On Aggregate Dimension Reduction

Qin Wang, Xiangrong Yin, Bing Li and Zhihui Tang

The University of Alabama, University of Kentucky Penn State University and PPDI

Supplementary Material

S1 Proof of Theorem 1

Let G be an open subset of $\Omega_{\mathbf{X}}$. Then, by part 1 of Proposition 11 in Yin et al. (2008), we have that $S_{Y_G|\mathbf{X}_G} \subseteq S_{Y|\mathbf{X}}$, which implies that span $\{S_{Y_G|\mathbf{X}_G} : G \subseteq \Omega_{\mathbf{X}}\} \subseteq S_{Y|\mathbf{X}}$.

By a result of Zhu and Zeng (2006), we have

span {
$$\partial h(y \mid \mathbf{x}) / \partial \mathbf{x} : (\mathbf{x}, y) \in \Omega_{\mathbf{X}} \times \Omega_{Y}$$
} = $S_{Y \mid \mathbf{X}}$. (S1.1)

Apply the same result to (\mathbf{X}_{G}, Y_{G}) to obtain

$$\operatorname{span}\{\partial h(y \mid \mathbf{x}) / \partial \mathbf{x} : (\mathbf{x}, y) \in G \times \Omega_Y\} = \mathcal{S}_{Y_G \mid \mathbf{X}_G}.$$
 (S1.2)

Now let (\mathbf{x}_0, y_0) be an arbitrary point in $(\Omega_{\mathbf{X}}, \Omega_Y)$, and let G be an open subset of $\Omega_{\mathbf{X}}$ that contains \mathbf{x}_0 . Then, by part 3 of Proposition 1, $h_G(y \mid$ \mathbf{x}) = $h(y \mid \mathbf{x})$ for all $(\mathbf{x}, y) \in G \times \Omega_Y$. Therefore, $[\partial h_G(y \mid \mathbf{x})/\partial \mathbf{x}]_{\mathbf{x}_0, y_0} = [\partial h(y \mid \mathbf{x})/\partial \mathbf{x}]_{\mathbf{x}_0, y_0}$. Thus, by (S1.1) and (S1.2) we have

$$\mathcal{S}_{Y|\mathbf{X}} \subseteq \bigcup \{ \mathcal{S}_{Y|\mathbf{X}_G} : G \subseteq \Omega_{\mathbf{X}} \} \subseteq \operatorname{span} \{ \mathcal{S}_{Y|\mathbf{X}_G} : G \subseteq \Omega_{\mathbf{X}} \}.$$
(S1.3)

Furthermore, by part 2 of Proposition 11 of Yin et al. (2008), there exists a compact set $K \subseteq \Omega_{\mathbf{X}}$ such that $S_{Y_K|\mathbf{X}_K} = S_{Y|\mathbf{X}}$, where (\mathbf{X}_K, Y_K) is defined as \mathbf{X} restricted on K. Since $\cup \{G : G \subseteq \Omega_{\mathbf{X}}\}$ forms an open cover of the compact set K, there is a finite subcover $\cup \{G_i : i = 1, ..., m\}$ of K. Hence by the same argument leading to (S1.3) we have $S_{Y|\mathbf{X}} \subseteq \cup \{S_{Y|\mathbf{X}_{G_i}} :$ $i = 1, ..., m\}$, as desired. \Box

S2 Proof of Theorem 2

We have

$$E(\mathbf{X}_{G} \mid Y_{G} = y) = \int_{G} \mathbf{x} \, \frac{h(y \mid \mathbf{x}) p_{G}(\mathbf{x})}{g_{G}(y)} d\mathbf{x} = \frac{1}{g_{G}(y)} \int_{G} \mathbf{x} \, h(y \mid \mathbf{x}) p_{G}(\mathbf{x}) d\mathbf{x}.$$
(S2.1)

Let $\dot{h}(y \mid \mathbf{x})$ and $\ddot{h}(y \mid \mathbf{x})$ denote the first and second derivatives of h with respect to \mathbf{x} . By Taylor's theorem, for any $\mathbf{x} \in G$, there is a $\boldsymbol{\xi}$ with $\|\boldsymbol{\xi} - \boldsymbol{\mu}_{\scriptscriptstyle G}\| \leq \|G\|$ such that

$$h(y \mid \mathbf{x}) = h(y \mid \boldsymbol{\mu}_{g}) + \dot{h}^{T}(y \mid \boldsymbol{\mu}_{g})(\mathbf{x} - \boldsymbol{\mu}_{g}) + \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{g})^{T}\ddot{h}(y \mid \boldsymbol{\xi})(\mathbf{x} - \boldsymbol{\mu}_{g}).$$
(S2.2)

In the meantime,

$$h(y \mid \boldsymbol{\mu}_{g} + \mathbf{P}_{\boldsymbol{\beta}_{G}}(\mathbf{x} - \boldsymbol{\mu}_{g})) = h(y \mid \boldsymbol{\mu}_{g}) + \dot{h}^{T}(y \mid \boldsymbol{\mu}_{g})\mathbf{P}_{\boldsymbol{\beta}_{G}}(\mathbf{x} - \boldsymbol{\mu}_{g}) + \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{g})^{T}\mathbf{P}_{\boldsymbol{\beta}_{G}}\ddot{h}(y \mid \boldsymbol{\xi})\mathbf{P}_{\boldsymbol{\beta}_{G}}(\mathbf{x} - \boldsymbol{\mu}_{g}).$$
(S2.3)

However, by construction, it is easy to see that $\dot{h}(y \mid \boldsymbol{\mu}_{G}) \in \operatorname{span}(\mathbf{H}_{G})$ almost everywhere in Ω_{Y} . Hence $\mathbf{P}_{\boldsymbol{\beta}_{G}}\dot{h}(y \mid \boldsymbol{\mu}_{G}) = \dot{h}(y \mid \boldsymbol{\mu}_{G})$. Because $\|\mathbf{x} - \boldsymbol{\mu}_{G}\| \leq \|G\|$ and the elements of $\ddot{h}(y \mid \boldsymbol{\xi})$ are bounded, the third terms on the right hand sides of (S2.2) and (S2.3) are of the order $O(\|G\|^{2})$. Now subtract (S2.2) from (S2.3),

$$h(y|\mathbf{x}) = h(y|\boldsymbol{\mu}_{G} + \mathbf{P}_{\boldsymbol{\beta}_{G}}(\mathbf{x} - \boldsymbol{\mu}_{G})) + O(||G||^{2}) \text{ as } ||G|| \to 0.$$
 (S2.4)

Substitute (S2.2) into the right hand side of (S2.1), using the relations $E(\mathbf{X}_{G} - \boldsymbol{\mu}_{G}) = 0$ and $Var(\mathbf{X}_{G}) = \boldsymbol{\Sigma}_{G}$, to obtain

$$E(\mathbf{X}_{G} - \boldsymbol{\mu}_{G} \mid Y_{G} = y) = \frac{1}{g_{G}(y)} \boldsymbol{\Sigma}_{G} \dot{h}(y \mid \boldsymbol{\mu}_{G}) + \frac{1}{2g_{G}(y)} \int_{G} [(\mathbf{x} - \boldsymbol{\mu}_{G})(\mathbf{x} - \boldsymbol{\mu}_{G})^{T} \ddot{h}(y \mid \boldsymbol{\xi})(\mathbf{x} - \boldsymbol{\mu}_{G})] p_{G}(\mathbf{x}) d\mathbf{x}$$
(S2.5)

Since $\|\mathbf{x} - \boldsymbol{\mu}_{G}\| \leq \|G\|$ and the components of $\ddot{h}(y \mid \boldsymbol{\xi})$ are bounded, the second term on the right is of the order $O(\|G\|^{3})$. In other words,

$$E(\mathbf{X}_{G} - \boldsymbol{\mu}_{G} \mid Y_{G} = y) = \frac{1}{g_{G}(y)} \boldsymbol{\Sigma}_{G} \dot{h}(y \mid \boldsymbol{\mu}_{G}) + O(\|G\|^{3}).$$

Multiply both sides by Σ_{G}^{-1} , keeping in mind that $\Sigma_{G} = O(||G||^{2})$, to obtain

$$\boldsymbol{\Sigma}_{G}^{-1}E(\mathbf{X}_{G}-\boldsymbol{\mu}_{G}\mid Y_{G}=y)=\frac{1}{g_{G}(y)}\dot{h}(y\mid \boldsymbol{\mu}_{G})+O(\|G\|).$$
(S2.6)

Meanwhile, if we multiply both sides of the above equality by $\mathbf{P}_{\boldsymbol{\beta}_{G}}$, then, because $\dot{h}(y \mid \boldsymbol{\mu}_{G}) \in \operatorname{span}(\boldsymbol{\beta}_{G})$ for almost every $y \in \Omega_{Y}$, we have

$$\mathbf{P}_{\boldsymbol{\beta}_{G}}\boldsymbol{\Sigma}_{G}^{-1}E(\mathbf{X}_{G}-\boldsymbol{\mu}_{G}\mid y) = \frac{1}{g_{G}(y)}\dot{h}(y\mid\boldsymbol{\mu}_{G}) + O(\|G\|).$$
(S2.7)

Now subtract (S2.7) from (S2.6) to prove (3.1).

S3 Proof of Theorem 3

Let μ_{G}^{*} be the center of G. Since p_{G} has bounded derivative, $p_{G}(\mathbf{x}) = p_{G}(\mu_{G}^{*}) + O(||G||)$. Hence

$$\boldsymbol{\mu}_{_{G}} = \int_{G} (\mathbf{x} - \boldsymbol{\mu}_{_{G}}^{*} + \boldsymbol{\mu}_{_{G}}^{*}) p_{_{G}}(\mathbf{x}) d\mathbf{x}$$

= $\boldsymbol{\mu}_{_{G}}^{*} + \int_{G} (\mathbf{x} - \boldsymbol{\mu}_{_{G}}^{*}) [p_{_{G}}(\boldsymbol{\mu}_{_{G}}^{*}) + O(||G||)] d\mathbf{x} = \boldsymbol{\mu}_{_{G}}^{*} + O(||G||^{3}).$

Hence the integral in the second term on the right hand side of (S2.5) is

$$\int_{G} [(\mathbf{x} - \boldsymbol{\mu}_{G}^{*})(\mathbf{x} - \boldsymbol{\mu}_{G}^{*})^{T}\ddot{h}(y \mid \boldsymbol{\xi})(\mathbf{x} - \boldsymbol{\mu}_{G}^{*}) + O(||G||^{5})][p_{G}(\boldsymbol{\mu}_{G}^{*}) + O(||G||)]d\mathbf{x}$$

=
$$\int_{G} [(\mathbf{x} - \boldsymbol{\mu}_{G}^{*})(\mathbf{x} - \boldsymbol{\mu}_{G}^{*})^{T}\ddot{h}(y \mid \boldsymbol{\xi})(\mathbf{x} - \boldsymbol{\mu}_{G}^{*})]p_{G}(\boldsymbol{\mu}_{G}^{*})d\mathbf{x} + O(||G||^{5})$$

However, the leading term on the right is also of the order $O(||G||^5)$, because

$$\begin{split} &\int_{G} [(\mathbf{x} - \boldsymbol{\mu}_{G}^{*})(\mathbf{x} - \boldsymbol{\mu}_{G}^{*})^{T} \ddot{h}(y \mid \boldsymbol{\xi})(\mathbf{x} - \boldsymbol{\mu}_{G}^{*})] p_{G}(\boldsymbol{\mu}_{G}^{*}) d\mathbf{x} \\ &= p_{G}(\boldsymbol{\mu}_{G}^{*}) \int_{G} (\mathbf{x} - \boldsymbol{\mu}_{G}^{*})(\mathbf{x} - \boldsymbol{\mu}_{G}^{*})^{T} \ddot{h}(y \mid \boldsymbol{\mu}_{G})(\mathbf{x} - \boldsymbol{\mu}_{G}^{*}) d\mathbf{x} + O(\|G\|^{5}), \end{split}$$

where the first term is 0 since G is an open ball. The rest of the proof is to the argument following (S2.5).

Bibliography

- Yin, X., B. Li, and R. D. Cook (2008). Successive direction extraction for estimating the central subspace in a multiple-index regression. *Journal* of Multivariate Analysis 99(8), 1733–1757.
- Zhu, Y. and P. Zeng (2006). Fourier methods for estimating the central subspace and the central mean subspace in regression. *Journal of the American Statistical Association 101*, 1638–1651.