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Abstract: In this study, we employ the broken adaptive ridge method to estimate

the lower-dimensional patterns of the coefficients in regression models. Based on

a reweighted `2-penalization, the new method simultaneously recovers the true

sparsity and the inherent structures of the features, making it theoretically and

practically appealing. The resulting estimate is shown to enjoy the oracle property.

The proposed method also contains a set of variable selection or pattern estimation

methods. As a special case, the fused broken adaptive ridge, which penalizes the

differences between adjacent coefficients, is thoroughly discussed, with applications

to signal approximation and image processing. The associated algorithms are nu-

merically easy to implement. Simulation studies and real-data analyses illustrate

the advantages of the proposed method over the fused lasso method.
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1. Introduction

Identifying the underlying dynamics of a data set of interest is an important

task in many applications, including, for instance, denoising, forecasting, filtering,

and even more sophisticated analyses in machine learning research. In a high-

dimensional setting, the underlying patterns of the regression coefficients usually

have a lower-dimensional structure. In particular, when the candidate variables

can be treated individually, the true coefficients are assumed to contain many

zeros. Many state-of-the-art variable selection methods have been developed,

such as lasso (Tibshirani (2011)), bridge penalty (Fu (1998); Huang, Horowitz,

and Ma (2008); Huang et al. (2009)), SCAD (Fan and Li (2001)), elastic net

(Zou and Hastie (2005)), and MCP (Zhang (2010)), among many others. These

methods have gained much attention in recent years and are widely used to

find a parsimonious model. In this study, we focus on variables that naturally

have some local structures, such as piecewise constancy, a linear trend, or being

grouped. Our goal is to reduce the dimension of the covariates and to estimate
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their underlying structures.

The `0-penalized regression is one of the most natural methods for variable

selection, which directly penalizes the cardinality of a model. Rinaldo (2009)

applied the `0-penalization to identify a piecewise constant function to approx-

imate a signal. Owing to the lack of convexity, the `0-penalization procedure

is computationally difficult to implement, especially for high-dimensional data

sets. A body of literature is devoted to approaches based on penalties such

as `1-norm penalties and `2-norm penalties. The fused lasso method (Tibshi-

rani et al. (2005)), based on the `1-penalization, simultaneously captures sudden

jumps and infers nonzero segments in a noisy signal or gene sequence. This novel

approach uses the `1 and the fusion (or total variation) penalties, which favors

solutions that are both sparse and piecewise constant. As an extension, the

two-dimensional (2D) fused lasso (Tibshirani and Taylor (2011)) is introduced

in image denoising. From an algorithmic viewpoint, the fused lasso penaliza-

tion has its roots in the well-known total variation method (Rudin, Osher and

Fatemi (1992)), which had a significant impact on the modern imaging science.

For more recent developments of the fused lasso and its variants in network in-

ferences, see Shen and Huang (2010), Zhu, Shen and Pan (2013), Wang, Wang

and Song (2016), Shin, Fine and Liu (2016), and Tang and Song (2016). On

the other hand, for grouped data, such as assayed genes or proteins in biological

applications, Yuan and Lin (2006) invented the group lasso methods by impos-

ing the `2-penalty on the coefficients within each group. Simon et al. (2013)

studied a sparse group lasso method, which yields solutions that are sparse at

both the group and the individual feature levels. Other advancements that use

`p-penalization to capture local structures of coefficients can be found in Eilers

(2003), Rippe, Meulman and Eilers (2012), Price, Geyer and Rothman (2015),

and Lam et al. (2016). Despite their impressive performance in empirical studies,

a theoretical justification of the oracle property (Fan and Li (2001)) of many of

them remains challenging.

In this study, instead of finding a desirable solution in a single step, we pro-

pose an iterative reweighted `2-penalization procedure, referred to as the broken

adaptive ridge (BAR) method. The peoposed method has several distinctive fea-

tures compared with other existing methods in the literature. First, it is in a

general form, in the sense that it can be used to estimate any local linear struc-

ture of regression coefficients. Some special cases of the BAR method, such as

the fused BAR method, are introduced, with applications to signal processing,

gene detection, trend filtering, or image denoising. Second, the method can si-
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multaneously produce a sparse solution and estimate the underlying pattern of

covariates. Moreover, under certain conditions, it is shown that the BAR pro-

cedure converges to a fixed point, and that the resulting estimate possesses the

oracle property; that is, it performs as well as if the correct underlying model

were given in advance. Because the adaptive objective function is strictly convex

and differentiable, the iterative procedure is easy to implement with a closed-

form iterative function. To avoid computational overflows in each iterative step,

we establish efficient algorithms using the Lagrange multiplier technique. The

results of numerical studies demonstrate that, compared with the fused lasso, the

fused BAR method exhibits a good performance in terms of variable selection

and structure estimation.

The rest of the paper is organized as follows. The BAR method is described

in Section 2, along with its special cases. Section 3 presents the oracle property

of the proposed method. We establish a general algorithm for the BAR method

in Section 4. Numerical studies on signal approximation and image processing

are conducted in Sections 5 and 6, respectively. All technical proofs are provided

in the Supplementary Material.

2. Broken Adaptive Ridge Procedure

Consider the linear model

y =

pn∑
j=1

βjxj + ε,

where y ∈ Rn is a response variable, xj ∈ Rn are feature vectors, and ε is a

vector of independent and identically distributed random variables with mean

zero and finite variance σ2. Suppose that the response variable y = (y1, . . . , yn)

is centered, and that the covariate matrix X = (x1, . . . ,xpn
) is standardized by

column vectors. We wish to recover the sparsity and the underlying patterns of

the feature vectors. Throughout this paper, ‖ · ‖ represents the Euclidean norm

of a vector and the spectral norm of a matrix.

Let dk ∈ Rpn , for k = 1, . . . ,Kn, be nonzero column vectors, implying prior

knowledge of the data structure. Define

g(β̃) ≡ arg min
β
‖y −Xβ‖2 + λn

Kn∑
k=1

(d′kβ)2

c2k(β̃)

= arg min
β
‖y−Xβ‖2 + λnβ

′D(β̃)β,

(2.1)

where
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D(β̃) =

Kn∑
k=1

dkd
′
k

c2k(β̃)
, and ck(β̃) = d′kβ̃.

From the convexity and differentiability of the objective function in (2.1), we

have that

g(β̃) = {X′X + λnD(β̃)}−1X′y. (2.2)

In principle, the ridge estimator

β̂(ridge) = (X′X + ξI)−1X′y

is chosen as the initial value, where ξ > 0 is a tuning parameter. The proposed

estimator is thus referred to as the broken adaptive ridge (BAR) estimator, which

is defined as the limit of the iterative algorithm β̂(j) = g{β̂(j−1)}; that is,

β̂(BAR) = lim
j→∞

β̂(j). (2.3)

Because the subsequent updates d′kβ̂
(j) usually do not yield any zeros, the weights

{ck(β̃)}−2 in each iteration are well defined. Note that the data-dependent weight

{ck(β̃)}−2 is more useful than a constant weight c−2. As the sample size grows,

the weights for the zero d′kβ tend to infinity, whereas those for the nonzero d′kβ

converge to finite constants. In this sense, the proposed BAR procedure and the

adaptive lasso (Zou (2006)) are similar in spirit. As pointed out by a reviewer,

the BAR method provides us with new insights into the ridge penalty: it can

produce a sparse solution and estimate the local structures of predictors using

an iterative procedure.

Noting that the term d′kβ represents any linear combination of β, this allows

us to design the vector dk in line with some believed structure or geometry in

the feature vectors, such as sparsity, piecewise constancy, and the grouping effect.

We present below a set of illustrative examples that motivate our work on the

BAR procedure.

Example 1 (Broken adaptive ridge estimator for variable selection).

Let Kn = pn and dj = ej , where ej is the standard basis vector with the jth

component equal to one. The design of dk only encourages the sparsity of the

coefficients, and virtually ignores any other underlying patterns of the feature

vectors. As a result, the BAR method is appropriate for selecting selection for

those variables that can be treated individually.

Example 2 (Fused broken adaptive ridge estimator). Setting X = I yields

an interesting, but highly nontrivial class of problems that includes signal ap-



BROKEN ADAPTIVE RIDGE PROCEDURE 1073

proximation, gene detection, and image denoising. In signal approximation, a

noisy signal is usually approximated by a piecewise constant function. A va-

riety of denoising methods have been developed, including lowess (Cleveland

(1979)), kernel estimators (Gasser, Müller and Mammitzsch (1985); Müller and

Stadtmüller (1987)), penalized smoothing splines (Ruppert, Wand and Carroll

(2009)), Markov random field (Geman and Geman (1984)), and wavelets (Donoho

and Johnstone (1994); Chang, Yu and Vetterli (2000)). To encourage the under-

lying sparse or blocky structure of y, we set dj = ej , for j = 1, 2, . . . , pn, and the

remaining dj = (0, . . . ,−1, 1, . . . , 0)′, with the (j − pn)th element being -1 and

the (j − pn + 1)th element being one. In this way, the expression (2.1) can be

written as

g(β̃) = arg min
β
‖y − β‖2 + λ1

n∑
i=1

β2i
β̃2i

+ λ2

n∑
i=2

(βi − βi−1)2

(β̃i − β̃i−1)2
, (2.4)

where λ1 > 0 and λ2 > 0 are tuning parameters. We refer to the limit of the

iterative procedure based on (2.4) as the 1D fused BAR estimator, because the

penalties are imposed on both the coefficients and the differences between the

adjacent coefficients. A general form of the 1D fused BAR method is induced by

allowing the design matrix X to be arbitrary. In a similar fashion, the 2D fused

BAR estimator has the iterative function

g(β̃) = arg min
β
‖y − β‖2 + λ1

n∑
i=1

β2i
β̃2i

+ λ2
∑

(i,j)∈E

(βi − βj)2

(β̃i − β̃j)2
, (2.5)

where E is the edge set of the graph. It is seen that the second penalty term

on the right-hand side of (2.5) favors the flatness of the proximal coefficients.

Therefore, the 2D fused BAR estimator is useful for coping with the adjacent

pixels in image denoising.

Example 3 (Broken adaptive ridge trend filter). Identifying the unknown

underlying trend of a given noisy signal or sequence is of great importance for a

wide range of applications. In many cases, the signal can be approximated by

piecewise linear trends. To both select and estimate the trend’s components, we

take into account the optimization rule

g(β̃) = arg min
β
‖y − β‖2 + λ1

n∑
i=1

β2i
β̃2i

+ λ2

n−1∑
i=2

(βi−1 − 2βi + βi+1)
2

(β̃i−1 − 2β̃i + β̃i+1)2
, (2.6)

where λ1 > 0 and λ2 > 0 are tuning parameters. It is clear that (2.6) is a special

case of the iterative function (2.1). The second penalty on the right-hand side

of (2.6) constrains the slopes between two consecutive coefficients, resulting in a
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solution that has fewer linear segments.

3. Oracle Properties

In this section, we investigate the oracle property of the BAR estimator.

Assume that the true β0 satisfies

d′kβ0 6= 0 for k = 1, . . . , qn,

d′kβ0 = 0 for k = qn + 1, . . . ,Kn,

where ‖dk‖ 6= 0. Let D denote the space spanned by the vectors dqn+1, . . . ,dKn

and the dimensionality of D be (pn − mn), where mn is the dimensionality of

the subspace orthogonal to D. There exists an orthonormal basis of Rpn , T =

(T1
... T2) = (u1, . . . ,umn

... umn+1, . . . ,upn
), such that umn+1, . . . ,upn

∈ D. Then,

u′jβ0 = 0 for j = mn + 1, . . . , pn,

u′idk = 0 for i = 1, . . . ,mn and k = qn + 1, . . . ,Kn.

Let X1 = XT1, X2 = XT2, Σn = n−1X′X, and Σ̃n1 = n−1X′1X1. For simplicity

of notation, we write β̂(BAR) as β̂ and omit the tilde on β in (2.2). Define

bn ≡ min1≤k≤qn |d′kβ0|.
The following regularity conditions are assumed:

(A1) 0 < 1/C < λmin(Σn) ≤ λmax(Σn) < C <∞, for some C > 1;

(A2) As n→∞,

mn

n
→ 0,

λn
pn
→∞, λnqn

b2n
√
n
→ 0,

pn
nb2n
→ 0;

(A3) For 1 ≤ k ≤ qn, 0 < ‖dk‖ ≤ c0 <∞, for some constant c0.

(A4) The initial estimator satisfies ‖β̂(0) − β0‖ = Op{(pn/n)1/2}.
Condition (A1) assumes that the `2-norm of the covariance matrix Σn is

bounded away from zero and infinity. Condition (A2) restricts the number of

covariates, number of nonzero linear combinations of covariates, tuning parame-

ter, and smallest nonzero linear combination. It is also made to ensure that the

nonzero d′kβ0 are identifiable. Condition (A3) ensures the simplicity of the proof

and is satisfied for many commonly-used penalties, such as the fusion penalty

and the trend filter penalty. For high-dimensional data, ‖dk‖ would be allowed

to diverge to infinity at some rate as n → ∞. Such relaxation would not neces-

sarily affect the asymptotic properties of the BAR estimate, because the penalty

term in the first line of (2.1) remains the same when its numerator and de-

nominator divided simultaneously by ‖dk‖2. The initial value needs to satisfy

condition (A4).
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Lemma 1. Suppose that regularity conditions (A1)–(A4) are satisfied. For any

positive sequence δn → ∞, such that λn/(δnpn) → ∞, define B ≡ {β ∈ Rpn :

‖β − β0‖ ≤ δn
√
pn/n}. Then, with probability tending to one:

(a) g(β) is a mapping from B to itself;

(b)

sup
β∈B

‖T′2g(β)‖
‖T′2β‖

<
1

C0
, for some constant C0 > 1. (3.1)

Remark 1. The statement (3.1) reveals that limk→∞T′2β̂
(k) ≡ T′2β̂ = 0, with

probability tending to one. In other words, the BAR estimator is zero-consistent

in the sense that those zero linear combinations of coefficients are exactly zero as

n→∞. Additionally, the result that g(·) is a mapping of B to itself is necessary

for the convergence of β̂(k).

On the other hand, because T′2β0 = 0, the regression model is reduced to

y = XT1T
′
1β0 + ε. (3.2)

Define

f(T′1β̃) ≡ arg min
β
‖y −X1T

′
1β‖2 + λn

qn∑
k=1

(d′kT1T
′
1β)2

c̃2k(T′1β̃)
,

= arg min
β
‖y −X1T

′
1β‖2 + λnβ

′D̃(T′1β̃)β,

where

c̃k(T′1β) = d′kT1T
′
1β and D̃(T′1β) = T′1

qn∑
k=1

dkd
′
k

c̃2k(T′1β)
T1.

Similarly, by the gradient rule, we obtain

f(T′1β) = {X′1X1 + λnD̃(T′1β)}−1X′1y. (3.3)

The asymptotic normality of the nonzero linear combinations d′kβ̂, for k =

1, . . . , qn, are shown in Lemma 2 below.

Lemma 2. Suppose that regularity conditions (A1)–(A4) are satisfied. For any

qn-vector an with ‖an‖ ≤ 1, let s2n = σ2a′nΣ̃−1n1 an. Define B1 = {T′1β ∈
Rmn : ‖T′1β − T′1β0‖ ≤ δn

√
pn/n}, and assume that infβ∈B1

(d′kT1T
′
1β)2 ≥

c1(d
′
kT1θ0)

2, for 1 ≤ k ≤ qn, where θ0 = T′1β0. Then, in region B1, with prob-

ability tending to one, there exists a unique fixed point of f(·), denoted by θ̂◦.

Furthermore, as n→∞,
√
ns−1n a′n(θ̂◦ −T′1β0)→ N (0, 1),

with probability tending to one.
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Remark 2. Lemma 2 shows the existence and uniqueness of the fixed point of

f(·), defined as (3.3). The asymptotic properties of the fixed point θ̂◦ imply

that θ̂◦ is consistent with the true T′1β0. To show that the BAR estimator is

asymptotically normal, it suffices to show that P(T′1β̂ = θ̂◦)→ 1 as n→∞.

Theorem 1 (Oracle property). Suppose conditions (A1)–(A4) hold and that

infβ∈B1
(d′kT1T

′
1β)2 ≥ c1(d

′
kT1T

′
1β0)

2, for 1 ≤ k ≤ qn, where B1 is defined as

in Lemma 2. For any qn-vector an, with ‖an‖ ≤ 1, set s2n = σ2a′nΣ̃−1n1 an. Then,

with probability tending to one:

(i) The BAR estimator T′β̂ exists and is the unique fixed point of T′g(·) in

the region B, defined as in Lemma 1;

(ii) T′2β̂ = 0;

(iii)
√
ns−1n a′n(T′1β̂ −T′1β0)→ N (0, 1).

Remark 3. For additional insight into the BAR procedure and its oracle prop-

erties, recall that the initial value β̂(0) is asymptotically consistent with β0 and

d′kT1 = 0, for (qn+1) ≤ k ≤ Kn. The oracle properties of the BAR estimator are

essentially the result of the iterative weight (d′kβ̃)−2. Specifically, when the true

d′kβ0 is zero or, alternatively, d′kT2T
′
2β0 = 0, for (qn + 1) ≤ k ≤ Kn, the weight

{d′kT2T
′
2β̂

(0)}−2 is large, resulting in a smaller estimate of d′kβ̂
(j) per iteration.

This leads to the zero-consistency of the BAR estimator. On the other hand, for

those nonzero d′kβ0, for 1 ≤ k ≤ qn, we have the nonzero weight function

{d′kβ̂(j)}−2 = {d′k(T1T
′
1 + T2T

′
2)β̂

(j)}−2 ≈ {d′kT1T
′
1β̂

(j)}−2,

where {d′kT1T
′
1β̂

(j)}−2 is the weight function when the true model (3.2) is known

in advance. Hence, the asymptotic normality of d′kβ0 is very closed to the unique

fixed point of f(·).

In real applications, when d′kβ0 = 0, the denominator c2k(β̂(k)) will inevitably

run into a small value close to zero, causing an arithmetic overflow. In the next

section, we attempt to use the Lagrange multiplier to overcome this computa-

tional difficulty. The resulting Algorithm 1 for the BAR procedure can be used

for signal approximation, image processing, and gene detection.

4. Algorithm

4.1. 1D fused BAR implementation

We consider the 1D fused BAR method with an arbitrary X. Let
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M =


−1 1 0 . . . 0

0 −1 1 . . . 0

. . . . . . . . .

0 0 . . . −1 1


of size (pn − 1)× pn. The iterative function (2.4) can be written as

g(β̃) = arg min
β
‖y −Xβ‖2 + λ1β

′H1(β̃)β + λ2β
′M′H2(β̃)Mβ, (4.1)

where H1(β̃) = diag(β̃−2i ), and H2(β̃) = diag{(Mβ̃)−2i }, with (Mβ̃)i the ith

component of Mβ̃. Because the objective function in (4.1) is differentiable and

strictly convex, there exists a unique global minimum. After a few iterative steps,

however, some elements of β̃ and Mβ̃ would be close to zero. As a result, the

division in the diagonal entries of H1(β̃) and H2(β̃) will run into an overflow, and

the iterative procedure will stop at a suboptimal value. To avoid these divisions

in H1(β̃) and H2(β̃), we set z̃ = Mβ̃ and

min
β,z
‖y−Xβ‖2 + λ1β

′H1(β̃)β + λ2z
′H1(z̃)z subject to z = Mβ,

where H1(z̃) = diag(z̃−2i ), by the preceding definition.

The Lagrange function is

L(β, z,u) = ‖y−Xβ‖2 + λ1β
′H1(β̃)β + λ2z

′H1(z̃)z + u′(Mβ − z),

where u is the Lagrange multiplier. The Lagrange dual of (4.1) is

max
u

min
β,z

L(β, z,u). (4.2)

To further solve the problem, we first minimize L(β, z,u) over β and z. The

term of L(β, z,u) that involves β is

‖y−Xβ‖2 + λ1β
′H1(β̃)β + u′Mβ.

It follows that

min
β
‖y−Xβ‖2 + λ1β

′H1(β̃)β + u′Mβ

= y′y −
(

X′y − M′u

2

)′
{X′X + λ1H1(β̃)}−1

(
X′y − M′u

2

)
,

and the optimal β is β̂◦ = {X′X + λ1H1(β̃)}−1(X′y−M′u/2). Similarly, mini-

mizing L(β, z,u) over z, we have

min
z

λ2z
′H1(z̃)z− u′z = − 1

4λ2
u′H−11 (z̃)u.

Therefore, the dual problem (4.2) is equivalent to
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min
u

(
X′y−M′u

2

)′
{X′X+λ1H1(β̃)}−1

(
X′y−M′u

2

)
+

1

4λ2
u′H−11 (z̃)u−y′y.

It is straightforward to obtain the solution, denoted as

û◦ = 2

{
MB(β̃)M′ +

H−11 (z̃)

λ2

}−1
MB(β̃)X′y,

where B(β̃) = {X′X + λ1H1(β̃)}−1. In practice, if the inverse of a matrix

does not exist, we suggest using the Moore–Penrose pseudo-inverse, denoted as

Pinv(). On the other hand, to avoid the division in B(β̃), we instead calculate

B(β̃) = H−11 (β̃){X′XH−11 (β̃) + λ1In}−1. To implement the 1D fused BAR

procedure, we take M0 = M in Algorithm 1. In particular, we set X = I when

performing signal approximation.

4.2. 2D fused BAR implementation

We now investigate the implementation of the 2D fused BAR method, with

an application to image denoising. In contrast to signals, the adjacent pixels of

one image include both the horizontal-level neighbors and vertical-level neigh-

bors. The objective function in (2.5) can be written as

min
β
‖y − β‖2 + λ1β

′H1(β̃)β + λ2β
′{M′

1H3(β̃)M1 + M′
2H4(β̃)M2}β,

where M1 and M2 capture the vertical and horizontal neighbors, respectively in

a graph, H3(β̃) = diag{(M1β̃)−2j }, and H4(β̃) = diag{(M2β̃)−2j }. To overcome

the numerical difficulty in H3(β̃) and H4(β̃), we derive the refined iterative

procedure based on the Lagrange multiplier. In a similar vein, the Lagrange

function is

L̃(β, z,u) = ‖y− β‖2 + λ1β
′H1(β̃)β + λ2z

′H∗(z̃)z + u′(M∗β − z),

where z̃1 = M1β̃, z̃2 = M2β̃, z = (z′1, z
′
2)
′, u = (u′1,u

′
2)
′, M∗ = (M′

1,M
′
2)
′, and

H∗(z̃) =

(
H1(z̃1) 0

0 H1(z̃2)

)
.

Note that the above Lagrange function L̃(β, z,u) is in the same form of L(β, z,u)

in the 1D fused BAR method. As a result, we set M0 = M∗ in Algorithm 1 for

image denoising.

Note that Algorithm 1 is a general algorithm for the BAR method. Thus,

its application is not restricted to signal approximation and image processing. In

general, any design of dk can be incorporated in M. Algorithm 1 is flexible in

the sense that it allows for different penalties to be imposed on the various types
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Algorithm 1: Fused BAR Algorithm

Result: Fused BAR estimator β̂∗.
1 Input y, X, M0, β̂(0), λ1, λ2 and ε;
2 k ← 0;

3 β̃ ← β̂(0);

4 while (‖β̃ − β̂(k)‖ > ε or k = 0) do

5 β̃ ← β̂(k);

6 z̃←M0β̃;

7 H−11 (β̃)← diag(β̃2
j );

8 H−10 (z̃)← diag(z̃2j );

9 B(β̃)← H−11 (β̃){X′XH−11 (β̃) + λ1In}−1;

10 û◦ ← Pinv{M0B(β̃)M′
0 + H−10 (z̃)/λ2}M0B(β̃)X′y;

11 k ← k + 1;

12 β̂(k) ← B(β̃)(X′y −M′
0û
◦);

13 end

of structures of dk.

4.3. Choice of tuning parameters

To implement the BAR procedure, the initial value β̂(0) and parameters λ1
and λ2 need to be chosen carefully. The BAR method recommends the ridge

estimator as the initial β̂(0), with the tuning parameter ξ chosen carefully using

five-fold cross-validation (CV). However, when the sample size n is small, the

value of ξ chosen by CV may vary owing to the different partitions of the data.

To avoid this problem, we instead use the univariate regression estimator as the

initial estimator β̂(0) whenever p� n; that is,

β̂
(0)
j =

∑n
i=1 xijyi∑n
i=1 x

2
ij

, j = 1, . . . , pn, (4.3)

which is adopted as the initial value in the adaptive lasso (Huang, Ma, and

Zhang (2008)) to handle the high-dimensional problem. Huang, Ma, and Zhang

(2008) also showed that, under certain conditions, the adaptive lasso estimator

is consistent in variable selection and estimation if the initial estimator is the

marginal regression estimator. This is because the univariate regression estimator

is zero-consistent, in the sense that the estimators of the zero coefficients converge

to zero, whereas those of the nonzero coefficients do not. Our simulation results

show that the univariate estimator is a good initial value.

To select λ1 and λ2, we adopt the k-fold CV method. Specifically, in signal
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approximation, we pick all odd coefficients as the training set, and all even co-

efficients as the validation set. We search a grid of λ1 and λ2 using the two-fold

CV method. For example, we have 10 grids evenly distributed on the interval

[0.1, 10] for λ1, and 10 grids evenly distributed on [1, 20] for λ2. Then, we select

the optimal (λ1, λ2) with the minimum CV error by searching over values in the

2D grid. Note that if X is a general matrix, we recommend using five-fold CV

to find the optimal tuning parameters, λ1 and λ2.

5. Simulation Study

In this section, we carry out simulations on the fused BAR method, BAR

fusion, fused lasso, and `1 fusion. Note that the difference between “fused” and

“fusion” constraints is that the former encourages sparsity both in the coefficients

and their differences, whereas the latter penalizes the flatness of coefficients only.

For instance, the BAR fusion method is a special case of the BAR method, with

penalties imposed on the differences between adjacent coefficients only. Compar-

isons of their performance in terms of variable selection, estimation, and predic-

tion are presented. We use the R package genlasso for `1 fusion and fused lasso.

The response variable is generated from the regression model

y = Xβ0 + σε, ε ∼ N (0, I).

The following Examples 4–8 are considered. Specifically, Example 4 is de-

signed to check the ability to produce a piecewise constant estimate using fewer

jumps, and Example 5 checks whether these methods can successfully detect the

single nonzero coefficients. In Examples 6–7, we assess the performance of Al-

gorithm 1 for a general design of X when p > n and p < n, respectively. To

examine the performance of these methods on detecting true smaller jumps, we

conduct Examples 8–9. In Example 10, we simulate a toy image and compare

the performance of the fused BAR method with that of the fused lasso method

in image denoising.

Example 4 (Signal approximation). Set X = I. Let σ = 0.8, n = 200, and

the true signal be

β0 = (0, . . . , 0︸ ︷︷ ︸
20

, 5, . . . , 5︸ ︷︷ ︸
9

, 0, . . . , 0︸ ︷︷ ︸
41

, 3.5, . . . , 3.5︸ ︷︷ ︸
9

, 0, . . . , 0︸ ︷︷ ︸
21

, 4.5, . . . , 4.5︸ ︷︷ ︸
19

, 0, . . . , 0︸ ︷︷ ︸
81

)′.

The number of nonzero coefficients is 37.

Example 5 (Singular nonzero value). Set X = I. Let σ = 0.8, n = 250, and

the true signal be
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β0 = (0, . . . , 0︸ ︷︷ ︸
24

, 5, 0, . . . , 0︸ ︷︷ ︸
125

, 4.5, . . . , 4.5︸ ︷︷ ︸
49

, 0, . . . , 0︸ ︷︷ ︸
51

)′.

The number of nonzero coefficients is 50 with a single nonzero coefficient β25 = 5.

Example 6 (A general matrix X, with pn > n). Let σ = 10, p = 250,

n = 200, and the true coefficients be

β0 = (0, . . . , 0︸ ︷︷ ︸
19

, 5, . . . , 5︸ ︷︷ ︸
25

, 0, . . . , 0︸ ︷︷ ︸
56

, 3, . . . , 3︸ ︷︷ ︸
29

, 0, . . . , 0︸ ︷︷ ︸
51

,−4, . . . ,−4︸ ︷︷ ︸
29

, 0, . . . , 0︸ ︷︷ ︸
41

)′.

The number of nonzero coefficients is 83. We generate xij ∼ N (0, 1), for all

1 ≤ i ≤ n and 1 ≤ j ≤ pn.

Example 7 (A general matrix X with pn < n). Let σ = 5, p = 100, n = 200,

and the true coefficients be

β0 = (0, . . . , 0︸ ︷︷ ︸
9

,−2, . . . ,−2︸ ︷︷ ︸
15

, 0, . . . , 0︸ ︷︷ ︸
26

, 4, . . . , 4︸ ︷︷ ︸
19

, 0, . . . , 0︸ ︷︷ ︸
31

)′.

The number of nonzero coefficients is 34. We generate xij ∼ N (0, 1), for all

1 ≤ i ≤ n and 1 ≤ j ≤ pn.

Example 8. We use the same model as in Example 4, but with βj = 0.85, for

all βj 6= 0.

Example 9. We use the same model as in Example 5, but with βj = 0.85, for

all βj 6= 0.

Example 10 (Image denoising). We design a 20 × 20 pixel toy image. The

noise, following a normal distribution with mean zero and variance (14/51)2, is

added to the original image. We calculate the reconstruction errors by the fused

BAR and the fused lasso denoising, respectively.

Tables 1–2 summarize the results for Examples 4–7 and Examples 8–9, each

with 20 replications. The two tables present the number of selected features

(NOS), number of falsely selected variables (NOFS), percentage of true nonzero

coefficients the model selected (TM), number of jumps (NOJ), mean absolute

bias (MAB), fitted mean squared error (FMSE), single value selection (SVS),

and minimum CV error. Figures 1–5 depict the estimated coefficients using the

fused BAR, BAR fusion, fused lasso and `1 fusion for Examples 4–9. The image

processing results for Example 10 are shown in Figure 6.

It can be seen from Tables 1–2 that the NOS, NOFS, and MAB of the fused

BAR estimator are relatively smaller than those of the fused Lasso. This implies

that the resulting fused BAR estimator exhibits better performance in terms
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Table 1. Mean and standard deviation (in parentheses) of the results using the fused
BAR and the fused Lasso for Examples 4–7.

Example 4 Example 5
fused BAR fused Lasso fused BAR fused Lasso

NOS 37.350 (0.933) 96.850 (34.973) 49.950 (0.394) 114.550 (45.658)
NOFS 0.350 (0.933) 59.850 (34.973) 0.050 (0.224) 64.700 (45.542)
TM 100% (0.000) 100% (0.000) 99.8% (0.006) 99.7% (0.007)
NOJ 6.850 (1.496) 37.050 (13.839) 3.250 (1.070) 16.450 (7.749)
MAB 0.056 (0.018) 0.148 (0.039) 0.050 (0.022) 0.112 (0.027)
FMSE 0.620 (0.058) 0.545 (0.097) 0.679 (0.076) 0.688 (0.072)
CV error 1.200 (0.132) 1.211 (0.138) 0.922 (0.096) 0.892 (0.083)
SVS – – 0.950 (0.224) 0.850 (0.366)

Example 6 Example 7
fused BAR fused Lasso fused BAR fused Lasso

NOS 96.150 (16.000) 202.800 (42.010) 35.250 (2.197) 56.400 (13.697)
NOFS 13.300 (15.885) 119.800 (42.010) 1.250 (2.197) 22.400 (13.697)
TM 99.8% (0.004) 100% (0.000) 100% (0.000) 100% (0.000)
NOJ 7.250 (2.124) 23.450 (5.094) 4.250 (0.639) 13.500 (1.318)
MAB 0.060 (0.033) 0.162 (0.041) 0.025 (0.005) 0.058 (0.006)
FMSE 102.699 (9.217) 91.191 (11.323) 8.218 (0.263) 8.124 (0.175)
CV error 116.314 (13.951) 125.785 (12.500) 8.371 (0.161) 9.548 (0.227)
Test error 113.799 (27.965) 113.629 (22.332) 8.796 (0.945) 10.699 (1.314)

Table 2. Mean and standard deviation (in parentheses) of the results using the fused
BAR and the fused Lasso for Examples 8–9.

Example 8
fused BAR fused Lasso BAR fusion `1 fusion

NOS 45.050 (17.760) 94.200 (31.629) – –
NOFS 18.350 (14.449) 60.550 (29.366) – –
TM 72.2% (0.170) 90.9% (0.121) – –
NOJ 7.000 (3.598) 26.500 (13.873) 4.100 (3.611) 19.300 (10.458)
MAB 0.122 (0.040) 0.126 (0.030) 0.218 (0.060) 0.196 (0.038)
FMSE 0.584 (0.075) 0.564 (0.085) 0.654 (0.107) 0.581 (0.107)
CV error 0.732 (0.081) 0.712 (0.074) 0.739 (0.082) 0.726 (0.084)

Example 9
fused BAR fused Lasso BAR fusion `1 fusion

NOS 56.050 (12.890) 118.100 (46.348) – –
NOFS 12.200 (11.901) 69.450 (46.025) – –
TM 87.7% (0.097) 97.3% (0.032) – –
NOJ 4.050 (2.438) 15.650 (9.637) 3.550 (1.905) 14.350 (6.175)
MAB 0.065 (0.029) 0.089 (0.027) 0.126 (0.064) 0.128 (0.041)
FMSE 0.607 (0.056) 0.602 (0.065) 0.622 (0.070) 0.591 (0.060)
CV error 0.684 (0.068) 0.675 (0.062) 0.698 (0.070) 0.685 (0.064)
SVS 0.000 (0.000) 0.500 (0.513) – –



BROKEN ADAPTIVE RIDGE PROCEDURE 1083
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Figure 1. Estimated coefficients using `1 fusion, BAR fusion, fused lasso and fused BAR
for Example 4.

of variable selection. Moreover, Figures 1–3 show that the fused BAR obtains

coefficients that are piecewise constant, with fewer jumps. This is also shown

in Table 1, where the NOJ is much smaller than the fused Lasso. In addition,
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Figure 2. Estimated coefficients using `1 fusion, BAR fusion, fused lasso and fused BAR
for Example 5.

Figure 2 indicates that the fused BAR method is sensitive to the single-value

coefficient, and its SVS in Table 1 is larger than that of the fused lasso method.

On the other hand, we see from Table 2 and Figures 4–5 that when the true
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Figure 3. Estimated coefficients using fused lasso and fused BAR for Example 6 (the
first row) and Example 7 (the second row).

jumps are relatively smaller, the fused BAR and BAR fusion can still detect

these smaller jumps, with flatter estimates than those of the fused lasso and the

`1 fusion. In Example 9, the fused lasso seems to successfully detect a single
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Figure 4. Estimated coefficients using `1 fusion, BAR fusion, fused lasso and fused BAR
for Example 8.

nonzero value, because it has a larger SVS value, from Table 2. However, our

limited experiments show that the fused lasso estimate does not essentially cap-

ture an up-and-down jumping structure, similar to Figure 5. This phenomenon
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Figure 5. Estimated coefficients using `1 fusion, BAR fusion, fused lasso and fused BAR
for Example 9.

is reasonable, because the single true nonzero is merged with a larger noise and,

thus, is more difficult to detect. Lastly, as shown in Figure 4, the fused BAR

method is comparable with the fused lasso for image processing. More precisely,
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Figure 6. Results of Example 8 for image processing using the fused lasso and the fused
BAR.

the 2D fused BAR reduces the reconstruction error of the 2D fused lasso from

5.525 to 1.051. Overall, the simulation results contain supportive evidence that

the fused BAR method works reasonably well in terms of variable selection, esti-

mation, and prediction compared with the fused lasso method. As one reviewer

pointed out, this may be because the lasso is a biased estimation for large coeffi-

cients and differences of coefficients. On the other hand, this phenomenon may

be due to the variable selection inconsistency of the lasso in some scenarios (Zou

and Hastie (2005)).

6. Real Examples

6.1. CGH array denoising

In cancer research, the copy number variations (CNV) data are important

data sets that have an adjacent relationship. CNVs are typically in the form of

segments of various lengths (Rippe, Meulman and Eilers (2012)). The compara-

tive genomic hybridization (CGH) array is a powerful tool used to detect genetic
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Figure 7. The 1D fused lasso and fused BAR applied to CGH data. The red lines are
the estimated CGH signals. The black solid line is y = 0.

alterations, such as deletions and copy number increases, and regions of gains or

losses in DNA copy numbers (Pinkel et al. (1998); Wang et al. (2005)). To facili-

tate the detection of alterations, the array of CGH data is set to the log2 ratio of

the number of DNA copies in tumor cells divided by that in normal or reference

cells. Therefore, a positive CGH value, called a gain, indicates an increase in

the number of DNA copies, whereas a loss is shown by a negative value. CGH

signals are usually approximated by a piecewise constant sequence or a function

with segmented areas of zero values. In recent years, many approaches, such as

the EM-based method (Myers et al. (2004)), hidden Markov models (Fridlyand

et al. (2004); Liu et al. (2010)), and a segmentation algorithm (Venkatraman and

Olshen (2007)) have been developed for the visualization of CGH signals and in-

ferences segmented values. The fused lasso method has been applied to identify
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Table 3. Summary of the analysis results: CGH data.

Tuning parameters NOS NOJ FMSE CV error
Fused BAR λ1 = 2.154e− 05, λ2 = 0.889 732 11 0.166 0.370
BAR fusion λ = 0.910 – 11 0.167 0.371
Fused Lasso λ1 = 0.005, λ2 = 2.081 942 40 0.176 0.321
L1 Fusion λ = 2.081 – 40 0.176 0.321

Figure 8. Top-left panel: 128 × 128 pixels grayscale image of Lena. Top-right panel:
Gaussian noise with standard deviation 20 has been added. Bottom-left panel: Solution
of fused lasso with λ1 = 0 and λ2 chosen by CV. Bottom-right panel: Solution of fused
BAR with λ1 = 0 and λ2 chosen by CV.

the gains and losses in the CGH arrays (Tibshirani and Wang (2007)).

We apply the fused BAR, BAR fusion, fused Lasso, and `1 fusion methods

to the CGH arrays. The CGH data are obtained from the R package cghFLasso.

The results are illustrated in Table 3 and Figure 7. Table 3 indicates that the
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fused BAR selects a smaller number of features than the fused lasso does, and

the mean squared errors of the fused BAR fitting are smaller. Figure 7 shows

that the fused BAR is sensitive to the outliers. The signals recovered using fused

BAR and BAR fusion are flatter than those recovered using fused lasso and `1
fusion.

6.2. Lena image processing

We use the 2D fused lasso and fused BAR to denoise the Lena image in the

R package filling. We added Gaussian noise with a standard deviation of 20 to

the original image. Because zero does not represent a natural baseline in this

image, we tried the `1 fusion model with λ1 = 0, as well as the BAR fusion

model. Then, we found the optimal value of λ2 for each method using two-fold

cross-validation. The reconstruction errors from the original noiseless image are

6.256 for the BAR fusion and 6.731 for the `1 fusion. Although the BAR fusion

has a smaller reconstruction error than the `1 fusion, the two methods have their

respective advantages on image processing. Specifically, the BAR fusion solu-

tion, shown in the bottom-right panel of Figure 8, gives a better approximation

to the smoothness of the image, especially for the background, whereas the `1
fusion estimate shown in the bottom left panel recovers greater details in the

characterization of Lena.

7. Discussion

In this paper, we have proposed a BAR method for variable selection and

the pattern estimation of regression coefficients. Its oracle properties are demon-

strated under proper conditions. As one of the special cases, the fused BAR is

introduced and thoroughly discussed, with applications in signal approximation

and image denoising. To make it easy to implement, the associated algorithms

are established based on the Lagrange method. The simulation study and real-

data analysis show that the fused BAR method is comparable with the fused

lasso in terms of recovering a lower-dimensional piecewise constant structure and

reconstructing an image. The BAR approach can be further connected with those

methods that penalize the linear combinations of coefficients, and is expected to

be applied in many other scientific fields.

Supplementary Material

The technical proofs are provided in the online Supplementary Material.
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