are assortative,

that is, more links within communities and fewer links between communities, then

this becomes a different community detection problem, because the motivation

and interpretations of the communities under this setting would be very different

to those considered in our work.

The proposed method can be extended to directed heterogeneous networks.

Several approaches have been proposed for finding communities in directed ho-

mogeneous networks using modified modularity functions (see Fortunato (2010)

for a review). To incorporate directed edges into our framework, we need to de-

fine a null model for directed heterogeneous networks. Furthermore, we need to

calculate the expectations under the null model. This is left for future research.

Supplementary Material

The online Supplementary Material includes proofs for Theorem 1 and The-

orem 2, as well as additional simulation results.
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