The Broken Adaptive Ridge Procedure and Its Applications

Linlin Dai, Kani Chen and Gang Li

Southwestern University of Finance and Economics, Hong Kong University of Science and Technology and University of California, Los Angeles

Supplementary Material

S1 Theorem Proofs

We first present some preliminaries. Let $\boldsymbol{\Sigma}_{n 1}=\mathbf{T}_{1}^{\prime} \boldsymbol{\Sigma}_{n} \mathbf{T}_{1}$ and $\boldsymbol{\Sigma}_{n 2}=$ $\mathbf{T}_{2}^{\prime} \boldsymbol{\Sigma}_{n} \mathbf{T}_{2}$. It follows from (2.1) that $\|\mathbf{g}(\tilde{\boldsymbol{\beta}})\|=O_{p}(\|\hat{\boldsymbol{\beta}}(\mathrm{OLS})\|)$. Multiplying both sides of equation (2.2) by $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left\{\mathbf{X}^{\prime} \mathbf{X}+\lambda_{n} \mathbf{D}(\boldsymbol{\beta})\right\}$ yields

$$
\begin{equation*}
\mathbf{g}(\boldsymbol{\beta})+\lambda_{n}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{D}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta})=\boldsymbol{\beta}_{0}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon} \tag{S1.1}
\end{equation*}
$$

Then, transform (S1.1) by \mathbf{T}^{\prime} and we have

$$
\mathbf{T}^{\prime}\left\{\mathbf{g}(\boldsymbol{\beta})-\boldsymbol{\beta}_{0}\right\}+\frac{\lambda_{n}}{n} \mathbf{T}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{D}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta})=\mathbf{T}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \varepsilon
$$

which is equivalent to

$$
\begin{equation*}
\mathbf{T}_{1}^{\prime}\left\{\mathbf{g}(\boldsymbol{\beta})-\boldsymbol{\beta}_{0}\right\}+\frac{\lambda_{n}}{n} \mathbf{T}_{1}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{D}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta})=\mathbf{T}_{1}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon} \tag{S1.2}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{T}_{2}^{\prime}\left\{\mathbf{g}(\boldsymbol{\beta})-\boldsymbol{\beta}_{0}\right\}+\frac{\lambda_{n}}{n} \mathbf{T}_{2}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{D}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta})=\mathbf{T}_{2}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon} \tag{S1.3}
\end{equation*}
$$

Note that $\mathbf{T}_{2}^{\prime} \boldsymbol{\beta}_{0}=0$. The equality (S1.3) can be written as

$$
\begin{align*}
& \mathbf{T}_{2}^{\prime} \mathbf{g}(\boldsymbol{\beta})+\frac{\lambda_{n}}{n} \mathbf{T}_{2}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{D}_{1}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta})+\frac{\lambda_{n}}{n} \mathbf{T}_{2}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{D}_{2}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta}) \tag{S1.4}\\
&=\mathbf{T}_{2}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon}
\end{align*}
$$

where $\mathbf{D}_{1}(\boldsymbol{\beta})=\sum_{k=1}^{q_{n}} \mathbf{d}_{k} \mathbf{d}_{k}^{\prime} / c_{k}^{2}(\boldsymbol{\beta})$ and $\mathbf{D}_{2}(\boldsymbol{\beta})=\sum_{k=q_{n}+1}^{K_{n}} \mathbf{d}_{k} \mathbf{d}_{k}^{\prime} / c_{k}^{2}(\boldsymbol{\beta})$. Furthermore, let $\boldsymbol{\Sigma}_{n 2}^{*}=\mathbf{T}_{2}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{T}_{2}$. Since $\mathbf{d}_{k}^{\prime} \mathbf{T}_{1}=\mathbf{0}$ for $k=q_{n}+1, \ldots, K_{n}$, equation (S1.4) equals

$$
\begin{align*}
& \mathbf{T}_{2}^{\prime} \mathbf{g}(\boldsymbol{\beta})+\frac{\lambda_{n}}{n} \mathbf{T}_{2}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{D}_{1}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta})+\frac{\lambda_{n}}{n} \boldsymbol{\Sigma}_{n 2}^{*} \mathbf{T}_{2}^{\prime} \mathbf{D}_{2}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta}) \tag{S1.5}\\
&=\mathbf{T}_{2}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon}
\end{align*}
$$

S1.1 Proof of Lemma 1

Proof. It follows from assumption (A1) that

$$
\begin{aligned}
E\left(\left\|\mathbf{T}_{2}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \varepsilon\right\|^{2}\right) & =E\left[\operatorname{tr}\left\{\varepsilon^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{T}_{2} \mathbf{T}_{2}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\varepsilon}\right\}\right] \\
& =\operatorname{tr}\left\{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{T}_{2} \mathbf{T}_{2}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E\left(\varepsilon \varepsilon^{\prime}\right) \mathbf{X}\right\} \\
& =\frac{\sigma^{2}}{n} \operatorname{tr}\left\{\mathbf{T}_{2}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{T}_{2}\right\} \\
& =O\left(\frac{p_{n}}{n}\right)
\end{aligned}
$$

Recall that $\mathfrak{B} \equiv\left\{\boldsymbol{\beta} \in \mathbb{R}^{p_{n}}:\left\|\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right\| \leq \delta_{n} \sqrt{p_{n} / n}\right\}$. According to assumptions (A2)-(A3), we have

$$
\begin{aligned}
\sup _{\boldsymbol{\beta} \in \mathfrak{B}}\left\|\frac{\lambda_{n}}{n} \mathbf{T}_{2}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{D}_{1}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta})\right\| & \leq \frac{\lambda_{n}}{n}\left\|\boldsymbol{\Sigma}_{n}^{-1}\right\| \sup _{\boldsymbol{\beta} \in \mathfrak{B}}\left\|\mathbf{D}_{1}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta})\right\| \\
& =O_{p}\left(\frac{\lambda_{n} q_{n} \sqrt{p_{n}}}{n b_{n}^{2}}\right)=o_{p}\left(\sqrt{\frac{p_{n}}{n}}\right) .
\end{aligned}
$$

Therefore, (S1.5) equals

$$
\begin{equation*}
\sup _{\boldsymbol{\beta} \in \mathfrak{B}}\left\|\mathbf{T}_{2}^{\prime} \mathbf{g}(\boldsymbol{\beta})+\frac{\lambda_{n}}{n} \boldsymbol{\Sigma}_{n 2}^{*} \mathbf{T}_{2}^{\prime} \mathbf{D}_{2}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta})\right\|=O_{p}\left(\sqrt{\frac{p_{n}}{n}}\right) \tag{S1.6}
\end{equation*}
$$

Since $\mathbf{d}_{k}^{\prime} \mathbf{T}_{1}=\mathbf{0}$, we have

$$
\begin{aligned}
\mathbf{D}_{2}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta}) & =\mathbf{D}_{2}(\boldsymbol{\beta}) \mathbf{T T}^{\prime} \mathbf{g}(\boldsymbol{\beta}) \\
& =\sum_{k=q_{n}+1}^{K_{n}} \frac{\mathbf{d}_{k} \mathbf{d}_{k}^{\prime}}{c_{k}^{2}(\boldsymbol{\beta})}\left(\mathbf{T}_{1} \vdots \mathbf{T}_{2}\right)\binom{\mathbf{T}_{1}^{\prime}}{\mathbf{T}_{2}^{\prime}} \mathbf{g}(\boldsymbol{\beta}) \\
& =\left\{0 \vdots \mathbf{D}_{2}(\boldsymbol{\beta}) \mathbf{T}_{2}\right\}\binom{\mathbf{T}_{1}^{\prime}}{\mathbf{T}_{2}^{\prime}} \mathbf{g}(\boldsymbol{\beta}) \\
& =\mathbf{D}_{2}(\boldsymbol{\beta}) \mathbf{T}_{2} \mathbf{T}_{2}^{\prime} \mathbf{g}(\boldsymbol{\beta})
\end{aligned}
$$

Set $\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})=\mathbf{T}_{2}^{\prime} \mathbf{g}(\boldsymbol{\beta})$ and $\tilde{\mathbf{D}}_{2}(\boldsymbol{\beta})=\mathbf{T}_{2}^{\prime} \mathbf{D}_{2}(\boldsymbol{\beta}) \mathbf{T}_{2}$. Then, by multiplying both sides of equation (S1.6) with $\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})^{\prime} \boldsymbol{\Sigma}_{n 2}^{*-1} /\left\|\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})\right\|$, we obtain

$$
\begin{equation*}
\sup _{\boldsymbol{\beta} \in \mathfrak{B}}\left\{\frac{\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})^{\prime} \boldsymbol{\Sigma}_{n 2}^{*-1} \boldsymbol{\gamma}^{*}(\boldsymbol{\beta})}{\left\|\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})\right\|}+\frac{\lambda_{n}}{n} \frac{\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})^{\prime} \tilde{\mathbf{D}}_{2}(\boldsymbol{\beta}) \boldsymbol{\gamma}^{*}(\boldsymbol{\beta})}{\left\|\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})\right\|}\right\}=O_{p}\left(\sqrt{\frac{p_{n}}{n}}\right) . \tag{S1.7}
\end{equation*}
$$

Note that here we are assuming that $\left\|\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})\right\| \neq 0$. Observe that both terms inside the supremum in equation (S1.7) are nonnegative. Therefore,

$$
\begin{equation*}
\frac{\lambda_{n}}{n} \sup _{\boldsymbol{\beta} \in \mathfrak{B}} \frac{\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})^{\prime} \tilde{\mathbf{D}}_{2}(\boldsymbol{\beta}) \boldsymbol{\gamma}^{*}(\boldsymbol{\beta})}{\left\|\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})\right\|}=O_{p}\left(\sqrt{\frac{p_{n}}{n}}\right) . \tag{S1.8}
\end{equation*}
$$

Since

$$
\tilde{\mathbf{D}}_{2}(\boldsymbol{\beta})=\sum_{k=q_{n}+1}^{K_{n}} \frac{\mathbf{T}_{2}^{\prime} \mathbf{d}_{k} \mathbf{d}_{k}^{\prime} \mathbf{T}_{2}}{c_{k}^{2}(\boldsymbol{\beta})}=\sum_{k=q_{n}+1}^{K_{n}} \frac{\mathbf{T}_{2}^{\prime} \mathbf{d}_{k} \mathbf{d}_{k}^{\prime} \mathbf{T}_{2}}{\left(\mathbf{d}_{k}^{\prime} \mathbf{T}_{2} \mathbf{T}_{2}^{\prime} \boldsymbol{\beta}\right)^{2}}=\sum_{k=q_{n}+1}^{K_{n}} \frac{\mathbf{d}_{k}^{*} \mathbf{d}_{k}^{* \prime}}{\left\{\mathbf{d}_{k}^{* \prime} \gamma(\boldsymbol{\beta})\right\}^{2}},
$$

where $\mathbf{d}_{k}^{*}=\mathbf{T}_{2}^{\prime} \mathbf{d}_{k}$ and $\boldsymbol{\gamma}(\boldsymbol{\beta})=\mathbf{T}_{2}^{\prime} \boldsymbol{\beta}$, it follows from (S1.8) that

$$
\frac{\lambda_{n}}{n} \sup _{\substack{q_{n}+1 \leq k \leq K_{n} \\ \boldsymbol{\beta} \in \mathfrak{B}}} \frac{\left\{\mathbf{d}_{k}^{* \prime} \boldsymbol{\gamma}^{*}(\boldsymbol{\beta})\right\}^{2}}{\left\{\mathbf{d}_{k}^{* \prime} \boldsymbol{\gamma}(\boldsymbol{\beta})\right\}^{2}\left\|\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})\right\|}=O_{p}\left(\sqrt{\frac{p_{n}}{n}}\right) .
$$

On the other hand, since \mathfrak{D} is a linear space spanned by $\mathbf{d}_{q_{n}+1}, \ldots, \mathbf{d}_{K_{n}}$ with orthonormal basis \mathbf{T}_{2}, for any unit vector a in \mathfrak{D}, there exist some $\tilde{\mathbf{d}}_{j}^{*} \in\left\{\mathbf{d}_{k}^{*}, q_{n}+1 \leq k \leq K_{n}\right\}$ such that $\left|\tilde{\mathbf{d}}_{j}^{* \prime} \mathbf{a}\right|>c_{3}$, for some constant $c_{3}>0$. Let $\tilde{\mathbf{d}}_{j}^{*}$ be such that $\left|\tilde{\mathbf{d}}_{j}^{* \prime} \gamma^{*}(\boldsymbol{\beta})\right|>c_{3}\left\|\gamma^{*}(\boldsymbol{\beta})\right\|$. Note that $\left|\tilde{\mathbf{d}}_{j}^{* \prime} \gamma(\boldsymbol{\beta})\right| \leq$ $\left\|\tilde{\mathbf{d}}_{j}^{* \prime}\right\|\|\gamma(\boldsymbol{\beta})\|$. Then,

$$
\begin{align*}
\frac{\left\|\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})\right\|}{\|\gamma(\boldsymbol{\beta})\|} & \leq c_{3}^{-1}\left|\tilde{\mathbf{d}}_{j}^{* \prime} \gamma^{*}(\boldsymbol{\beta})\right| \times \frac{\left\|\tilde{\mathbf{d}}_{j}^{* \prime}\right\|}{\left|\tilde{\mathbf{d}}_{j}^{* \prime} \gamma(\boldsymbol{\beta})\right|} \times \frac{\left|\tilde{\mathbf{d}}_{j}^{* \prime} \gamma^{*}(\boldsymbol{\beta})\right|}{c_{3}\left\|\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})\right\|} \tag{S1.9}\\
& \left.=\frac{\left\{\tilde{\mathbf{d}}_{j}^{* \prime} \gamma^{*}(\boldsymbol{\beta})\right\}^{2}}{\left\{\tilde{\mathbf{d}}_{j}^{* \prime} \boldsymbol{\gamma}(\boldsymbol{\beta})\right\}^{2}\left\|\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})\right\|}\left\|\tilde{\mathbf{d}}_{j}^{* \prime}\right\| \tilde{\mathbf{d}}_{j}^{* \prime} \gamma(\boldsymbol{\beta}) \right\rvert\, O_{p}(1) .
\end{align*}
$$

Since $\mathbf{T}_{2}^{\prime} \boldsymbol{\beta}_{0}=0$ and $\boldsymbol{\gamma}(\boldsymbol{\beta})=\mathbf{T}_{2}^{\prime} \boldsymbol{\beta}$, for $\boldsymbol{\beta} \in \mathfrak{B}$, we have $\|\boldsymbol{\gamma}(\boldsymbol{\beta})\| \leq \delta_{n} \sqrt{p_{n} / n}$. Together with $\delta_{n} p_{n} / \lambda_{n} \rightarrow 0$, (S1.9) implies that with probability tending to 1 ,

$$
\begin{equation*}
\sup _{\boldsymbol{\beta} \in \mathfrak{B}} \frac{\left\|\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})\right\|}{\|\boldsymbol{\gamma}(\boldsymbol{\beta})\|}=\sup _{\boldsymbol{\beta} \in \mathfrak{B}} \frac{\left\|\mathbf{T}_{2}^{\prime} \mathbf{g}(\boldsymbol{\beta})\right\|}{\left\|\mathbf{T}_{2}^{\prime} \boldsymbol{\beta}\right\|}=O_{p}\left(\frac{\delta_{n} p_{n}}{\lambda_{n}}\right)=o_{p}(1) . \tag{S1.10}
\end{equation*}
$$

This proves statement (b) in Lemma 1.
To show that with probability tending to $1, \mathbf{g}(\cdot)$ is a mapping from the ball \mathfrak{B} to itself, it suffices to show that

$$
\mathbf{P}\left(\sup _{\boldsymbol{\beta} \in \mathfrak{B}}\left\|\mathbf{T}_{1}^{\prime}\left\{\mathbf{g}(\boldsymbol{\beta})-\boldsymbol{\beta}_{0}\right\}\right\| \leq \delta_{n} \sqrt{\frac{p_{n}}{n}}\right) \rightarrow 1 .
$$

In a similar, we rewrite equation (S1.2) as

$$
\begin{aligned}
\mathbf{T}_{1}^{\prime}\left\{\mathbf{g}(\boldsymbol{\beta})-\boldsymbol{\beta}_{0}\right\}+ & \frac{\lambda_{n}}{n} \mathbf{T}_{1}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{D}_{1}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta}) \\
& +\frac{\lambda_{n}}{n} \mathbf{T}_{1}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{D}_{2}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta})=\mathbf{T}_{1}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \varepsilon
\end{aligned}
$$

Similar to equation (S1.6), we have

$$
\sup _{\boldsymbol{\beta} \in \mathfrak{B}}\left\|\mathbf{T}_{1}^{\prime}\left\{\mathbf{g}(\boldsymbol{\beta})-\boldsymbol{\beta}_{0}\right\}+\frac{\lambda_{n}}{n} \mathbf{T}_{1}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{D}_{2}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta})\right\|=O_{p}\left(\sqrt{\frac{p_{n}}{n}}\right) .
$$

Observe that

$$
\begin{aligned}
\sup _{\boldsymbol{\beta} \in \mathfrak{B}}\left\|\frac{\lambda_{n}}{n} \mathbf{T}_{1}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{D}_{2}(\boldsymbol{\beta}) \mathbf{g}(\boldsymbol{\beta})\right\| & =\sup _{\boldsymbol{\beta} \in \mathfrak{B}}\left\|\frac{\lambda_{n}}{n} \mathbf{T}_{1}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{T}_{2} \mathbf{T}_{2}^{\prime} \mathbf{D}_{2}(\boldsymbol{\beta}) \mathbf{T}_{2} \mathbf{T}_{2}^{\prime} \mathbf{g}(\boldsymbol{\beta})\right\| \\
& \leq \sup _{\boldsymbol{\beta} \in \mathfrak{B}}\left\|\frac{\lambda_{n}}{n} \tilde{\mathbf{D}}_{2}(\boldsymbol{\beta}) \boldsymbol{\gamma}^{*}(\boldsymbol{\beta})\right\| \cdot\left\|\mathbf{T}_{1}^{\prime} \boldsymbol{\Sigma}_{n}^{-1} \mathbf{T}_{2}\right\| \\
& =\sup _{\boldsymbol{\beta} \in \mathfrak{B}} \frac{\lambda_{n}}{n} \frac{\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})^{\prime} \tilde{\mathbf{D}}_{2}(\boldsymbol{\beta}) \boldsymbol{\gamma}^{*}(\boldsymbol{\beta})}{\left\|\boldsymbol{\gamma}^{*}(\boldsymbol{\beta})\right\|} O_{p}(1) \\
& =O_{p}\left(\sqrt{\frac{p_{n}}{n}}\right) .
\end{aligned}
$$

The last equation comes from (S1.8). Hence, we have

$$
\sup _{\boldsymbol{\beta} \in \mathfrak{B}}\left\|\mathbf{T}_{1}^{\prime}\left\{\mathbf{g}(\boldsymbol{\beta})-\boldsymbol{\beta}_{0}\right\}\right\|=O_{p}\left(\sqrt{\frac{p_{n}}{n}}\right) .
$$

It follows that

$$
\begin{equation*}
\mathbf{P}\left(\sup _{\boldsymbol{\beta} \in \mathfrak{B}}\left\|\mathbf{T}_{1}^{\prime}\left\{\mathbf{g}(\boldsymbol{\beta})-\boldsymbol{\beta}_{0}\right\}\right\| \leq \delta_{n} \sqrt{\frac{p_{n}}{n}}\right) \rightarrow 1 \tag{S1.11}
\end{equation*}
$$

On the other hand, the statement (S1.10) implies

$$
\begin{equation*}
\mathbf{P}\left(\sup _{\boldsymbol{\beta} \in \mathfrak{B}}\left\|\mathbf{T}_{2}^{\prime}\left\{\mathbf{g}(\boldsymbol{\beta})-\boldsymbol{\beta}_{0}\right\}\right\| \leq \delta_{n} \sqrt{\frac{p_{n}}{n}}\right) \rightarrow 1 \tag{S1.12}
\end{equation*}
$$

Hence, (S1.11) combined with (S1.12) yields

$$
\mathbf{P}\left(\sup _{\boldsymbol{\beta} \in \mathfrak{B}}\left\|\mathbf{g}(\boldsymbol{\beta})-\boldsymbol{\beta}_{0}\right\| \leq \delta_{n} \sqrt{\frac{p_{n}}{n}}\right) \rightarrow 1
$$

This proves that $\mathbf{g}(\cdot)$ is a mapping from \mathfrak{B} to itself with probability tending to 1 .

S1.2 Proof of Lemma 2

Proof. Recall that

$$
\left\{\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}+\lambda_{n} \tilde{\mathbf{D}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)\right\} \mathbf{f}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)=\mathbf{X}_{1}^{\prime} \mathbf{y}
$$

where $\mathbf{X}_{1}=\mathbf{X} \mathbf{T}_{1}$ and

$$
\tilde{\mathbf{D}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)=\mathbf{T}_{1}^{\prime} \sum_{k=1}^{q_{n}} \frac{\mathbf{d}_{k} \mathbf{d}_{k}^{\prime}}{\tilde{c}_{k}^{2}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)} \mathbf{T}_{1} \quad \text { with } \quad \tilde{c}_{k}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)=\mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \mathbf{T}_{1}^{\prime} \boldsymbol{\beta}
$$

Similarly, we have

$$
\mathbf{f}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)-\boldsymbol{\theta}_{0}+\frac{\lambda_{n}}{n} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \tilde{\mathbf{D}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) \mathbf{f}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)=\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \varepsilon
$$

where $\boldsymbol{\theta}_{0}=\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}_{0}$. Recalling that $\mathfrak{B}_{1}=\left\{\mathbf{T}_{1}^{\prime} \boldsymbol{\beta} \in \mathbb{R}^{m_{n}}:\left\|\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}-\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}_{0}\right\| \leq\right.$ $\left.\delta_{n} \sqrt{p_{n} / n}\right\}$. It is straightforward to show that $\mathbf{f}(\cdot)$ is a mapping from \mathfrak{B}_{1} to itself. In fact,

$$
\left\|\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \boldsymbol{\varepsilon}\right\|=O_{p}\left(\sqrt{\frac{m_{n}}{n}}\right)=o_{p}\left(\sqrt{\frac{p_{n}}{n}}\right)
$$

and

$$
\begin{aligned}
\sup _{\boldsymbol{\beta} \in \mathfrak{B}_{1}}\left\|\frac{\lambda_{n}}{n} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \tilde{\mathbf{D}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) \mathbf{f}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)\right\| & \leq \frac{\lambda_{n}}{n}\left\|\tilde{\boldsymbol{\Sigma}}_{n 1}^{-1}\right\| \sup _{\boldsymbol{\beta} \in \mathfrak{B}_{1}}\left\|\tilde{\mathbf{D}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) \mathbf{f}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)\right\| \\
& =O_{p}\left(\frac{\lambda_{n} q_{n} \sqrt{m_{n}}}{n b_{n}^{2}}\right) .
\end{aligned}
$$

Then, from assumption (A2), it follows that

$$
\sup _{\boldsymbol{\beta} \in \mathfrak{B}_{1}}\left\|\frac{\lambda_{n}}{n} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \tilde{\mathbf{D}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) \mathbf{f}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)\right\|=o_{p}\left(\sqrt{\frac{p_{n}}{n}}\right) .
$$

Therefore,

$$
\mathbf{P}\left(\sup _{\boldsymbol{\beta} \in \mathfrak{B}_{1}}\left\|\mathbf{f}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)-\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}_{0}\right\| \leq \delta_{n} \sqrt{\frac{p_{n}}{n}}\right) \rightarrow 1
$$

This completes the proof that $\mathbf{f}(\cdot)$ is a mapping from \mathfrak{B}_{1} to itself.
We next show that $\mathbf{f}(\cdot)$ is a contraction mapping. Since

$$
\begin{equation*}
\left\{\frac{1}{n} \mathbf{X}_{1}^{\prime} \mathbf{X}_{1}+\frac{\lambda_{n}}{n} \tilde{\mathbf{D}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)\right\} \mathbf{f}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)=\frac{1}{n} \mathbf{X}_{1}^{\prime} \mathbf{y} \tag{S1.13}
\end{equation*}
$$

differentiating both sides of equation (S1.13) with respect to $\boldsymbol{\beta}^{\prime}$ yields

$$
\left\{\boldsymbol{\Sigma}_{n 1}+\frac{\lambda_{n}}{n} \tilde{\mathbf{D}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)\right\} \dot{\mathbf{f}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) \mathbf{T}_{1}^{\prime}=\frac{2 \lambda_{n}}{n} \sum_{k=1}^{q_{n}} \frac{\mathbf{T}_{1}^{\prime} \mathbf{d}_{k} \mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \mathbf{f}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) \mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \mathbf{T}_{1}^{\prime}}{\left(\mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)^{3}}
$$

Hence, according to assumptions (A2) and (A3)

$$
\begin{aligned}
& \sup _{\boldsymbol{\beta} \in \mathfrak{B}_{1}}\left\|\left\{\boldsymbol{\Sigma}_{n 1}+\frac{\lambda_{n}}{n} \tilde{\mathbf{D}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)\right\} \dot{\mathbf{f}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) \mathbf{T}_{1}^{\prime}\right\| \\
& =\sup _{\boldsymbol{\beta} \in \mathfrak{B}_{1}}\left\|\frac{2 \lambda_{n}}{n} \sum_{k=1}^{q_{n}} \frac{\mathbf{T}_{1}^{\prime} \mathbf{d}_{k} \mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \mathbf{f}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) \mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \mathbf{T}_{1}^{\prime}}{\tilde{c}_{k}^{3}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)}\right\| \\
& =O_{p}\left(\frac{\lambda_{n} q_{n}}{n b_{n}^{3}} \sqrt{m_{n}}\right)=o_{p}(1) .
\end{aligned}
$$

Furthermore, since

$$
\begin{aligned}
& \sup _{\boldsymbol{\beta} \in \mathfrak{B}_{1}}\left\|\left\{\boldsymbol{\Sigma}_{n 1}+\frac{\lambda_{n}}{n} \tilde{\mathbf{D}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)\right\} \dot{\mathbf{f}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) \mathbf{T}_{1}^{\prime}\right\| \\
& \geq \sup _{\boldsymbol{\beta} \in \mathfrak{B}_{1}} \frac{1}{C}\left\|\dot{\mathbf{f}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) \mathbf{T}_{1}^{\prime}\right\|-\sup _{\boldsymbol{\beta} \in \mathfrak{B}_{1}} \frac{\lambda_{n}}{n}\left\|\tilde{\mathbf{D}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) \dot{\mathbf{f}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) \mathbf{T}_{1}^{\prime}\right\|,
\end{aligned}
$$

it follows from assumption (A2) that

$$
\sup _{\boldsymbol{\beta} \in \mathfrak{B}_{1}}\left\|\dot{\mathbf{f}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) \mathbf{T}_{1}^{\prime}\right\|=\sup _{\boldsymbol{\beta} \in \mathfrak{B}_{1}}\left\|\dot{\mathbf{f}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)\right\|=o_{p}(1) .
$$

Therefore, $\mathbf{f}(\cdot)$ is a contraction mapping from \mathfrak{B}_{1} to itself. This indicates that there exists one unique fixed point of $\mathbf{f}(\cdot)$ in the region \mathfrak{B}_{1} denoted as $\hat{\boldsymbol{\theta}}^{\circ}$ such that

$$
\mathbf{f}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)=\left\{\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}+\lambda_{n} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\right\}^{-1} \mathbf{X}_{1}^{\prime} \mathbf{y}
$$

Hence, by the first order resolvent expansion formula $(\mathbf{H}+\boldsymbol{\Delta})^{-1}=\mathbf{H}^{-1}-$ $\mathbf{H}^{-1} \boldsymbol{\Delta}(\mathbf{H}+\boldsymbol{\Delta})^{-1}$, we have
$\hat{\boldsymbol{\theta}}^{\circ}-\boldsymbol{\theta}_{0}$
$=\left\{\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}+\lambda_{n} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\right\}^{-1} \mathbf{X}_{1}^{\prime} \mathbf{y}-\boldsymbol{\theta}_{0}$
$=\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \mathbf{y}-\boldsymbol{\theta}_{0}-\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \lambda_{n} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\left\{\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}+\lambda_{n} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\right\}^{-1} \mathbf{X}_{1}^{\prime} \mathbf{y}$
$=\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \boldsymbol{\varepsilon}-\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \lambda_{n} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\left\{\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}+\lambda_{n} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\right\}^{-1} \mathbf{X}_{1}^{\prime}\left(\mathbf{X}_{1} \boldsymbol{\theta}_{0}+\boldsymbol{\varepsilon}\right)$
$=\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \boldsymbol{\varepsilon}-\frac{\lambda_{n}}{n} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\left\{\mathbf{I}_{m_{n}}+\frac{\lambda_{n}}{n} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\right\}^{-1} \boldsymbol{\theta}_{0}$
$-\frac{\lambda_{n}}{n} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\left\{\mathbf{I}_{m_{n}}+\frac{\lambda_{n}}{n} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\right\}^{-1} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \frac{\mathbf{X}_{1}^{\prime} \boldsymbol{\varepsilon}}{n}$.

Therefore, we have

$$
\begin{aligned}
& \sqrt{n} s_{n}^{-1} \mathbf{a}_{n}^{\prime}\left(\hat{\boldsymbol{\theta}}^{\circ}-\boldsymbol{\theta}_{0}\right) \\
& =s_{n}^{-1} \mathbf{a}_{n}^{\prime} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \frac{\mathbf{X}_{1}^{\prime} \boldsymbol{\varepsilon}}{\sqrt{n}}-\frac{\lambda_{n}}{\sqrt{n}} s_{n}^{-1} \mathbf{a}_{n}^{\prime} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\left\{\mathbf{I}_{m_{n}}+\frac{\lambda_{n}}{n} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\right\}^{-1} \boldsymbol{\theta}_{0} \\
& \quad-\frac{\lambda_{n}}{\sqrt{n}} s_{n}^{-1} \mathbf{a}_{n}^{\prime} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\left\{\mathbf{I}_{m_{n}}+\frac{\lambda_{n}}{n} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\right\}^{-1} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \frac{\mathbf{X}_{1}^{\prime} \boldsymbol{\varepsilon}}{n} \\
& =s_{n}^{-1} \mathbf{a}_{n}^{\prime} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \frac{\mathbf{X}_{1}^{\prime} \boldsymbol{\varepsilon}}{\sqrt{n}}-I_{1}-I_{2} .
\end{aligned}
$$

By assumption (A2) and the condition $\inf _{\boldsymbol{\beta} \in \mathfrak{B}_{1}}\left(\mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)^{2} \geq c_{1}\left(\mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \boldsymbol{\theta}_{0}\right)^{2}$,
we have

$$
\begin{aligned}
\left\|I_{1}\right\| & \leq \frac{\lambda_{n}}{\sqrt{n}} C^{2}\left\|\tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\left\{\mathbf{I}_{m_{n}}+\frac{\lambda_{n}}{n} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\right\}^{-1} \boldsymbol{\theta}_{0}\right\| \\
& \leq \frac{\lambda_{n}}{\sqrt{n}} C^{2}\left\|\tilde{\mathbf{D}}\left(\hat{\boldsymbol{\theta}}^{\circ}\right) \boldsymbol{\theta}_{0}\right\|\left\{1+o_{p}(1)\right\} \\
& \leq \frac{\lambda_{n}}{\sqrt{n}} C^{2}\left\|\sum_{k=1}^{q_{n}} \frac{\mathbf{T}_{1}^{\prime} \mathbf{d}_{k} \mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \boldsymbol{\theta}_{0}}{\left(\mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \hat{\boldsymbol{\theta}}^{\circ}\right)^{2}}\right\|\left\{1+o_{p}(1)\right\} \\
& =O_{p}\left(\frac{\lambda_{n} q_{n}}{\sqrt{n} b_{n}^{2}}\right) \rightarrow 0 .
\end{aligned}
$$

On the other hand,

$$
\left\|I_{2}\right\| \leq \frac{\lambda_{n}}{\sqrt{n} b_{n}^{2}} C^{3} q_{n}\left\|\frac{\mathbf{X}_{1}^{\prime} \varepsilon}{n}\right\|=O_{p}\left(\frac{\lambda_{n} q_{n}}{\sqrt{n} b_{n}^{2}}\right) O_{p}\left(\sqrt{\frac{m_{n}}{n}}\right)=o_{p}(1)
$$

As a result,

$$
\sqrt{n} s_{n}^{-1} \mathbf{a}_{n}^{\prime}\left(\hat{\boldsymbol{\theta}}^{\circ}-\boldsymbol{\theta}_{0}\right)=s_{n}^{-1} \mathbf{a}_{n}^{\prime} \tilde{\boldsymbol{\Sigma}}_{n 1}^{-1} \frac{\mathbf{X}_{1}^{\prime} \boldsymbol{\varepsilon}}{\sqrt{n}}+o_{p}(1)
$$

It follows from the Lindeberg-Feller central limit theorem that

$$
\sqrt{n} s_{n}^{-1} \mathbf{a}_{n}^{\prime}\left(\hat{\boldsymbol{\theta}}^{\circ}-\boldsymbol{\theta}_{0}\right) \rightarrow \mathcal{N}(0,1)
$$

This completes the proof of Lemma 2.

Proof of Theorem 1. Observe that Lemma 1 implies that

$$
\mathbf{P}\left(\lim _{j \rightarrow \infty} \mathbf{T}_{2}^{\prime} \hat{\boldsymbol{\beta}}^{(j)}=0\right) \rightarrow 1, \text { as } n \rightarrow \infty
$$

We show that with probability tending to $1, \lim _{j \rightarrow \infty} \mathbf{T}_{1}{ }^{\prime}{ }^{(j)}$ exists. Since $\mathbf{d}_{k}^{\prime} \mathbf{T}_{1}=\mathbf{0}$, for all $k=q_{n}+1, \ldots, K_{n}$ and

$$
\mathbf{T}^{\prime}\left\{\mathbf{X}^{\prime} \mathbf{X}+\lambda_{n} \mathbf{D}(\boldsymbol{\beta})\right\} \mathbf{T T}^{\prime} \mathbf{g}(\boldsymbol{\beta})=\mathbf{T}^{\prime} \mathbf{X}^{\prime} \mathbf{y}
$$

we have
$\left\{\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}+\lambda_{n} \mathbf{T}_{1}^{\prime} \mathbf{D}_{1}(\boldsymbol{\beta}) \mathbf{T}_{1}\right\} \mathbf{T}_{1}^{\prime} \mathbf{g}(\boldsymbol{\beta})+\left\{\mathbf{X}_{1}^{\prime} \mathbf{X}_{2}+\lambda_{n} \mathbf{T}_{1}^{\prime} \mathbf{D}_{1}(\boldsymbol{\beta}) \mathbf{T}_{2}\right\} \mathbf{T}_{2}^{\prime} \mathbf{g}(\boldsymbol{\beta})=\mathbf{X}_{1}^{\prime} \mathbf{y}$,
$\left\{\mathbf{X}_{2}^{\prime} \mathbf{X}_{1}+\lambda_{n} \mathbf{T}_{2}^{\prime} \mathbf{D}_{1}(\boldsymbol{\beta}) \mathbf{T}_{1}\right\} \mathbf{T}_{1}^{\prime} \mathbf{g}(\boldsymbol{\beta})+\left\{\mathbf{X}_{2}^{\prime} \mathbf{X}_{2}+\lambda_{n} \mathbf{T}_{2}^{\prime} \mathbf{D}(\boldsymbol{\beta}) \mathbf{T}_{2}\right\} \mathbf{T}_{2}^{\prime} \mathbf{g}(\boldsymbol{\beta})=\mathbf{X}_{2}^{\prime} \mathbf{y}$.

Define $\mathbf{T}_{2}^{\prime} \mathbf{g}(\boldsymbol{\beta})=\mathbf{0}$ if $\mathbf{T}_{2}^{\prime} \boldsymbol{\beta}=\mathbf{0}$. Then $\mathbf{T}^{\prime} \mathbf{g}(\boldsymbol{\beta})$ is continuous. In fact, from (S1.14), we have $\lim _{\mathbf{T}_{2}^{\prime} \boldsymbol{\beta} \rightarrow 0} \mathbf{T}_{2}^{\prime} \mathbf{g}(\boldsymbol{\beta})=\mathbf{0}$. On the other hand, since $\inf _{\boldsymbol{\beta} \in \mathfrak{B}_{1}}\left(\mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)^{2} \geq c_{1}\left(\mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \mathbf{T}_{1}^{\prime} \boldsymbol{\beta}_{0}\right)^{2}$ holds for $1 \leq k \leq q_{n}$ and assumption (A3) hold, we have

$$
\begin{aligned}
\mathbf{T}_{1}^{\prime} \mathbf{D}_{1}(\boldsymbol{\beta}) \mathbf{T}_{1} & =\sum_{k=1}^{q_{n}} \frac{\mathbf{T}_{1}^{\prime} \mathbf{d}_{k} \mathbf{d}_{k}^{\prime} \mathbf{T}_{1}}{\left(\mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \mathbf{T}_{1}^{\prime} \boldsymbol{\beta}+\mathbf{d}_{k}^{\prime} \mathbf{T}_{2} \mathbf{T}_{2}^{\prime} \boldsymbol{\beta}\right)^{2}} \\
& \rightarrow \sum_{k=1}^{q_{n}} \frac{\mathbf{T}_{1}^{\prime} \mathbf{d}_{k} \mathbf{d}_{k}^{\prime} \mathbf{T}_{1}}{\left(\mathbf{d}_{k}^{\prime} \mathbf{T}_{1} \mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)^{2}}=\tilde{\mathbf{D}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right), \text { as } \mathbf{T}_{2}^{\prime} \boldsymbol{\beta} \rightarrow \mathbf{0},
\end{aligned}
$$

or equivalently

$$
\left\|\mathbf{T}_{1}^{\prime} \mathbf{D}_{1}(\boldsymbol{\beta}) \mathbf{T}_{1}-\tilde{\mathbf{D}}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right)\right\| \rightarrow 0, \text { as } \mathbf{T}_{2}^{\prime} \boldsymbol{\beta} \rightarrow \mathbf{0}
$$

It follows from (S1.2) that

$$
\lim _{\mathbf{T}_{2}^{\prime} \boldsymbol{\beta} \rightarrow 0} \mathbf{T}_{1}^{\prime} \mathbf{g}(\boldsymbol{\beta})=\mathbf{f}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}\right) .
$$

Therefore,

$$
\left\|\mathbf{T}_{1}^{\prime} \mathbf{g}\left(\boldsymbol{\beta}^{(j)}\right)-\mathbf{f}\left(\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}^{(j)}\right)\right\| \rightarrow 0, \text { as } j \rightarrow \infty
$$

Recall that Lemma 2 shows that $\hat{\boldsymbol{\theta}}^{\circ}$ is the unique fixed point of $\mathbf{f}(\cdot)$ from \mathfrak{B}_{1} to itself. Therefore, with probability tending to 1 ,

$$
\begin{aligned}
\left\|\mathbf{T}_{1}^{\prime} \hat{\boldsymbol{\beta}}^{(j+1)}-\hat{\boldsymbol{\theta}}^{\circ}\right\| & =\left\|\mathbf{T}_{1}^{\prime} \mathbf{g}\left(\hat{\boldsymbol{\beta}}^{(j)}\right)-\hat{\boldsymbol{\theta}}^{\circ}\right\| \\
& \leq\left\|\mathbf{T}_{1}^{\prime} \mathbf{g}\left(\hat{\boldsymbol{\beta}}^{(j)}\right)-\mathbf{f}\left(\mathbf{T}_{1}^{\prime} \hat{\boldsymbol{\beta}}^{(j)}\right)\right\|+\left\|\mathbf{f}\left(\mathbf{T}_{1}^{\prime} \hat{\boldsymbol{\beta}}^{(j)}\right)-\mathbf{f}\left(\hat{\boldsymbol{\theta}}^{\circ}\right)\right\| \\
& \leq \eta_{j}+\frac{1}{\tilde{C}}\left\|\mathbf{T}_{1}^{\prime} \hat{\boldsymbol{\beta}}^{(j)}-\hat{\boldsymbol{\theta}}^{\circ}\right\|, \text { for some constant } \tilde{C}>1
\end{aligned}
$$

where $\eta_{j} \rightarrow 0$ as $j \rightarrow \infty$. The last inequality is due to that $\mathbf{f}(\cdot)$ is a contraction mapping from \mathfrak{B}_{1} to itself as stated in Lemma 2. Set $a_{j}=$ $\left\|\mathbf{T}_{1}^{\prime} \hat{\boldsymbol{\beta}}^{(j)}-\hat{\boldsymbol{\theta}}^{\circ}\right\|$. For any $\epsilon>0$, there exists a $N>0$, such that $\left|\eta_{j}\right|<\epsilon$ holds for all $j>N$. When $j>N$, we have that with probability tending to 1 ,

$$
\begin{aligned}
a_{j+1} \leq \eta_{j}+\frac{a_{j}}{\tilde{C}} & \leq \eta_{j}+\frac{1}{\tilde{C}}\left(\eta_{j-1}+a_{j-1} / \tilde{C}\right) \\
& \leq \frac{a_{1}}{\tilde{C}^{j}}+\frac{\eta_{1}}{\tilde{C}^{j-1}}+\cdots+\frac{\eta_{N}}{\tilde{C}^{j-N}}+\frac{\eta_{N+1}}{\tilde{C}^{j-N-1}}+\cdots+\frac{\eta_{j-1}}{\tilde{C}}+\eta_{j} \\
& \leq M_{1} \frac{1}{\tilde{C}^{j-N}}+\epsilon M_{2}+2 \epsilon \cdot \frac{1}{\tilde{C}^{j-N}} \longrightarrow 0, \text { as } j \rightarrow \infty,
\end{aligned}
$$

for some constant $M_{1}>0$ and $M_{2}>0$. This proves that

$$
\mathbf{P}\left(\lim _{j \rightarrow \infty} \mathbf{T}_{1}{ }^{\prime} \hat{\boldsymbol{\beta}}^{(j)}=\hat{\boldsymbol{\theta}}^{\circ}\right) \rightarrow 1, \text { as } n \rightarrow \infty
$$

Since from Lemma 2,

$$
\sqrt{n} s_{n}^{-1} \mathbf{a}_{n}^{\prime}\left(\hat{\boldsymbol{\theta}}^{\circ}-\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}_{0}\right) \rightarrow \mathcal{N}(0,1)
$$

with probability tending to 1 , we have

$$
\sqrt{n} s_{n}^{-1} \mathbf{a}_{n}^{\prime}\left(\mathbf{T}_{1}^{\prime} \hat{\boldsymbol{\beta}}-\mathbf{T}_{1}^{\prime} \boldsymbol{\beta}_{0}\right) \rightarrow \mathcal{N}(0,1),
$$

with probability tending to 1 . This completes the proof of Theorem 1.

