On Aggregate Dimension Reduction

Qin Wang, Xiangrong Yin, Bing Li and Zhihui Tang
The University of Alabama, University of Kentucky Penn State University and PPDI

Supplementary Material

S1 Proof of Theorem 1

Let G be an open subset of $\Omega_{\mathbf{X}}$. Then, by part 1 of Proposition 11 in Yin et al. (2008), we have that $\mathcal{S}_{Y_{G} \mid \mathbf{X}_{G}} \subseteq \mathcal{S}_{Y \mid \mathbf{X}}$, which implies that $\operatorname{span}\left\{\mathcal{S}_{Y_{G} \mid \mathbf{X}_{G}}\right.$: $\left.G \subseteq \Omega_{\mathbf{X}}\right\} \subseteq \mathcal{S}_{Y \mid \mathbf{X}}$.

By a result of Zhu and Zeng (2006), we have

$$
\begin{equation*}
\operatorname{span}\left\{\partial h(y \mid \mathbf{x}) / \partial \mathbf{x}:(\mathbf{x}, y) \in \Omega_{\mathbf{X}} \times \Omega_{Y}\right\}=\mathcal{S}_{Y \mid \mathbf{X}} \tag{S1.1}
\end{equation*}
$$

Apply the same result to $\left(\mathbf{X}_{G}, Y_{G}\right)$ to obtain

$$
\begin{equation*}
\operatorname{span}\left\{\partial h(y \mid \mathbf{x}) / \partial \mathbf{x}:(\mathbf{x}, y) \in G \times \Omega_{Y}\right\}=\mathcal{S}_{Y_{G} \mid \mathbf{X}_{G}} . \tag{S1.2}
\end{equation*}
$$

Now let $\left(\mathbf{x}_{0}, y_{0}\right)$ be an arbitrary point in $\left(\Omega_{\mathbf{X}}, \Omega_{Y}\right)$, and let G be an open subset of $\Omega_{\mathbf{X}}$ that contains \mathbf{x}_{0}. Then, by part 3 of Proposition $1, h_{G}(y \mid$
$\mathbf{x})=h(y \mid \mathbf{x})$ for all $(\mathbf{x}, y) \in G \times \Omega_{Y}$. Therefore, $\left[\partial h_{G}(y \mid \mathbf{x}) / \partial \mathbf{x}\right]_{\mathbf{x}_{0}, y_{0}}=$ $[\partial h(y \mid \mathbf{x}) / \partial \mathbf{x}]_{\mathbf{x}_{0}, y_{0}}$. Thus, by (S1.1) and (S1.2) we have

$$
\begin{equation*}
\mathcal{S}_{Y \mid \mathbf{X}} \subseteq \cup\left\{\mathcal{S}_{Y \mid \mathbf{X}_{G}}: G \subseteq \Omega_{\mathbf{X}}\right\} \subseteq \operatorname{span}\left\{\mathcal{S}_{Y \mid \mathbf{X}_{G}}: G \subseteq \Omega_{\mathbf{X}}\right\} \tag{S1.3}
\end{equation*}
$$

Furthermore, by part 2 of Proposition 11 of Yin et al. (2008), there exists a compact set $K \subseteq \Omega_{\mathbf{X}}$ such that $\mathcal{S}_{Y_{K} \mid \mathbf{X}_{K}}=\mathcal{S}_{Y \mid \mathbf{X}}$, where $\left(\mathbf{X}_{K}, Y_{K}\right)$ is defined as \mathbf{X} restricted on K. Since $\cup\left\{G: G \subseteq \Omega_{\mathbf{X}}\right\}$ forms an open cover of the compact set K, there is a finite subcover $\cup\left\{G_{i}: i=1, \ldots, m\right\}$ of K. Hence by the same argument leading to (S1.3) we have $\mathcal{S}_{Y \mid \mathbf{X}} \subseteq \cup\left\{\mathcal{S}_{Y \mid \mathbf{X}_{G_{i}}}\right.$: $i=1, \ldots, m\}$, as desired.

S2 Proof of Theorem 2

We have

$$
\begin{equation*}
E\left(\mathbf{X}_{G} \mid Y_{G}=y\right)=\int_{G} \mathbf{x} \frac{h(y \mid \mathbf{x}) p_{G}(\mathbf{x})}{g_{G}(y)} d \mathbf{x}=\frac{1}{g_{G}(y)} \int_{G} \mathbf{x} h(y \mid \mathbf{x}) p_{G}(\mathbf{x}) d \mathbf{x} \tag{S2.1}
\end{equation*}
$$

Let $\dot{h}(y \mid \mathbf{x})$ and $\ddot{h}(y \mid \mathbf{x})$ denote the first and second derivatives of h with respect to \mathbf{x}. By Taylor's theorem, for any $\mathbf{x} \in G$, there is a $\boldsymbol{\xi}$ with $\left\|\boldsymbol{\xi}-\boldsymbol{\mu}_{G}\right\| \leq\|G\|$ such that

$$
\begin{equation*}
h(y \mid \mathbf{x})=h\left(y \mid \boldsymbol{\mu}_{G}\right)+\dot{h}^{T}\left(y \mid \boldsymbol{\mu}_{G}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{G}\right)+\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{G}\right)^{T} \ddot{h}(y \mid \boldsymbol{\xi})\left(\mathbf{x}-\boldsymbol{\mu}_{G}\right) . \tag{S2.2}
\end{equation*}
$$

In the meantime,

$$
\begin{align*}
h\left(y \mid \boldsymbol{\mu}_{G}+\mathbf{P}_{\boldsymbol{\beta}_{G}}\left(\mathbf{x}-\boldsymbol{\mu}_{G}\right)\right)= & h\left(y \mid \boldsymbol{\mu}_{G}\right)+\dot{h}^{T}\left(y \mid \boldsymbol{\mu}_{G}\right) \mathbf{P}_{\boldsymbol{\beta}_{G}}\left(\mathbf{x}-\boldsymbol{\mu}_{G}\right) \\
& +\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{G}\right)^{T} \mathbf{P}_{\boldsymbol{\beta}_{G}} \ddot{h}(y \mid \boldsymbol{\xi}) \mathbf{P}_{\boldsymbol{\beta}_{G}}\left(\mathbf{x}-\boldsymbol{\mu}_{G}\right) . \tag{S2.3}
\end{align*}
$$

However, by construction, it is easy to see that $\dot{h}\left(y \mid \boldsymbol{\mu}_{G}\right) \in \operatorname{span}\left(\mathbf{H}_{G}\right)$ almost everywhere in Ω_{Y}. Hence $\mathbf{P}_{\boldsymbol{\beta}_{G}} \dot{h}\left(y \mid \boldsymbol{\mu}_{G}\right)=\dot{h}\left(y \mid \boldsymbol{\mu}_{G}\right)$. Because $\left\|\mathbf{x}-\boldsymbol{\mu}_{G}\right\| \leq\|G\|$ and the elements of $\ddot{h}(y \mid \boldsymbol{\xi})$ are bounded, the third terms on the right hand sides of (S2.2) and (S2.3) are of the order $O\left(\|G\|^{2}\right)$. Now subtract (S2.2) from (S2.3),

$$
\begin{equation*}
h(y \mid \mathbf{x})=h\left(y \mid \boldsymbol{\mu}_{G}+\mathbf{P}_{\boldsymbol{\beta}_{G}}\left(\mathbf{x}-\boldsymbol{\mu}_{G}\right)\right)+O\left(\|G\|^{2}\right) \text { as }\|G\| \rightarrow 0 . \tag{S2.4}
\end{equation*}
$$

Substitute (S2.2) into the right hand side of (S2.1), using the relations $E\left(\mathbf{X}_{G}-\boldsymbol{\mu}_{G}\right)=0$ and $\operatorname{Var}\left(\mathbf{X}_{G}\right)=\boldsymbol{\Sigma}_{G}$, to obtain

$$
\begin{align*}
E\left(\mathbf{X}_{G}-\boldsymbol{\mu}_{G} \mid Y_{G}=y\right)= & \frac{1}{g_{G}(y)} \boldsymbol{\Sigma}_{G} \dot{h}\left(y \mid \boldsymbol{\mu}_{G}\right) \\
& +\frac{1}{2 g_{G}(y)} \int_{G}\left[\left(\mathbf{x}-\boldsymbol{\mu}_{G}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{G}\right)^{T} \ddot{h}(y \mid \boldsymbol{\xi})\left(\mathbf{x}-\boldsymbol{\mu}_{G}\right)\right] p_{G}(\mathbf{x}) d \mathbf{x} . \tag{S2.5}
\end{align*}
$$

Since $\left\|\mathbf{x}-\boldsymbol{\mu}_{G}\right\| \leq\|G\|$ and the components of $\ddot{h}(y \mid \boldsymbol{\xi})$ are bounded, the second term on the right is of the order $O\left(\|G\|^{3}\right)$. In other words,

$$
E\left(\mathbf{X}_{G}-\boldsymbol{\mu}_{G} \mid Y_{G}=y\right)=\frac{1}{g_{G}(y)} \boldsymbol{\Sigma}_{G} \dot{h}\left(y \mid \boldsymbol{\mu}_{G}\right)+O\left(\|G\|^{3}\right) .
$$

Multiply both sides by $\boldsymbol{\Sigma}_{G}^{-1}$, keeping in mind that $\boldsymbol{\Sigma}_{G}=O\left(\|G\|^{2}\right)$, to obtain

$$
\begin{equation*}
\boldsymbol{\Sigma}_{G}^{-1} E\left(\mathbf{X}_{G}-\boldsymbol{\mu}_{G} \mid Y_{G}=y\right)=\frac{1}{g_{G}(y)} \dot{h}\left(y \mid \boldsymbol{\mu}_{G}\right)+O(\|G\|) \tag{S2.6}
\end{equation*}
$$

Meanwhile, if we multiply both sides of the above equality by $\mathbf{P}_{\boldsymbol{\beta}_{G}}$, then, because $\dot{h}\left(y \mid \boldsymbol{\mu}_{G}\right) \in \operatorname{span}\left(\boldsymbol{\beta}_{G}\right)$ for almost every $y \in \Omega_{Y}$, we have

$$
\begin{equation*}
\mathbf{P}_{\boldsymbol{\beta}_{G}} \boldsymbol{\Sigma}_{G}^{-1} E\left(\mathbf{X}_{G}-\boldsymbol{\mu}_{G} \mid y\right)=\frac{1}{g_{G}(y)} \dot{h}\left(y \mid \boldsymbol{\mu}_{G}\right)+O(\|G\|) . \tag{S2.7}
\end{equation*}
$$

Now subtract (S2.7) from (S2.6) to prove (3.1).

S3 Proof of Theorem 3

Let $\boldsymbol{\mu}_{G}^{*}$ be the center of G. Since p_{G} has bounded derivative, $p_{G}(\mathbf{x})=$ $p_{G}\left(\boldsymbol{\mu}_{G}^{*}\right)+O(\|G\|)$. Hence

$$
\begin{aligned}
\boldsymbol{\mu}_{G} & =\int_{G}\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}+\boldsymbol{\mu}_{G}^{*}\right) p_{G}(\mathbf{x}) d \mathbf{x} \\
& =\boldsymbol{\mu}_{G}^{*}+\int_{G}\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}\right)\left[p_{G}\left(\boldsymbol{\mu}_{G}^{*}\right)+O(\|G\|)\right] d \mathbf{x}=\boldsymbol{\mu}_{G}^{*}+O\left(\|G\|^{3}\right) .
\end{aligned}
$$

Hence the integral in the second term on the right hand side of (S2.5) is

$$
\begin{aligned}
& \int_{G}\left[\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}\right)^{T} \ddot{h}(y \mid \boldsymbol{\xi})\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}\right)+O\left(\|G\|^{5}\right)\right]\left[p_{G}\left(\boldsymbol{\mu}_{G}^{*}\right)+O(\|G\|)\right] d \mathbf{x} \\
& =\int_{G}\left[\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}\right)^{T} \ddot{h}(y \mid \boldsymbol{\xi})\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}\right)\right] p_{G}\left(\boldsymbol{\mu}_{G}^{*}\right) d \mathbf{x}+O\left(\|G\|^{5}\right)
\end{aligned}
$$

However, the leading term on the right is also of the order $O\left(\|G\|^{5}\right)$, because

$$
\begin{aligned}
& \int_{G}\left[\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}\right)^{T} \ddot{h}(y \mid \boldsymbol{\xi})\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}\right)\right] p_{G}\left(\boldsymbol{\mu}_{G}^{*}\right) d \mathbf{x} \\
& =p_{G}\left(\boldsymbol{\mu}_{G}^{*}\right) \int_{G}\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}\right)^{T} \ddot{h}\left(y \mid \boldsymbol{\mu}_{G}\right)\left(\mathbf{x}-\boldsymbol{\mu}_{G}^{*}\right) d \mathbf{x}+O\left(\|G\|^{5}\right)
\end{aligned}
$$

where the first term is 0 since G is an open ball. The rest of the proof is to the argument following (S2.5).

Bibliography

Yin, X., B. Li, and R. D. Cook (2008). Successive direction extraction for estimating the central subspace in a multiple-index regression. Journal of Multivariate Analysis 99(8), 1733-1757.

Zhu, Y. and P. Zeng (2006). Fourier methods for estimating the central subspace and the central mean subspace in regression. Journal of the American Statistical Association 101, 1638-1651.

