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S1 Theorem Proofs

We first present some preliminaries. Let Σn1 = T′1ΣnT1 and Σn2 =

T′2ΣnT2. It follows from (2.1) that ‖g(β̃)‖ = Op(‖β̂(OLS)‖). Multiplying

both sides of equation (2.2) by (X′X)−1{X′X + λnD(β)} yields

g(β) + λn(X′X)−1D(β)g(β) = β0 + (X′X)−1X′ε. (S1.1)

Then, transform (S1.1) by T′ and we have

T′{g(β)− β0}+
λn
n

T′Σ−1n D(β)g(β) = T′(X′X)−1X′ε,

which is equivalent to

T′1{g(β)− β0}+
λn
n

T′1Σ
−1
n D(β)g(β) = T′1(X

′X)−1X′ε, (S1.2)
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T′2{g(β)− β0}+
λn
n

T′2Σ
−1
n D(β)g(β) = T′2(X

′X)−1X′ε. (S1.3)

Note that T′2β0 = 0. The equality (S1.3) can be written as

T′2g(β) +
λn
n

T′2Σ
−1
n D1(β)g(β) +

λn
n

T′2Σ
−1
n D2(β)g(β)

= T′2(X
′X)−1X′ε,

(S1.4)

where D1(β) =
∑qn

k=1 dkd
′
k/c

2
k(β) and D2(β) =

∑Kn

k=qn+1 dkd
′
k/c

2
k(β). Fur-

thermore, let Σ∗n2 = T′2Σ
−1
n T2. Since d′kT1 = 0 for k = qn + 1, . . . , Kn,

equation (S1.4) equals

T′2g(β) +
λn
n

T′2Σ
−1
n D1(β)g(β) +

λn
n

Σ∗n2T
′
2D2(β)g(β)

= T′2(X
′X)−1X′ε.

(S1.5)

S1.1 Proof of Lemma 1

Proof. It follows from assumption (A1) that

E(‖T′2(X′X)−1X′ε‖2) = E[tr{ε′X(X′X)−1T2T
′
2(X

′X)−1X′ε}]

= tr{(X′X)−1T2T
′
2(X

′X)−1X′E(εε′)X}

=
σ2

n
tr{T′2Σ−1n T2}

= O
(pn
n

)
.
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Recall that B ≡ {β ∈ Rpn : ‖β − β0‖ ≤ δn
√
pn/n}. According to assump-

tions (A2)–(A3), we have

sup
β∈B

∥∥∥∥λnn T′2Σ
−1
n D1(β)g(β)

∥∥∥∥ ≤ λn
n
‖Σ−1n ‖ sup

β∈B
‖D1(β)g(β)‖

= Op

(λnqn√pn
nb2n

)
= op

(√pn
n

)
.

Therefore, (S1.5) equals

sup
β∈B

∥∥∥∥T′2g(β) +
λn
n

Σ∗n2T
′
2D2(β)g(β)

∥∥∥∥ = Op

(√pn
n

)
. (S1.6)

Since d′kT1 = 0, we have

D2(β)g(β) = D2(β)TT′g(β)

=
Kn∑

k=qn+1

dkd
′
k

c2k(β)
(T1

...T2)

T′1

T′2

g(β)

= {0 ... D2(β)T2}

T′1

T′2

g(β)

= D2(β)T2T
′
2g(β).

Set γ∗(β) = T′2g(β) and D̃2(β) = T′2D2(β)T2. Then, by multiplying both

sides of equation (S1.6) with γ∗(β)′Σ∗−1n2 /‖γ∗(β)‖, we obtain

sup
β∈B

{
γ∗(β)′Σ∗−1n2 γ

∗(β)

‖γ∗(β)‖
+
λn
n

γ∗(β)′D̃2(β)γ∗(β)

‖γ∗(β)‖

}
= Op

(√pn
n

)
. (S1.7)
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Note that here we are assuming that ‖γ∗(β)‖ 6= 0. Observe that both terms

inside the supremum in equation (S1.7) are nonnegative. Therefore,

λn
n

sup
β∈B

γ∗(β)′D̃2(β)γ∗(β)

‖γ∗(β)‖
= Op

(√pn
n

)
. (S1.8)

Since

D̃2(β) =
Kn∑

k=qn+1

T′2dkd
′
kT2

c2k(β)
=

Kn∑
k=qn+1

T′2dkd
′
kT2

(d′kT2T′2β)2
=

Kn∑
k=qn+1

d∗kd
∗
k
′

{d∗k ′γ(β)}2
,

where d∗k = T′2dk and γ(β) = T′2β, it follows from (S1.8) that

λn
n

sup
qn+1≤k≤Kn,

β∈B

{d∗k ′γ∗(β)}2

{d∗k ′γ(β)}2‖γ∗(β)‖
= Op

(√pn
n

)
.

On the other hand, since D is a linear space spanned by dqn+1, . . . ,dKn

with orthonormal basis T2, for any unit vector a in D, there exist some

d̃∗j ∈ {d∗k, qn + 1 ≤ k ≤ Kn} such that |d̃∗j ′a| > c3, for some constant

c3 > 0. Let d̃∗j be such that |d̃∗j ′γ∗(β)| > c3‖γ∗(β)‖. Note that |d̃∗j ′γ(β)| ≤

‖d̃∗j ′‖‖γ(β)‖. Then,

‖γ∗(β)‖
‖γ(β)‖

≤ c−13 |d̃∗j ′γ∗(β)| ×
‖d̃∗j ′‖
|d̃∗j ′γ(β)|

×
|d̃∗j ′γ∗(β)|
c3‖γ∗(β)‖

=
{d̃∗j ′γ∗(β)}2

{d̃∗j ′γ(β)}2‖γ∗(β)‖
‖d̃∗j ′‖|d̃∗j ′γ(β)|Op(1).

(S1.9)

Since T′2β0 = 0 and γ(β) = T′2β, for β ∈ B, we have ‖γ(β)‖ ≤ δn
√
pn/n.

Together with δnpn/λn → 0, (S1.9) implies that with probability tending

to 1,

sup
β∈B

‖γ∗(β)‖
‖γ(β)‖

= sup
β∈B

‖T′2g(β)‖
‖T′2β‖

= Op

(δnpn
λn

)
= op(1). (S1.10)
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This proves statement (b) in Lemma 1.

To show that with probability tending to 1, g(·) is a mapping from the

ball B to itself, it suffices to show that

P

(
sup
β∈B
‖T′1{g(β)− β0}‖ ≤ δn

√
pn
n

)
→ 1.

In a similar, we rewrite equation (S1.2) as

T′1{g(β)− β0}+
λn
n

T′1Σ
−1
n D1(β)g(β)

+
λn
n

T′1Σ
−1
n D2(β)g(β) = T′1(X

′X)−1X′ε.

Similar to equation (S1.6), we have

sup
β∈B

∥∥∥∥T′1{g(β)− β0}+
λn
n

T′1Σ
−1
n D2(β)g(β)

∥∥∥∥ = Op

(√pn
n

)
.

Observe that

sup
β∈B

∥∥∥∥λnn T′1Σ
−1
n D2(β)g(β)

∥∥∥∥ = sup
β∈B

∥∥∥∥λnn T′1Σ
−1
n T2T

′
2D2(β)T2T

′
2g(β)

∥∥∥∥
≤ sup

β∈B

∥∥∥∥λnn D̃2(β)γ∗(β)

∥∥∥∥ · ‖T′1Σ−1n T2‖

= sup
β∈B

λn
n

γ∗(β)′D̃2(β)γ∗(β)

‖γ∗(β)‖
Op(1)

= Op

(√pn
n

)
.

The last equation comes from (S1.8). Hence, we have

sup
β∈B
‖T′1{g(β)− β0}‖ = Op

(√pn
n

)
.

It follows that

P

(
sup
β∈B
‖T′1{g(β)− β0}‖ ≤ δn

√
pn
n

)
→ 1. (S1.11)
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On the other hand, the statement (S1.10) implies

P

(
sup
β∈B
‖T′2{g(β)− β0}‖ ≤ δn

√
pn
n

)
→ 1. (S1.12)

Hence, (S1.11) combined with (S1.12) yields

P

(
sup
β∈B
‖g(β)− β0‖ ≤ δn

√
pn
n

)
→ 1.

This proves that g(·) is a mapping from B to itself with probability tending

to 1.

S1.2 Proof of Lemma 2

Proof. Recall that

{X′1X1 + λnD̃(T′1β)}f(T′1β) = X′1y,

where X1 = XT1 and

D̃(T′1β) = T′1

qn∑
k=1

dkd
′
k

c̃2k(T′1β)
T1 with c̃k(T′1β) = d′kT1T

′
1β.

Similarly, we have

f(T′1β)− θ0 +
λn
n

Σ̃−1n1 D̃(T′1β)f(T′1β) = (X′1X1)
−1X′1ε,

where θ0 = T′1β0. Recalling that B1 = {T′1β ∈ Rmn : ‖T′1β − T′1β0‖ ≤

δn
√
pn/n}. It is straightforward to show that f(·) is a mapping from B1 to

itself. In fact,

‖(X′1X1)
−1X′1ε‖ = Op

(√mn

n

)
= op

(√pn
n

)
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and

sup
β∈B1

∥∥∥∥λnn Σ̃−1n1 D̃(T′1β)f(T′1β)

∥∥∥∥ ≤ λn
n
‖Σ̃−1n1 ‖ sup

β∈B1

∥∥∥D̃(T′1β)f(T′1β)
∥∥∥

= Op

(λnqn√mn

nb2n

)
.

Then, from assumption (A2), it follows that

sup
β∈B1

∥∥∥∥λnn Σ̃−1n1 D̃(T′1β)f(T′1β)

∥∥∥∥ = op

(√pn
n

)
.

Therefore,

P

(
sup
β∈B1

‖f(T′1β)−T′1β0‖ ≤ δn

√
pn
n

)
→ 1.

This completes the proof that f(·) is a mapping from B1 to itself.

We next show that f(·) is a contraction mapping. Since{
1

n
X′1X1 +

λn
n

D̃(T′1β)

}
f(T′1β) =

1

n
X′1y, (S1.13)

differentiating both sides of equation (S1.13) with respect to β′ yields{
Σn1 +

λn
n

D̃(T′1β)

}
ḟ(T′1β)T′1 =

2λn
n

qn∑
k=1

T′1dkd
′
kT1f(T′1β)d′kT1T

′
1

(d′kT1T′1β)3
.

Hence, according to assumptions (A2) and (A3)

sup
β∈B1

∥∥∥∥{Σn1 +
λn
n

D̃(T′1β)

}
ḟ(T′1β)T′1

∥∥∥∥
= sup

β∈B1

∥∥∥∥∥2λn
n

qn∑
k=1

T′1dkd
′
kT1f(T′1β)d′kT1T

′
1

c̃3k(T′1β)

∥∥∥∥∥
= Op

(λnqn
nb3n

√
mn

)
= op(1).
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Furthermore, since

sup
β∈B1

∥∥∥∥{Σn1 +
λn
n

D̃(T′1β)

}
ḟ(T′1β)T′1

∥∥∥∥
≥ sup

β∈B1

1

C
‖ḟ(T′1β)T′1‖ − sup

β∈B1

λn
n
‖D̃(T′1β)ḟ(T′1β)T′1‖,

it follows from assumption (A2) that

sup
β∈B1

‖ḟ(T′1β)T′1‖ = sup
β∈B1

‖ḟ(T′1β)‖ = op(1).

Therefore, f(·) is a contraction mapping from B1 to itself. This indicates

that there exists one unique fixed point of f(·) in the region B1 denoted as

θ̂◦ such that

f(θ̂◦) = {X′1X1 + λnD̃(θ̂◦)}−1X′1y.

Hence, by the first order resolvent expansion formula (H + ∆)−1 = H−1 −

H−1∆(H + ∆)−1, we have

θ̂◦ − θ0

= {X′1X1 + λnD̃(θ̂◦)}−1X′1y − θ0

= (X′1X1)
−1X′1y − θ0 − (X′1X1)

−1λnD̃(θ̂◦){X′1X1 + λnD̃(θ̂◦)}−1X′1y

= (X′1X1)
−1X′1ε− (X′1X1)

−1λnD̃(θ̂◦){X′1X1 + λnD̃(θ̂◦)}−1X′1(X1θ0 + ε)

= (X′1X1)
−1X′1ε−

λn
n

Σ̃−1n1 D̃(θ̂◦)

{
Imn +

λn
n

Σ̃−1n1 D̃(θ̂◦)

}−1
θ0

− λn
n

Σ̃−1n1 D̃(θ̂◦)

{
Imn +

λn
n

Σ̃−1n1 D̃(θ̂◦)

}−1
Σ̃−1n1

X′1ε

n
.
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Therefore, we have

√
ns−1n a′n(θ̂◦ − θ0)

= s−1n a′nΣ̃
−1
n1

X′1ε√
n
− λn√

n
s−1n a′nΣ̃

−1
n1 D̃(θ̂◦)

{
Imn +

λn
n

Σ̃−1n1 D̃(θ̂◦)

}−1
θ0

− λn√
n
s−1n a′nΣ̃

−1
n1 D̃(θ̂◦)

{
Imn +

λn
n

Σ̃−1n1 D̃(θ̂◦)

}−1
Σ̃−1n1

X′1ε

n

= s−1n a′nΣ̃
−1
n1

X′1ε√
n
− I1 − I2.

By assumption (A2) and the condition infβ∈B1(d
′
kT1T

′
1β)2 ≥ c1(d

′
kT1θ0)

2,

we have

‖I1‖ ≤
λn√
n
C2

∥∥∥∥∥D̃(θ̂◦)

{
Imn +

λn
n

Σ̃−1n1 D̃(θ̂◦)

}−1
θ0

∥∥∥∥∥
≤ λn√

n
C2‖D̃(θ̂◦)θ0‖{1 + op(1)}

≤ λn√
n
C2

∥∥∥∥∥
qn∑
k=1

T′1dkd
′
kT1θ0

(d′kT1θ̂◦)2

∥∥∥∥∥ {1 + op(1)}

= Op

( λnqn√
nb2n

)
→ 0.

On the other hand,

‖I2‖ ≤
λn√
nb2n

C3qn

∥∥∥∥X′1ε

n

∥∥∥∥ = Op

( λnqn√
nb2n

)
Op

(√mn

n

)
= op(1).

As a result,

√
ns−1n a′n(θ̂◦ − θ0) = s−1n a′nΣ̃

−1
n1

X′1ε√
n

+ op(1).

It follows from the Lindeberg-Feller central limit theorem that

√
ns−1n a′n(θ̂◦ − θ0)→ N (0, 1).
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This completes the proof of Lemma 2.

Proof of Theorem 1. Observe that Lemma 1 implies that

P

(
lim
j→∞

T2
′β̂(j) = 0

)
→ 1, as n→∞.

We show that with probability tending to 1, limj→∞T1
′β̂(j) exists. Since

d′kT1 = 0, for all k = qn + 1, . . . , Kn and

T′{X′X + λnD(β)}TT′g(β) = T′X′y,

we have

{X′1X1+λnT
′
1D1(β)T1}T′1g(β)+{X′1X2+λnT

′
1D1(β)T2}T′2g(β) = X′1y,

{X′2X1 +λnT
′
2D1(β)T1}T′1g(β) + {X′2X2 +λnT

′
2D(β)T2}T′2g(β) = X′2y.

(S1.14)

Define T′2g(β) = 0 if T′2β = 0. Then T′g(β) is continuous. In fact,

from (S1.14), we have limT′
2β→0 T′2g(β) = 0. On the other hand, since

infβ∈B1(d
′
kT1T

′
1β)2 ≥ c1(d

′
kT1T

′
1β0)

2 holds for 1 ≤ k ≤ qn and assumption

(A3) hold, we have

T′1D1(β)T1 =

qn∑
k=1

T′1dkd
′
kT1

(d′kT1T′1β + d′kT2T′2β)2

→
qn∑
k=1

T′1dkd
′
kT1

(d′kT1T′1β)2
= D̃(T′1β), as T′2β → 0,

or equivalently

‖T′1D1(β)T1 − D̃(T′1β)‖ → 0, as T′2β → 0.



S1. THEOREM PROOFS11

It follows from (S1.2) that

lim
T′

2β→0
T′1g(β) = f(T′1β).

Therefore,

‖T′1g(β(j))− f(T′1β
(j))‖ → 0, as j →∞.

Recall that Lemma 2 shows that θ̂◦ is the unique fixed point of f(·) from

B1 to itself. Therefore, with probability tending to 1,

‖T′1β̂(j+1) − θ̂◦‖ = ‖T′1g(β̂(j))− θ̂◦‖

≤ ‖T′1g(β̂(j))− f(T′1β̂
(j))‖+ ‖f(T′1β̂

(j))− f(θ̂◦)‖

≤ ηj +
1

C̃
‖T′1β̂(j) − θ̂◦‖, for some constant C̃ > 1

where ηj → 0 as j → ∞. The last inequality is due to that f(·) is a

contraction mapping from B1 to itself as stated in Lemma 2. Set aj =

‖T′1β̂(j)− θ̂◦‖. For any ε > 0, there exists a N > 0, such that |ηj| < ε holds

for all j > N . When j > N , we have that with probability tending to 1,

aj+1 ≤ ηj +
aj

C̃
≤ ηj +

1

C̃
(ηj−1 + aj−1/C̃)

≤ a1

C̃j
+

η1

C̃j−1
+ · · ·+ ηN

C̃j−N
+

ηN+1

C̃j−N−1
+ · · ·+ ηj−1

C̃
+ ηj

≤M1
1

C̃j−N
+ εM2 + 2ε · 1

C̃j−N
−→ 0, as j →∞,

for some constant M1 > 0 and M2 > 0. This proves that

P

(
lim
j→∞

T1
′β̂(j) = θ̂◦

)
→ 1, as n→∞.
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Since from Lemma 2,

√
ns−1n a′n(θ̂◦ −T′1β0)→ N (0, 1)

with probability tending to 1, we have

√
ns−1n a′n(T′1β̂ −T′1β0)→ N (0, 1),

with probability tending to 1. This completes the proof of Theorem 1.


