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Abstract: This study investigates regression analysis of multivariate current status

data using a class of flexible semiparametric transformation frailty models. The

maximum likelihood estimation procedure is derived for the problem. In particular,

a novel EM algorithm, which is quite stable and can be easily implemented, is

developed. In addition, the asymptotic properties of the resulting estimators are

established, and a numerical study indicates that the proposed methodology works

well in practical situations. An application is provided to illustrate the proposed

method.
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1. Introduction

Current status data, also known as case-1 interval-censored failure time data,

occur frequently in many fields, such as demographic investigations, epidemiol-

ogy studies, and tumorigenicity experiments (Huang (1996); Rossini and Tsiatis

(1996); Lin, Oakes and Ying (1998); Martinussen and Scheike (2002); Jewell and

van der Laan (2004); Xue, Lam and Li (2004); Sun (2006); Zeng, Mao and Lin

(2016)). For such data, each subject in the study is observed only once, and

we only know that the failure event of interest occurs either before or after the

observation time. In other words, the failure time is either left- or right-censored,

and can not be observed exactly. Multivariate current status data mean that the

failure time study involves several correlated failure times of interest, and only

current status data are available for each of the failure times of interest (Dunson

and Dinse (2002); Jewell, van der Laan and Lei (2005); Chen, Tong and Sun

(2009)).

A great deal of literature has been developed for regression analysis of uni-

variate and multivariate current status data (Sun (2006)). For the latter, how-
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ever, most of existing methods apply only to some restricted models or limited

situations. For analysis of multivariate failure time data, one of the main chal-

lenges is how to deal with the correlation between the correlated failure times.

Here, two general approaches are commonly used: marginal model-based meth-

ods, and frailty model-based methods. The former leaves the correlation as

arbitrary, and treats the failure times of interest as independent, which is of-

ten referred to as the working independence assumption (Wei, Lin and Weissfeld

(1989); Goggins and Finkelstein (2000); Chen, Tong and Sun (2007)). The ad-

vantage of these methods is their simplicity because, for example, the likelihood

function and the corresponding estimation procedure can be relatively simple

and easily derived. On the other hand, they may not be efficient compared with

the frailty model-based methods (Guo and Rodriguez (1992)).

A frailty model-based approach usually tries to model the relationship be-

tween the correlated failure times of interest directly using the latent variable

or frailty. Among others, Wen and Chen (2011) and Wang, Wang and McMa-

han (2015) recently proposed such methods for regression analysis of bivariate

current status data under the gamma frailty proportional hazards model. The

former developed a nonparametric maximum likelihood technique, and the latter

employed a spline-based EM algorithm to estimate the parameters of the model.

Note that the marginal approach aims to estimate the population-average co-

variate effect, whereas the frailty approach allows us to estimate subject-specific

effects. Furthermore, it is well known that the proportional hazards model may

not provide a proper fit. In the following, we develop a frailty model-based ap-

proach using a class of flexible semiparametric transformation frailty models. In

addition to the differences discussed above between univariate and multivariate

current status data, it is clear that the multivariate data also have much more

complex structures.

The remainder of the paper is organized as follows. In Section 2, we intro-

duce our notation and the assumptions that will be used throughout the paper.

The semiparametric transformation frailty models are then described, along with

the resulting likelihood function. Section 3 provides the nonparametric maximum

likelihood estimation procedure, which is implemented through a novel EM algo-

rithm involving some Poisson latent variables. In particular, the algorithm em-

ploys the probability integral transformation technique and the Gauss-Hermite

quadrature method in the E-step. In Section 4, the asymptotic properties of

the resulting estimators, including the consistency, asymptotical normality, and

semiparametric efficiency, are established. Section 5 presents the results obtained
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from a simulation study, which suggest that the proposed methodology works well

for practical situations. In Section 6, we illustrate the proposed method by means

of a real-data example. Section 7 concludes the paper.

2. Notation, Assumptions, and the Likelihood Function

Consider a failure time study that involves n independent subjects, where

each subject can experience K possibly correlated failure events of interest. For

subject i, let Tik denote the failure time of the kth event, and let Xik be the

corresponding d-dimensional vector of covariates, for i = 1, . . . , n. Suppose that

for each Tik, only one observation is available at observation time Cik, and we

only know that the event occurs either before or after Cik. In other words, Tik
is either left- or right-censored at Cik, and the observed data have the form

Oik = {Cik,∆ik = I(Tik ≤ Cik), Xik}, with I(·) being the indicator function. In

the following, we assume that Tik and Cik are conditionally independent, given

the covariate Xik.

To describe the covariate effects, we assume that there exists a latent variable

bi and, given Xik and bi, the cumulative hazard function of Tik has the form

Gk

{
Λk(t)e

XT
ikβbi

}
, (2.1)

where Λk(t) denotes an unknown baseline cumulative hazard function, β is a d-

dimensional vector of regression parameters, and Gk is a prespecified increasing

function. Note that many authors, including Dabrowska and Doksum (1988)

and Zeng and Lin (2007), have discussed the same or similar models, and it is

easy to see that this class of models contains many commonly used models as

special cases. For example, by letting Gk(x) = x, we obtain the proportional

hazards frailty model and we obtain the proportional odds frailty model when

Gk(x) = log(1 + x). Note that in the class of models (2.1), we have assumed

that the covariate effects are the same for different failure times for simplicity of

presentation. If they are different, we can still apply the methodology proposed

below by simply defining a new, larger vector of covariates. In the following, we

assume that, given bi, Ti1, . . . , TiK are independent of each other, and that the

bi follow a parametric model with mean one and density function p(bi|γ), where

γ is an unknown parameter. Then, the likelihood function has the form

L(β, γ,Λ) =

n∏
i=1

∫
bi

K∏
k=1

{
1− exp

[
−Gk

{
Λk(Cik)e

XT
ikβbi

}]}∆ik

× exp
[
−Gk

{
Λk(Cik)e

XT
ikβbi

}]1−∆ik

p(bi|γ)dbi,
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with Λ = (Λ1, . . . ,ΛK). Maximizing L(β, γ,Λ) requires some numerical integra-

tion. Thus, a direct maximization is quite challenging and unstable, even under

a Cox model setting (Wang, Wang and McMahan (2015)). More importantly,

the resulting estimators have no closed forms, which naturally suggests the use

of the following EM algorithm.

Note that, as discussed by Kosorok, Lee and Fine (2004), in the class of

models (2.1), the transformation function Gk(x) can be derived by, or written in

the following Laplace transformation form:

exp{−Gk(x)} =

∫ ∞
0

e−xtφ(t|rk)dt,

where φ(t|rk) is a density function that depends on some constant rk, with sup-

port [0,∞). An example of φ(t|rk) is the gamma density function with mean one

and variance rk, which yields Gk(x) = log(1 + rkx)/rk, the logarithmic transfor-

mation function. One advantage of the latter form is that we can convert the

transformation frailty model into the proportional hazards model with two sets

of random effects. Specifically, let µik denote the latent variable following the

density function φ(t|rk). Then, the conditional survival function of Tik can be

expressed as

Sk(t|Xik, bi) =

∫
µik

exp
[
−µik

{
Λk(t)e

XT
ikβbi

}]
φ(µik|rk)dµik,

given Xik and bi. It follows that the likelihood function L(β, γ,Λ) can be rewrit-

ten as

L1(β, γ,Λ) =

n∏
i=1

∫
bi

K∏
k=1

∫
µik

{
1− exp

[
−µik

{
Λk(Cik)e

XT
ikβbi

}]}∆ik

(2.2)

× exp
[
−µik

{
Λk(Cik)e

XT
ikβbi

}]1−∆ik

φ(µik|rk)dµikp(bi|γ)dbi.

In the next section, we discuss the estimation of (β, γ,Λ), based on L1(β, γ,Λ)

given in (2.2).

3. Maximum Likelihood Estimation

Now, we discuss the estimation of (β, γ,Λ). To do so, we derive the nonpara-

metric maximum likelihood estimation procedure. For each k, let t1k < · · · < tnkk

denote the distinct ordered observation times of {Cik; i = 1, . . . , n}, and assume

that Λk is a step function with nonnegative jump size λlk at tlk, for l = 1, . . . , nk.

In other words, we have Λk(t) =
∑

tlk≤t λlk.
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L2(θ) =

n∏
i=1

∫
bi

K∏
k=1

∫
µik

1− exp

−µik
 ∑
tlk≤Cik

λlk

 eX
T
ikβbi


∆ik

× exp

−µik
 ∑
tlk≤Cik

λlk

 eX
T
ikβbi

1−∆ik

φ(µik|rk)dµikp(bi|γ)dbi.

In the following, we develop an EM algorithm based on a two-stage data aug-

mentation involving Poisson variables.

In the first stage, we assume that the latent variables bi and µik were known.

In this case, the likelihood function has the form

L3(θ) =

n∏
i=1

K∏
k=1

1− exp

−µik
 ∑
tlk≤Cik

λlk

 eX
T
ikβbi


∆ik

× exp

−µik
 ∑
tlk≤Cik

λlk

 eX
T
ikβbi

1−∆ik

φ(µik|rk)p(bi|γ).

In the second stage, define a mapping between ∆ik and a new latent variable Zik
by ∆ik = I(Zik > 0), where Zik =

∑
tlk≤Cik

Zilk, with Zilk being independent

Poisson random variable with mean µikλlke
XT

ikβbi (i = 1, . . . , n; k = 1, . . . ,K;

l = 1, . . . , nk). Hence, if Zilk were known, we would have the following complete

data likelihood function:

Lc(θ) =

n∏
i=1

K∏
k=1

nk∏
l=1

ψ(Zilk|µikλlkeX
T
ikβbi)φ(µik|rk)p(bi|γ),

subject to constraints that Zik =
∑

tlk≤Cik
Zilk > 0 if ∆ik = 1, and Zik =∑

tlk≤Cik
Zilk = 0 if ∆ik = 0. Here, ψ(Zilk|µikλlkeX

T
ikβbi) is the probability mass

function of Zilk, with parameter µikλlke
XT

ikβbi. Of course, by integrating out the

latent variables Zilk, Lc(θ) reduces back to L3(θ).

Let θ(m) denote the estimator of θ obtained in the mth iteration. To obtain

θ(m+1), in the E-step, we need to take the logarithm of the complete data like-

lihood function Lc(θ), and then calculate the following conditional expectations

with respect to all latent variables:

E(µikbi) = Ebi

{
bi

∆ik − exp(−Gk(Wik))G
′
k(Wik)

∆ik − exp(−Gk(Wik))

}
,

E(Zilk) = ∆ikλlke
XT

ikβEbi

{
bi

1− exp(−Gk(Wik))

}
I(tlk ≤ Cik)

+ λlke
XT

ikβE(µikbi)I(tlk > Cik),
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and

E{h(bi)}

=

∫
bi
h(bi)

∏K
k=1 {1− exp(−Gk(Wik))}∆ik exp{−Gk(Wik)}1−∆ikp(bi|γ)dbi∫

bi

∏K
k=1 {1− exp(−Gk(Wik))}∆ik exp{−Gk(Wik)}1−∆ikp(bi|γ)dbi

.

In the above, h(bi) is an arbitrary function of bi, Wik =
∑

tlk≤Cik
λlke

XT
ikβbi, and

G′(Wik) =

∫
µik

µike
−Wikµikφ(µik|rk)dµik

exp{−Gk(Wik)}
.

For notational simplicity, in the above, we have suppressed the conditional

arguments in all conditional expectations. In addition, note that if φ(µik|rk) is

the gamma density function, the integration above with respect to µik has the

following closed form:∫
µik

µike
−Wikµikφ(µik|rk)dµik = (rkWik + 1)−r

−1
k −1.

Otherwise we suggest employing the Gauss-Laguerre quadrature technique to

calculate the integration with respect to µik. To determine E{h(bi)}, we sug-

gest employing the probability integral transformation technique to transform bi
into a standard normal random variable, and then adopting the Gauss-Hermite

quadrature method. The numerical study below suggests that the joint use of

the probability integral transformation and the Gauss-Hermite quadrature per-

forms well in practice. Nelson et al. (2006) provides a detailed discussion on the

probability integral transformation when the random effects or frailties follow

nonnormal distributions.

In the M-step, we need to maximize the following objective function with

respect to θ:

Q(θ, θ(m)) =

n∑
i=1

K∑
k=1

nk∑
l=1

{
XT
ikβE(Zilk) + log(λlk)E(Zilk)− λlkeX

T
ikβE(µikbi)

}
+

n∑
i=1

E{log(p(bi|γ))}.

Setting ∂Q(θ, θ(m))/∂λlk = 0, we can update λlk with the following closed-

form expression

λlk =

∑n
i=1 E(Zilk)∑n

i=1 E(µikbi)eX
T
ikβ
, k = 1, . . . ,K, l = 1, . . . , nk. (3.1)

By substituting the estimators above into Q(θ, θ(m)), we obtain the score
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equations for β as

n∑
i=1

K∑
k=1

{(
nk∑
l=1

E(Zilk)

)(
Xik −

∑n
i=1 E(µikbi)e

XT
ikβXik∑n

i=1 E(µikbi)eX
T
ikβ

)}
= 0. (3.2)

Finally, by setting ∂Q(θ, θ(m))/∂γ = 0, the estimator of γ can be obtained

by solving the score equation
n∑
i=1

∂E{log(p(bi|γ))}
∂γ

= 0.

In summary, combining the above steps, the EM algorithm is given as follows:

Step 0. Choose an initial estimator θ(0).

Step 1. At the (m + 1)th iteration, first calculate the conditional expectations

E(µikbi), E(Zilk), and E{h(bi)} at θ(m).

Step 2. Update β(m+1) by solving equation (3.2) using the one step Newton-

Raphson method.

Step 3. Obtain λ
(m+1)
lk from expression (3.1).

Step 4. Calculate γ(m+1) by solving
∑n

i=1 ∂E{log(p(bi|γ))}/∂γ = 0.

Step 5. Repeat Steps 1-4 until convergence is achieved.

In the above estimation procedure, we have assumed that rk is known, be-

cause it is usually unidentifiable without other assumptions or extra data (Zeng

and Lin (2007)). In practice, a common way of determining it is to try different

values, and then to select the best or optimal value based on some criterion, such

as the maximum likelihood principle. This is discussed in further detail below.

4. Asymptotic Properties

Let ζ = (βT , γ)T , and let ζ0 = (βT0 , γ0)T and θ0 = (ζT0 ,Λ10, . . . ,ΛK0) denote

the true values of ζ and θ, respectively. In addition, let θ̂n = (ζ̂Tn , Λ̂1n, . . . , Λ̂Kn)

denote the maximum likelihood estimator of θ defined in the previous section.

In the following, we establish the asymptotic properties of θ̂n. To do so, we first

present some needed regularity conditions.

(A1) The true value ζ0 belongs to a known compact set A ⊗ B in Rd+1. In

addition, for given covariates, each examination time Ck has a continuous

conditional density function with support [τ1, τ2], and the true value Λk0(·) is

continuously differentiable with positive derivatives in [τ1, τ2], with M−1 <

Λk0(τ1) < Λk0(τ2) < M , for k = 1, . . . ,K, where M is a large positive

constant.

(A2) The covariate vector Xk is bounded.
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(A3) The transformation functionGk is twice continuously differentiable on [0,∞),

with Gk(0) = 0, G′k(x) > 0, and Gk(∞) =∞.

(A4) For any smooth function g(·), we have supγ∈C
∫
b g(b)p(j)(b|γ)db < ∞, for

j = 0, 1, 2, where p(j)(b|γ) denotes the jth derivative of p(b|γ) with respect

to γ.

(A5) There exist c1, . . . , cK ∈ [τ1, τ2], for which there are d+K + 1 values of

(∆1, . . . ,∆K , X1, . . . , XK), such that if(
uT

∂

∂ζ
+

K∑
k=1

vk
∂

∂yk

)∣∣∣∣
(ζ,y1,...,yK)=(ζ0,Λ10(c1),...,ΛK0(cK))

log

∫
b

K∏
k=1

{
∆k + (−1)∆k exp

[
−Gk

(
yke

XT
k βb
)]}

p(b|γ)db = 0

for each of these values, then u = 0(d+1)×1 and vk = 0. Here, 0(d+1)×1

denotes a (d+ 1)-dimensional vector of zeros.

The conditions above are mild and can be satisfied in practical situations.

Conditions (A1) and (A2) are standard conditions in survival analysis. Condi-

tion (A3) pertains to the transformation function, and it is easy to check that it

holds for the logarithmic transformation function Gr(x) = r−1 log(1+rx) (r ≥ 0)

among others. In addition, condition (A4) is often required for modeling multi-

variate data with frailty models, and condition (A5) is needed for the identifia-

bility of the model (Chang, Wen and Wu (2007)). Now, we are ready to present

the asymptotic properties of θ̂n. In the following, let ‖ · ‖ be the Euclidean

norm, and for a function f and a random variable X with distribution P , define

Pf =
∫
f(x)dP (x) and Pnf = n−1

∑n
i=1 f(Xi).

Theorem 1. Suppose that conditions (A1)–(A5) hold. Then, we have that as

n→∞, ‖ζ̂n − ζ0‖ → 0 and
∑K

k=1 supt∈[τ1,τ2] |Λ̂kn(t)−Λk0(t)| → 0 in probability.

Theorem 2. Suppose that conditions (A1)–(A5) hold. Then, we have that

as n → ∞, d(θ̂n, θ0) =
{
‖ζ̂n − ζ0‖2 +

∑K
k=1

∫
[Λ̂kn(c)− Λk0(c)]2fk(c)dc

}1/2
=

Op(n
−1/3), where fk(c) denotes the density of Ck.

Theorem 3. Suppose that conditions (A1)–(A5) hold. Then, we have that as

n → ∞,
√
n(ζ̂n − ζ0)

d−→ N(0, I−1
0 ), where I0 = P{l̃(θ0)l̃(θ0)T } with l̃(θ0), given

in the online supplementary Material, denoting the efficient score for ζ at θ0.

These theorems states that the maximum likelihood estimator ζ̂n is asymp-
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totically efficient, and that the estimator Λ̂kn only has a n−1/3 convergence rate.

The proofs for these results are provided in the online Supplementary Material.

To make inferences about β̂n and γ̂n based on the theorems above, we need

to estimate the asymptotic covariance matrix of the corresponding estimators.

Because it would be very difficult to derive a consistent estimator of I−1
0 , we

suggest employing the nonparametric bootstrap method (Efron (1981); Su and

Wang (2016)), as follows. Let Q be an integer, and for 1 ≤ q ≤ Q, draw a

new data set, denoted by of Q(q), of sample size n, with replacement, from the

original observed data O = (Oi = (Oi1, . . . , OiK); i = 1, . . . , n). Let β̂
(q)
n and

γ̂
(q)
n denote the maximum likelihood estimators of β0 and γ0, respectively, de-

fined above based on the bootstrap sample Q(q). Then, we can estimate the

covariance matrix and variance of β̂n and γ̂n using the sample covariance matrix

and variance of (β̂
(1)
n , . . . , β̂

(Q)
n ) and (γ̂

(1)
n , . . . , γ̂

(Q)
n ), respectively. The numerical

studies below indicate that this method works well for practical situations.

5. A Simulation Study

In this section, we report the results obtained from an extensive simulation

study, performed to investigate the finite-sample performance of the proposed

method. In the study, we considered K = 2 correlated failure times and, for

simplicity, we assumed that Ci1 = Ci2, with observation times generated from

the uniform distribution over (3, 5). We further assumed that Xi1 = Xi2, and

that there exist two covariates, with the first covariate generated from a Bernoulli

distribution with the success probability of 0.5, and the second covariate following

the uniform distribution over (0, 1). To generate the failure times, we took Gk
as the logarithmic transformation function, and let Λk(t) = 0.05t2. Then, we

supposed that the latent variable bi follows a log-normal distribution with mean

one and variance γ2
0 , or a gamma distribution with mean one and variance γ0.

The results given below are based on 1,000 replications, with Q = 50 and n = 200

or 400.

Table 1 presents the results for the estimation of β and γ with (β10, β20) =

(0, 0.5) or (0.5,−0.5) and γ0 = 1. They include the estimated bias (Bias) given by

the average of the estimates minus the true value, sample standard error (SSE)

of the estimates, average of the standard error estimates (SEE), and 95% em-

pirical coverage probability (CP). The table shows that the proposed maximum

likelihood estimators seem to be unbiased and the bootstrap variance estimates

are appropriate. In addition, the normal approximation to the distribution of the
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Table 1. Estimation of regression and variance parameters with the log-normal latent
variable distribution.

n (β10, β20) Par Bias SSE SEE CP (β10, β20) Par Bias SSE SEE CP
G1(x) = x & G2(x) = x

200 (0, 0.5) β1 −0.011 0.197 0.203 97.8 (0.5, −0.5) β1 −0.014 0.224 0.216 94.8
β2 −0.012 0.346 0.346 95.2 β2 −0.016 0.366 0.363 94.9
γ 0.022 0.174 0.170 94.9 γ 0.021 0.186 0.173 94.0

400 (0, 0.5) β1 0.006 0.150 0.150 95.0 (0.5, −0.5) β1 0.007 0.157 0.168 96.0
β2 −0.010 0.284 0.265 94.6 β2 −0.012 0.286 0.285 95.0
γ 0.012 0.136 0.130 95.0 γ 0.005 0.133 0.132 95.0

G1(x) = 2 log(1 + x/2) & G2(x) = 2 log(1 + x/2)
200 (0, 0.5) β1 −0.005 0.245 0.250 95.8 (0.5, −0.5) β1 0.009 0.273 0.269 95.0

β2 0.021 0.441 0.446 95.1 β2 0.024 0.419 0.432 96.8
γ 0.030 0.245 0.260 95.2 γ 0.025 0.244 0.248 95.2

400 (0, 0.5) β1 −0.004 0.169 0.172 95.2 (0.5, −0.5) β1 0.006 0.185 0.182 94.9
β2 0.009 0.310 0.311 95.2 β2 0.014 0.305 0.300 95.2
γ 0.023 0.177 0.177 95.0 γ 0.017 0.170 0.169 94.9

G1(x) = 2 log(1 + x/2) & G2(x) = log(1 + x)
200 (0, 0.5) β1 −0.010 0.246 0.260 96.4 (0.5, −0.5) β1 0.012 0.269 0.270 95.1

β2 0.018 0.452 0.452 95.6 β2 0.016 0.457 0.458 95.1
γ 0.033 0.262 0.281 95.8 γ 0.024 0.264 0.266 95.2

400 (0, 0.5) β1 −0.009 0.175 0.176 95.1 (0.5, −0.5) β1 0.011 0.188 0.185 94.4
β2 0.011 0.311 0.317 95.2 β2 −0.013 0.300 0.303 95.0
γ 0.021 0.180 0.185 95.6 γ 0.016 0.184 0.188 95.2

G1(x) = log(1 + x) & G2(x) = log(1 + x)
200 (0, 0.5) β1 0.005 0.279 0.280 95.3 (0.5, −0.5) β1 −0.010 0.276 0.287 95.0

β2 0.022 0.486 0.490 96.2 β2 −0.023 0.486 0.485 95.2
γ 0.028 0.275 0.299 96.1 γ 0.034 0.255 0.256 94.6

400 (0, 0.5) β1 −0.003 0.188 0.187 95.6 (0.5, −0.5) β1 0.009 0.196 0.196 95.0
β2 0.001 0.341 0.342 94.0 β2 0.014 0.346 0.347 95.1
γ 0.026 0.197 0.200 94.8 γ 0.023 0.191 0.190 94.8

estimators appears to be reasonable and, as expected, the results become better

when the sample size increases. Furthermore, the estimation procedure seems

to give similar performance for different Gk. We also considered other setups,

including different assumed functions for Λ1(t) and Λ2(t), other types of Gk, and

different distribution functions for bi. The results remained similar.

Note that the proposed method assumes that the distribution of bi is known.

Thus, a question of interest is how robust the estimation procedure is to the

misspecification of the latent variable distribution. To assess this, we repeated

the study in which we generated bi from a gamma distribution with mean one and

variance one, but assumed that they followed a log-normal distribution. Table
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Table 2. Estimation of regression parameters with the misspecified latent variable dis-
tribution.

(β10, β20) Par Bias SSE SEE CP (β10, β20) Par Bias SSE SEE CP
G1(x) = x & G2(x) = x

(0, 0.5) β1 −0.015 0.224 0.226 95.6 (0.5, −0.5) β1 0.035 0.253 0.252 95.8
β2 −0.016 0.396 0.395 95.2 β2 0.031 0.436 0.428 94.8

G1(x) = 2 log(1 + x/2) & G2(x) = 2 log(1 + x/2)
(0, 0.5) β1 −0.006 0.280 0.278 95.2 (0.5, −0.5) β1 0.028 0.288 0.290 94.8

β2 0.015 0.501 0.522 96.8 β2 −0.019 0.476 0.480 96.8
G1(x) = 2 log(1 + x/2) & G2(x) = log(1 + x)

(0, 0.5) β1 0.014 0.281 0.286 95.2 (0.5, −0.5) β1 0.020 0.304 0.304 96.0
β2 0.022 0.525 0.541 96.6 β2 −0.018 0.476 0.497 96.0

G1(x) = log(1 + x) & G2(x) = log(1 + x)
(0, 0.5) β1 0.011 0.282 0.297 95.4 (0.5, −0.5) β1 0.019 0.304 0.309 95.0

β2 0.022 0.562 0.569 96.2 β2 −0.025 0.512 0.517 94.8

2 gives the estimation results on β with n = 200; the other model specifications

are the same as those in Table 1. As in Table 1, the proposed estimators seem

to perform well, and the results suggest that the estimation procedure is robust

with respect to the latent variable distribution. For the question posed above, we

also studied situations in which bi was generated from a log-normal distribution,

but wrongly assumed to be from a gamma distribution; again, the results were

similar.

In the simulation study, we also compared the proposed method to that of

Wang, Wang and McMahan (2015), who discussed regression analysis of bivariate

current status data, with a special case of transformation modelsGk{Λk(t)eX
T
ikβ

(k)

bi}, with G1(x) = G2(x) = x and bi following a gamma distribution. For com-

parison, we repeated the study shown in Table 1, but with bi generated from a

gamma distribution with both mean and variance one, and one common covari-

ate following a Bernoulli distribution. The results are shown in Table 3. Note

that we only considered the estimated bias and sample standard error for the

estimation of β = (β(1), β(2))T with n = 200, various combinations of true values

for the regression parameters (β
(1)
0 , β

(2)
0 )T , and γ0 = 0.5, 1, or 1.5. In addition,

we assumed that the covariate effect may be different for two different failure

times and, as mentioned above, the proposed method can be applied to this situ-

ation. It is apparent that the two methods give similar results and, in particular,

exhibit similar efficiency.
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Table 3. Comparison of the proposed estimator with that of Wang, Wang and McMahan
(2015).

Proposed method Wang, Wang and McMahan (2015)

γ0 (β
(1)
0 , β

(2)
0 ) Par Bias SSE Bias SSE

0.5 (0, 0.5) β(1) −0.003 0.250 −0.002 0.250
β(2) 0.022 0.256 0.025 0.257
γ 0.009 0.215 0.026 0.232

(0.5, −0.5) β(1) 0.004 0.263 0.006 0.263
β(2) −0.026 0.278 −0.025 0.277
γ 0.022 0.236 0.042 0.253

1 (0, 0.5) β(1) 0.001 0.300 −0.002 0.299
β(2) 0.027 0.310 0.029 0.313
γ 0.035 0.292 0.045 0.328

(0.5, −0.5) β(1) −0.009 0.320 −0.011 0.322
β(2) 0.018 0.291 0.019 0.293
γ 0.042 0.397 0.040 0.420

1.5 (0, 0.5) β(1) 0.004 0.343 0.005 0.345
β(2) 0.017 0.355 0.019 0.354
γ 0.032 0.459 0.100 0.472

(0.5, −0.5) β(1) 0.003 0.351 0.001 0.343
β(2) −0.029 0.345 −0.035 0.351
γ 0.024 0.392 0.083 0.461

6. An Illustration

In this section, we apply the proposed methodology to a set of real bivariate

current status data from the Infertility Prevention Project, which was designed

as screening test for subjects at risk, in order to asses the prevalence of chlamy-

dia and gonorrhea throughout the United States. Chlamydia and gonorrhea are

sexually transmitted diseases that can frequently coexist and can lead to compli-

cated clinical syndromes if left untreated. The data set consists of 5,879 subjects

in Nebraska whose urine specimens were collected during the individuals’ visits

to health clinics in 2008, and then sent to the Nebraska Public Health Labora-

tory (NPHL) to test the infection status for both diseases. For the data, the

overall prevalence of chlamydia and gonorrhea is approximately 0.083 and 0.017,

respectively, and the factors or covariates of interest include the patient’s gender,

whether the patient is Caucasian, and whether the patient presents any symp-

toms at the time of test. For the analysis, as in many epidemiological surveys,

we focus on the ages of the subjects at infection, with the age at the test serving

as the observation time. In other words, we have Ci1 = Ci2 for the data.
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Table 4. Results on the analysis of the chlamydia and gonorrhea data, assuming the
same covariate effects.

Frailty PH frailty model PO frailty model Optimal model
distribution Est Std p-value Est Std p-value Est Std p-value
Log-normal Gender 0.097 0.096 0.311 0.107 0.111 0.334 0.119 0.085 0.165

C-America −0.749 0.096 <0.001 −0.786 0.094 <0.001 −0.826 0.105 <0.001
Symptoms 0.507 0.121 <0.001 0.549 0.144 <0.001 0.593 0.123 <0.001

Gamma Gender 0.101 0.104 0.332 0.112 0.107 0.293 0.115 0.083 0.166
C-America −0.756 0.099 <0.001 −0.797 0.101 <0.001 −0.810 0.097 <0.001
Symptoms 0.513 0.128 <0.001 0.560 0.127 <0.001 0.574 0.147 <0.001

Table 5. Results on the analysis of the chlamydia and gonorrhea data, assuming different
covariate effects.

Frailty PH frailty model PO frailty model Optimal model
distribution Est Std p-value Est Std p-value Est Std p-value
Log-normal Chlamydia

Gender 0.060 0.117 0.611 0.065 0.088 0.460 0.073 0.117 0.532
C-America −0.619 0.108 <0.001 −0.650 0.097 <0.001 −0.692 0.113 <0.001
Symptoms 0.296 0.125 0.017 0.314 0.111 0.005 0.340 0.148 0.021

Gonorrhea
Gender 0.318 0.189 0.091 0.335 0.190 0.078 0.363 0.206 0.079

C-America −1.577 0.303 <0.001 −1.599 0.346 <0.001 −1.636 0.298 <0.001
Symptoms 0.500 0.170 <0.001 1.346 0.203 <0.001 1.402 0.243 <0.001

Gamma Chlamydia
Gender 0.063 0.088 0.476 0.062 0.093 0.505 0.061 0.101 0.545

C-America −0.626 0.104 <0.001 −0.622 0.112 <0.001 −0.618 0.082 <0.001
Symptoms 0.301 0.130 0.020 0.296 0.130 0.023 0.293 0.142 0.038

Gonorrhea
Gender 0.328 0.223 0.143 0.325 0.214 0.129 0.323 0.217 0.137

C-America −1.582 0.261 <0.001 −1.578 0.266 <0.001 −1.574 0.304 <0.001
Symptoms 1.322 0.217 <0.001 1.316 0.217 <0.001 1.313 0.195 <0.001

To apply the proposed method, let T1 denote the age of chlamydia infection

and T2 be the age of gonorrhea infection. In addition, let Gender (1 for male,

and 0 for female), C-America (1 for yes, and 0 for no) and Symptoms (1 for yes,

and 0 for no) represent the three covariates described above. As in the simula-

tion study, we employed both log-normal and gamma frailty distributions for the

latent variable bi and the logarithmic transformation function. We considered

equally spaced grid points of r1 and r2, ranging from 0 to 3 with increments

of 0.1 for the transformation functions. Then the maximum likelihood princi-

ple was used to select the optimal model. According to the analysis, under the

log-normal and gamma frailty distributions, the optimal models were given by

(r1, r2) = (2.1, 2.6) and (r1, r2) = (1.3, 1.5), respectively. Table 4 gives the esti-
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Figure 1. The estimated baseline cumulative hazard functions for the chlamydia infection
(upper step function) versus the gonorrhea infection.

mated covariate effects obtained under the optimal model. For comparison, we

also include the corresponding results obtained under the proportional hazards

(PH) frailty model and the proportional odds (PO) frailty model. The results

include the point estimates, estimated standard errors, and p-values for testing

the no-covariate effect for each of the three covariates.

First, Table 4 shows that the results are quite consistent across the three

models and the two frailty distributions. They all suggest that Caucasians have

a significantly lower risk of being infected by chlamydia or gonorrhea than other

races. Furthermore, the patients with symptoms are more likely to develop infec-

tions than those without the symptoms. However, the risk of developing chlamy-

dia and gonorrhea infections does not seem to be significantly related to the gen-

der of the patients. In addition, under the optimal model with the log-normal

frailty distribution, we obtain γ̂n = 0.518, indicating that some correlation may

exist between the two failure events. Similar results were obtained under the

other models and frailty distribution.
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Note that, as mentioned above, with the class of models (2.1), we assumed

that the three covariates have the same effects on the two risks. As suggested

by a reviewer, we repeated the analysis by assuming that the effects may vary;

the results are shown in Table 5. It is apparent that the overall results and

conclusions are similar to those given above. On the other hand, it is clear that

the covariates Caucasian and Symptoms have much stronger effects on the risk

of gonorrhea infection than on the risk of chlamydia infection. To further see

this, Figure 1 shows the estimates of the baseline cumulative hazard functions

for chlamydia and gonorrhea infections under the optimal model with the log-

normal frailty. The results seem to indicate that the two baseline hazards are

quite different. Note that in the above analysis, we set the bootstrap sample size

to Q = 50, as in the simulation study. We also considered other values for Q,

and obtained similar results.

7. Conclusion

This study examines regression analysis of multivariate current status data

under a class of flexible semiparametric transformation frailty models, which

includes many existing models as special cases. For inference purpose, a non-

parametric maximum likelihood procedure is derived, and a novel EM algorithm

is developed using some Poisson random variables to implement the procedure in

an easy way. In addition, the asymptotic properties of the resulting estimators

are established and, in particular, the estimators of regression parameters are

shown to be efficient. In addition, a numerical study shows that the proposed

methodology works well in practical situations.

Note that one of the distinct features of the proposed EM algorithm is the

joint use of the probability integral transformation technique and the Gauss–

Hermite quadrature method, which allows us to easily calculate the conditional

expectations for various frailty distributions. The use of Poisson variables al-

lows us to calculate the high-dimensional parameters for the cumulative hazard

function explicitly, and to update the low-dimensional parameters β and γ using

one-step Newton-Raphson method, separately. As a result, this avoids the inver-

sion of the possibly high-dimensional matrix, making the estimating procedure

computationally stable.

The focus of the discussion presented here has been on time-independent

covariates. However, it is apparent that there may exist time-dependent covari-

ates. It is straightforward to generalize the idea and method discussed here to



1132 LI ET AL.

the latter situation, although we would need to reformulate the class of models

(2.1). In addition, we have assumed that rk is known, thus, it would be helpful

to develop simultaneous estimation procedures. However, as mentioned above,

this is usually not possible without additional assumptions or information, and

we can employ some selection criterion for their determination in practice. Note

that, according to our simulation study, a misspecification of rk could cause mild

bias, especially for the estimation of γ.

Supplementary Material

The online Supplementary Material contains the proofs for Theorems 1, 2,

and 3.
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