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Abstract: A buffered autoregression extends the classical threshold autoregression

by allowing a buffer region for regime changes. In this study, we examine asymp-

totic statistical inferences for the two-regime buffered autoregressive (BAR) model,

with autoregressive unit roots. We propose a Sup-LR test for the nonlinear buffer

effect in the possible presence of unit roots, and a class of unit root tests to iden-

tify the number of nonstationary regimes in the BAR model. The wild bootstrap

method is suggested to approximate the critical values of the two tests. Simula-

tion results show that the proposed unit root test outperforms the conventional

augmented Dickey–Fuller test, and that the two wild bootstrap tests are robust

to unknown heteroscedasticity. Two macroeconomic data examples, based on U.S.

unemployment rates and real exchange rates, respectively, are provided to illustrate

the methods.

Key words and phrases: Asymptotic theory, buffer effect, nonlinear time series,

nonstationary, threshold autoregression, wild bootstrap.

1. Introduction

As proposed by Tong (1978), the threshold autoregressive (TAR) model has

been applied successfully in economics, finance, and other fields; for example, see

Tong (1990), Hansen (2011), and Chen, So and Liu (2011). As an extension of the

TAR model, Li et al. (2015) proposed the buffered autoregressive (BAR) model,

also known as the hysteretic autoregressive (HAR) model. Here, the BAR model

extends the TAR model by allowing a buffer region for regime changes. Zhu, Yu

and Li (2014) proposed a test for the stationary buffered autoregressive process

against the linear process, and BAR models with conditional heteroscedasticity

were studied by Chen and Truong (2016) and Zhu, Li and Yu (2017).

However, all previous studies related to the BAR model assume that the data

are strictly stationary, geometrically ergodic, and have no unit roots. Thus, the

objective of this study is to develop statistical tools to study buffered nonlinearity

and nonstationarity simultaneously. Unit root tests have been developed for other

nonlinear time series models. These include unit root tests for the two-regime
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TAR by Caner and Hansen (2001) and Seo (2008), the three-regime TAR by

Bec, Ben Salem and Carrasco (2004) and Kapetanios and Shin (2006), and the

smooth transitional autoregressive model by Kapetanios, Shin and Snell (2003)

and Park and Shintani (2016).

We propose a Sup-LR test for the buffered nonlinear effect in the possible

presence of unit roots, and a general class of unit root tests based on t-ratios,

taking into account the buffer effect. In order to analyze the possible nonstation-

arity and nonlinearity simultaneously, we study the unit root asymptotic theory

under two scenarios, namely the linear and buffered nonlinear cases. Because the

two-regime TAR model is a special case of the BAR model when the buffer region

vanishes, our results extend those of Caner and Hansen (2001). The asymptotic

distributions of our proposed tests have a similar form to those of the TAR model.

The wild bootstrap method can be employed to approximate the finite-sample

critical value, and is robust to unknown heteroscedasticity, according to Monte

Carlo simulations.

A rival to the two-regime BAR model is the three-regime TAR model. In

many economic applications of the three-regime TAR model, the middle regime is

allowed to be a unit root process, while the outer regimes are stationary. In this

way, the TAR model can account for ergodicity and allow for local nonstationarity

(Bec, Ben Salem and Carrasco (2004); Maki (2009); Chen, Chen and Lee (2013)).

As pointed in Li et al. (2015) and Truong, Chen and So (2016), the two distinct

threshold parameters in the three-regime TAR are interpreted as discontinuous

structural change points, whereas those in the BAR model represent asymmetric

structural change points with a buffer effect. In this work, we compare these two

models with possible unit roots. A combination of nonstationarity and the buffer

effect could provide new insights into the behavior of the economic time series,

leading to a new interpretation of the business cycle, as shown in our empirical

analysis.

The rest of the paper is organized as follows. In Section 2, the buffer effect is

introduced and the BAR model is formulated. Section 3 presents the distribution

theory of a Sup-LR test for nonlinearity, including the critical values approxi-

mated by the wild bootstrap. Section 4 presents the asymptotic theory of the

unit root test for cases with and without identified thresholds. The Monte Carlo

simulation results are given in Section 5. Section 6 presents an empirical study

of macroeconomic data on the U.S. unemployment rate and three real exchange

rates. Throughout the paper,
a.s.→ ,

p→, ⇒, and
p⇒ denote convergence almost

surely, convergence in probability, weak convergence, and weak convergence in
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probability, respectively. I(·) is an indicator function. The mathematical proofs

are provided in the online Supplementary Material.

2. The BAR Model

The BAR model of order p, BAR(p), is formulated as

yt =

(
p∑
i=1

αiyt−i

)
Rt +

(
p∑
i=1

βiyt−i

)
(1−Rt) + et, Rt =


1, Zt ≤ rL,
0, Zt > rU ,

Rt−1, otherwise,

(2.1)

where Rt is a regime-switching indicator with a buffer interval [rL, rU ], and Zt is

a threshold variable.

If rL < rU and the threshold variable Zt lies in the buffer interval [rL, rU ], the

structure of the autoregressive (AR) model remains unchanged from the previous

period. This kind of asymmetric structural change phenomenon is known as the

buffer effect, or hysteresis effect in Li et al. (2015). The buffer effect differentiates

the conventional TAR model from the BAR model, in which Rt can depend on

infinitely many past values of Zt. From (2.1), we can derive

Rt = I(Zt ≤ rL) + I(rL < Zt ≤ rU )Rt−1

= I(Zt ≤ rL) +

∞∑
j=0

j∏
i=0

I(rL < Zt−i ≤ rU )I(Zt−j−1 ≤ rL).

Using the Dickey–Fuller reparameterization, we can rewrite (2.1) as

∆yt =

(
φ0yt−1 +

p−1∑
i=1

φi∆yt−i

)
Rt+

(
ψ0yt−1 +

p−1∑
i=1

ψi∆yt−i

)
(1−Rt)+et, (2.2)

where φ0 =
∑p

i=1 αi − 1, ψ0 =
∑p

i=1 βi − 1, φk = −
∑p

i=k+1 αi, and ψk =

−
∑p

i=k+1 βi, for k = 1, 2, . . . , p − 1. If φ0 or ψ0 is equal to zero, yt in the

corresponding regime will have a unit root, and hence, is nonstationary.

In this study, we consider only that the buffered process has a self-excited

switching mechanism. In addition, except for special cases, we employ the fol-

lowing assumptions throughout the paper.

Assumption 1. The innovation {et} is a strictly stationary and ergodic martin-

gale difference sequence, and let Ft denote the natural filtration associated with

this process. In addition, E(e2
t |Ft−1) = σ2 and E(|et|4η|Ft−1) < ∞, for some

η > 1.
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Assumption 2. The process {∆yt} is strictly stationary, ergodic, and absolutely

regular with mixing coefficients β(m) = O(m−A), for some A > v/(v − 1) and

r ≥ v > 1; E(|∆yt|4η <∞), for some η > 1.

Assumption 1 requires that the innovations have conditional homoscedas-

ticity. Assumption 2 is from Zhu, Li and Yu (2017), and we assume sufficient

conditions
∑p−1

i=1 |φi| < 1 and
∑p−1

i=1 |ψi| < 1 for the stationarity and geometric

ergodicity of ∆yt. Note that it is necessary to assume that Zt is stationary in

order to preserve the buffer effect; otherwise, if Zt has a unit root, the long-term

probability of Zt staying within a fixed buffering interval [rL, rU ] will converge

to zero. In this case, the buffer effect will vanish, and the BAR model will re-

duce to the two-regime TAR model. Because yt is possibly nonstationary, we

may consider the first difference of the process with delay order d; for example,

Zdt = ∆yt−d or Zdt = yt−1 − yt−d−1.

3. Test for Buffered Nonlinearity with Possible Unit Roots

3.1. Sup-LR test statistic

First, we test whether the series is linear or nonlinear with the buffer effect,

regardless of stationarity or nonstationarity. We consider the following null hy-

pothesis H0, in which buffered nonlinearity does not exist, and the alternative

hypothesis H1:

H0 : φ = ψ vs. H1 : φ 6= ψ, (3.1)

where φ = (φ0, φ1, . . . , φp−1)′ and ψ = (ψ0, ψ1, . . . , ψp−1)′ are coefficients in (2.2).

In order to make the linear constraint under H0 a global null hypothesis, we

rearrange model (2.2), as follows:

∆yt = ψ0yt−1 +

p−1∑
i=1

ψi∆yt−i +

(
(φ0 − ψ0) +

p−1∑
i=1

(φi − ψi)∆yt−i

)
Rt + et

≡ ψ0yt−1 +

p−1∑
i=1

ψi∆yt−i +

(
θ0 +

p−1∑
i=1

θi∆yt−i

)
Rt + et, (3.2)

where θi = φi − ψi, for i = 0, 1, . . . , p − 1. Therefore, testing (3.1) is equivalent

to the following hypothesis on θ = (θ0, θ1, . . . , θp−1)′:

H0 : θ = 0 vs. H1 : θ 6= 0.

If the threshold variable Zt has the delay parameter d, let λ = (ψ′, θ′)′, γ =

(rL, rU ), ut = ∆yt, xt = (yt−1, ut−1, . . . , ut−p+1), Y = (us, . . . , uT )′, ε = (es, . . . ,
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eT )′, X = (x′s, . . . , x
′
T )′, X(γ) = (Rs(γ)x′s, . . . , RT (γ)x′T )′, and Z(γ) = (X,X(γ)),

where s = max(p, d)+1 is the starting index of ∆yt on the left-hand side of (3.2),

and n = T − s + 1 is the effective sample size. Then, the model can be written

as Y = Z(γ)λ+ ε.

Following Chan (1990) and Zhu, Yu and Li (2014), for any given γ, if et ∼
N(0, σ2), conditioning on Ft, we can formulate the likelihood ratio (LR) test as

LRn(γ) =
n[σ̂2

0 − σ̂2(γ)]

σ̂2(γ)
,

where σ̂2
0 = n−1

[
Y ′Y − (Y ′X)(X ′X)−1(X ′Y )

]
is the estimated residual vari-

ance in the fitted AR(p) model, and σ̂2(γ) = n−1
{
Y ′Y − [Y ′Z(γ)][Z(γ)′Z(γ)]−1

[Z(γ)′Y ]} is that in the BAR(p) model.

Because the nuisance parameter γ exists in the alternative hypothesis only,

we develop the Sup-LR statistic

LRn = LRn(γ̂) = sup
γ∈Γ

LRn(γ), (3.3)

where Γ ≡ {(rL, rU ) : a ≤ rL ≤ rU ≤ b}, and [a, b] is a predetermined range.

Because (3.3) is the same as the nonlinearity test for the stationary BAR model

in Zhu, Yu and Li (2014), we can test for buffered nonlinearity, regardless of

stationarity or nonstationarity. As discussed in Andrews (1993) and Zhu, Yu

and Li (2014), we may choose the empirical quantiles of Zt as a and b in practice,

and optimize (3.3) by searching the observed Zt values; that is, γ ∈ {(Zt, Zs) :

1 ≤ t, s ≤ n, a ≤ Zt ≤ Zs ≤ b}. In addition, if normality of et is not assumed,

the proposed statistic can be regarded as a quasi-LR test.

3.2. Asymptotic distribution

The asymptotic distribution of the Sup-LR test under the null hypothesis

has been studied by Zhu, Yu and Li (2014) for stationary yt. If the process has

a unit root, the asymptotic distribution of LRn is nonstandard. By standard

algebra, we obtain that under H0, for a given γ,

LRn(γ) =
S′(γ)

[
X ′(γ)X(γ)/n− (X ′(γ)X/n) (X ′X/n)−1 (X ′X(γ)/n)

]−1
S(γ)

σ̂2(γ)/σ2
,

where S(γ) = n−1/2[X ′(γ)−X ′(γ)X(X ′X)−1X ′]ε.

Definition 1. Let W (s) be a Wiener process on s ∈ [0, 1] with a normal distri-

bution, W (s) ∼ N(0, s), and covariance E[W (s1)W (s2)] = min(s1, s2).

Lemma 1. Under Assumptions 1, 2, and H0 : θ = 0, when ψ0 = 0, denote
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Σ = E(wtw
′
t) and Σγ = E[wtw

′
tRt(γ)], where wt = (ut−1, . . . , ut−p+1)′. Then,

(1.1.) n−1
∑T

t=swtw
′
t
a.s.→ Σ and n−1

∑T
t=swtw

′
tRt(γ)

a.s.→ Σγ,

(1.2.) n−3/2
∑T

t=s yt−1ut−iRt(γ)
p→ 0, for i = 1, 2, . . . p− 1,

(1.3.) n−2
∑T

t=s y
2
t−1Rt(γ)⇒ R(γ)

∫ 1
0 W (s)2ds.

Lemma 1.1 follows from the stationarity and ergodicity of the process ∆yt,

and can be derived using the strong law of large numbers. Lemma 1.2 establishes

the asymptotic orthogonality between yt−1 and ∆yt−i. Lemma 1.3 follows the

functional central limit theorem.

Definition 2. Let W (s, u) be a two-parameter Wiener process on (s, u) ∈ [0, 1]2

with a normal distribution, W (s, u) ∼ N(0, su), and a covariance kernel E[W (s1,

u1)W (s2, u2)] = min(s1, s2) min(u1, u2).

Lemma 2. Under Assumptions 1, 2, and H0 : θ = 0, when ψ0 = 0,

(2.1.) n−1/2
∑T

t=swtetRt(γ)⇒ G(γ), where G(γ) is a Gaussian process with zero

mean and covariance function related to γ.

(2.2.) n−1
∑T

t=s yt−1etRt(γ)⇒ σ
∫ 1

0 W (s)dW (s,R(γ)).

Based on Lemmas 1 and 2, the asymptotic distribution of LR(γ) can be

derived as follows.

Theorem 1. Under Assumptions 1, 2, and H0 : θ = 0, when ψ0 = 0,

LRn ⇒ sup
γ∈Γ

LR(γ), as n→∞,

where LR(γ) = Q1(γ) +Q2(γ), and Q1(γ) and Q2(γ) are independent stochastic

processes, defined as

Q1(γ) = J1(R(γ))′
[
R(γ)(1−R(γ))

∫ 1

0
W 2(s)ds

]−1

J1(R(γ)),

where J1(u) =
∫ 1

0 W (s)dW (s, u)− u
∫ 1

0 W (s)dW (s), and

Q2(γ) = J2(γ)′[Σγ − ΣγΣ−1Σγ ]−1J2(γ),

where J2(γ) = G(γ)− ΣγΣ−1G.

Theorem 1 gives the asymptotic distribution of the Sup-LR test for testing

the existence of a buffer effect in the presence of a nonstationary autoregression.

The distribution can be written as the supremum of the sum of two independent

processes, Q1(γ) and Q2(γ). Note that it takes a similar form to that of the

Sup-Wald test for the TAR model, because under the null hypothesis, there is

no buffer effect. Even though the denominator of LR(γ) differs from that of
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the Wald test in Caner and Hansen (2001), it is obvious that these two tests

are asymptotically equivalent as the estimated residual variance converges to the

true error variance in probability. Here, Q2(γ) represents the contribution of the

stationary part, and is very similar to the chi-square process in Zhu, Yu and Li

(2014); Q1(γ) represents the effect from the nonstationary regressor yt. However,

compared with the two-regime TAR, which has only one threshold parameter in

Caner and Hansen (2001), we have to deal with two parameters (rL, rU ), which

could make the asymptotic distribution more complicated. In addition, note

that Q1(γ) does not have a one-to-one correspondence with γ, because Q1(γ)

depends on R(γ), a function of γ, rather than on γ itself. On the other hand,

the chi-square process Q2(γ) has an even more complicated relationship with γ,

as shown in Zhu, Yu and Li (2014).

3.3. Wild bootstrap critical value approximation

We apply the bootstrap method to approximate the critical value of the

Sup-LR test. According to Theorem 1, when the true data-generating process is

a linear unit root process, the asymptotic distribution of LRn differs from that

in the stationary case. Similarly, the bootstrap approximation is asymptotically

valid only when the unit root hypothesis holds for the bootstrap data-generating

process. Moreover, heteroscedasticity occurs often in economic and financial

time series, which violates Assumption 1. Therefore, the wild bootstrap method

is proposed in order to improve the finite-sample performance and allow for

unknown heteroscedasticity.

With the unit root constraint, we obtain the OLS estimator in the AR model

without a buffer effect, that is, the coefficients λ̂0 = (0, ψ̂1, . . . , ψ̂p−1) and the es-

timated residuals {êt}. The wild bootstrapped residuals ẽ1, . . . , ẽT are generated

using a Rademacher distributed variable, ẽt = êtvt, where Pr(vt = 1) = Pr(vt =

−1) = 0.5. Then, we use the formula

∆ỹt =

p−1∑
i=1

ψ̂i∆ỹt−i + ẽt (3.4)

to obtain the bootstrapped sample. The initial values of the bootstrap recursion

are set to the sample values. For each sample ỹt, we calculate the test statistic

L̃Rn, and repeat B times to obtain {L̃Rn
(1)
, . . . , L̃Rn

(B)
}. The critical value cBn,α

is estimated as the αth upper percentile of {L̃Rn
(1)
, . . . , L̃Rn

(B)
}. The following

proposition guarantees that the wild bootstrapped critical value is asymptotically

valid.
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Proposition 1. If Assumptions 1 and 2 hold, then under H0,

L̃Rn|y1, . . . , yT
p⇒ sup
γ∈Γ

LR(γ),

where LR(γ) is defined in Theorem 1, and

lim
n→∞

lim
B→∞

P (LRn ≥ cBn,α) = α.

However, if the true data-generating process is stationary, the critical value

given by the unit-root-constrained bootstrap (3.4) is not asymptotically correct.

Instead, one might consider the unconstrained estimator λ̂∗0 = (ψ̂∗0, ψ̂
∗
1, . . . , ψ̂

∗
p−1)

and the unconstrained bootstrap

∆ỹ∗t = ψ̂∗0y
∗
t−1 +

p−1∑
i=1

ψ̂∗i ∆ỹ
∗
t−i + ẽt.

In practice, if the stationarity property is unknown, it is prudent to calculate

the bootstrap critical values in both ways, and then to make inferences based

on the more conservative of the two, as suggested by Caner and Hansen (2001).

The unit-root-constrained and unconstrained bootstrap are compared in the sim-

ulated data analysis in Section 5.

4. Test for Unit Roots with Possible Buffered Nonlinearity

In this section, we propose a class of unit root tests under the BAR(p) model.

In model (2.2), the parameters φ0 and ψ0 control the stationarity of the process.

The hypotheses that we are interested in are
H0 : φ0 = ψ0 = 0,

H1 : (φ0 < 0 and ψ0 = 0) or (φ0 = 0 and ψ0 < 0),

H2 : φ0 < 0 and ψ0 < 0.

Hypothesis Hk, for k = 0, 1, or 2, indicates that yt is stationary in k regimes.

The BAR(p) model under these three hypotheses will have significantly differ-

ent properties, enabling us to interpret different patterns in real applications. If

both H0 and H1 are rejected, it is reasonable to assert that the time series is

stationary. It is also interesting to study H1, because the buffered switching be-

tween stationarity and nonstationarity might provide insights into the dynamics

in economics and finance. Hence, for real applications, we need to distinguish

between the scenarios H0, H1, and H2.

Similarly to conventional unit root tests, we consider the t-ratios for both

φ0 and ψ0, namely, t1 and t2, respectively. In order to discriminate between
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these three scenarios, we follow Caner and Hansen (2001) and consider a general

class of statistics RT = R(t1, t2), which are continuous functions of both t-ratios.

For example, if we have negative φ̂0 and ψ̂0, we may use the one-sided test

R1 = t21I(t1 < 0) + t22I(t2 < 0) to test H0 against H1. Similarly, the two-

sided test R2 = t21 + t22 and single-value one-sided tests Rt1 = t1I(t1 < 0) and

Rt2 = t2I(t2 < 0) might also help to differentiate the cases.

In Section 3, we propose a bootstrap Sup-LR test for buffer nonlinearity.

Even if we cannot identify significant buffer nonlinearity, we can still fit the data

using a BAR model and conduct unit root tests in both regimes. It turns out

that the asymptotic distributions do vary depending on the presence of buffered

nonlinearity.

4.1. Asymptotic distribution without buffered nonlinearity

First, we consider the case where the true model is linear; that is, φ = ψ.

Theorem 2. Under Assumptions 1, 2, and H0 : φ0 = ψ0 = 0, when φ = ψ,

(t1, t2)⇒ (t1(γ∗), t2(γ∗)) and R(t1, t2)⇒ R(γ∗) = R(t1(γ∗), t2(γ∗)),

where γ∗ = arg maxγ∈Γ LR(γ),

t1(γ) =

∫ 1
0 W (s)dW (s,R(γ))√
R(γ)

∫ 1
0 W (s)2ds

, and t2(γ) =

∫ 1
0 W (s)d[W (s, 1)−W (s,R(γ)]√

(1−R(γ))
∫ 1

0 W (s)2ds
.

Theorem 2 gives the asymptotic distribution of the t-ratios. It extends the

asymptotic theory of Caner and Hansen (2001), which can be viewed as a special

case of our results when rL = rU . The limiting maximizer γ∗ is random because

the buffered threshold is not identified in advance and depends on the nuisance

parameter function G(γ) in Theorem 2.

Remark 1. Similarly to the standard unit root tests, it is also important to

consider the case of a constant intercept and time trend. Theorem 2 can be

generalized to include an intercept and time trend using the standard detrend

method in the unit root test literature, namely,

t∗1(γ) =

∫ 1
0 W

∗(s)dW (s,R(γ))√
R(γ)

∫ 1
0 W

∗(s)2ds
, and t∗2(γ) =

∫ 1
0 W

∗(s)d[W (s, 1)−W (s,R(γ))]√
(1−R(γ)

∫ 1
0 W

∗(s)2ds
,

where

W ∗(s) = W (s)−
∫ 1

0
W (u)r(u)′du

(∫ 1

0
r(u)r(u)du

)−1

r(s),
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and r(u) = (1, u).

4.2. Asymptotic distribution with buffered nonlinearity

Next, we study the asymptotic distributions of the t-ratios when the true

model has genuine buffered nonlinearity; that is, φ 6= ψ, with threshold pa-

rameters γ0 = (rL0, rU0). The unit root test is based on the null hypothesis

H0 : φ0 = ψ0 = 0.

Because the AR structures in the two regimes are different, ∆yt might have

different distributions in these regimes. Therefore, we need to consider the long-

run correlation between ut+k = ∆yt+k and etRt(γ) or et(1 − Rt(γ)), which we

denote separately as

δ1(γ) =

∑∞
k=−∞ E(etRt(γ)ut+k)√

E(e2
t )R(γ)

∑∞
k=−∞ E(utut+k)

,

and δ2(γ) =

∑∞
k=−∞ E(et(1−Rt(γ))ut+k)√

E(e2
t )(1−R(γ))

∑∞
k=−∞ E(utut+k)

,

respectively.

Note that when yt is a linear process, ∆yt is a linear function of lagged values

of etR(γ0) and et(1−R(γ0)), such that δ2
1(γ0)+δ2

2(γ0) = 1. However, when there

is strong nonlinearity, we may expect that δ2
1(γ0) + δ2

2(γ0) < 1. As a result, when

buffered nonlinearity is identified, the asymptotic distributions of the t-ratios are

given by the following theorem.

Theorem 3. Under Assumptions 1, 2, and H0 : φ0 = ψ0 = 0,

t̂ =

(
t1(γ̂)

t2(γ̂)

)
⇒

(√
1− δ2

1(γ∗)Z1√
1− δ2

2(γ∗)Z2

)
+

(
δ1(γ∗)

δ2(γ∗)

)
DF ≡ T ,

where γ∗ = arg maxγ∈Γ LR(γ),(
Z1

Z2

)
∼ N

((
0

0

)
,

(
1 σ21(γ∗)

σ21(γ∗) 1

))
, DF =

∫ 1
0 W (s)dW (s)∫ 1

0 W (s)2ds
,

and σ21(γ) = (−δ1(γ)δ2(γ))/[(1− δ2
1(γ))(1− δ2

2(γ))].

Remark 2. If there is a constant intercept and time trend, the standard DF

distribution should be replaced by the detrended Dickey–Fuller t-distribution,

DF ∗ =

∫ 1
0 W

∗(s)dW (s)∫ 1
0 W

∗(s)2ds

where W ∗ is defined in Remark 1.
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Theorem 3 gives the asymptotic distribution of the t-ratios in both regimes

when buffered nonlinearity is identified. This asymptotic theory extends the

results in Caner and Hansen (2001) and their result can be viewed as a special case

of ours. When there is nonlinear buffer effect, the asymptotic joint distribution

of the t-ratios is a linear combination of a bivariate normal distribution and a

Dickey–Fuller t-distribution. Therefore, we can expect that the quantiles of the

asymptotic distribution are larger than those of Dickey–Fuller t-distribution. In

other words, for the BAR model, the augmented Dickey–Fuller (ADF) test is a

much less powerful statistical test. It is therefore important for us to develop

new unit root tests for the BAR and other nonlinear time series models.

Because the proposed unit root test R(t1, t2) is a function of t1 and t2, we can

approximate the critical values of R(t1, t2) from the asymptotic joint distribution

of t1 and t2. However, this is complicated in practice because (1) we have to iden-

tify whether or not the time series is linear, because the asymptotic distributions

differ, and (2) it is relatively difficult to estimate δ1, δ2, and σ21. Therefore, we

propose the following bootstrap unit root test, which can be adapted to both

linear and buffered nonlinear cases.

4.3. Wild bootstrap critical value approximation

The asymptotic distributions of t1 and t2 are different in the linear and

buffered nonlinear cases. However, we propose approximating the p-value of the

test statistic using the wild bootstrap method directly, regardless of whether a

buffered nonlinear effect has been identified. In the BAR(p) model, we need to

estimate the parameter λ̂ = (ψ̂0, ψ̂1, . . . , ψ̂p−1, φ̂0, φ̂1, . . . , φ̂p−1), estimated resid-

uals {ês, . . . , êT } , and threshold parameter γ̂ = (r̂L, r̂U ). Then, we can generate

the bootstrapped sample using the unit-root-constrained data-generating process

∆ỹt =

(
p−1∑
i=1

ψ̂i∆ỹt−i

)
R(γ̂) +

(
p−1∑
i=1

φ̂i∆ỹt−i

)
(1−R(γ̂)) + ẽt, (4.1)

where ẽt is generated using the wild bootstrap method as ẽt = êtvt, where vt is

independent and Rademacher distributed.

For each ỹt, we calculate the t-ratio for ψ0 and φ0 and R(t̃1, t̃2). Then, we re-

peat this B times to obtain {R(t̃
(1)
1 , t̃

(1)
2 ), . . . , R(t̃

(B)
1 , t̃

(B)
2 )}. The estimated criti-

cal value is the αth upper percentage of the bootstrapped {R(t̃
(1)
1 , t̃

(1)
2 ), . . . , R(t̃

(B)
1 ,

t̃
(B)
2 )}. If an intercept and/or a time trend are included in the BAR(p) model,

they can be estimated and then substituted into the bootstrap data-generating

process to approximate the critical value. If the true process is a buffered non-
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Table 1. Size of 5% Sup-LR test (%).

Unconstrained bootstrap Constrained bootstrap
α = −0.5 0.5 −0.5 0.5
T = 100 200 500 100 200 500 100 200 500 100 200 500
ρ = −0.25 5.3 5.5 5.6 4.9 4.3 4.4 3.0 3.1 3.2 2.3 3.8 3.7
ρ = 0 5.5 5.4 4.9 5.3 4.8 5.0 4.2 4.1 4.8 4.0 3.9 4.9
B = 500, σ = 1. Rejection frequencies from 1,000 replications.

linear process, the bootstrap method is valid.

Proposition 2. Under Assumptions 1, 2, and H0 : φ0 = ψ0 = 0,

t̃ = (t̃1, t̃2)T |yt, . . . , yT
p⇒ T ,

where T is defined in Theorem 3.

If the true data-generating process is linear, the bootstrap method is valid

only when we use a unit-root-constrained linear generating process (Park (2003)).

The performance of the bootstrap test based on (4.1) for a linear process is

discussed in Section 5.

5. Monte Carlo Simulation

In this section, we examine the finite-sample performance of our Sup-LR

test and the unit root test, which we then compare with that of the Wald test

in Caner and Hansen (2001) and the ADF test. In addition, because the wild

bootstrap is proposed for the possible unknown heteroscedasticity, we also check

for GARCH errors.

5.1. Sup-LR test

5.1.1. Size

We first study the size of the Sup-LR test at the nominal 5% level. The data

are simulated from the null model

∆yt = ρyt−1 + α∆yt−1 + et, (5.1)

and we investigate how the size is affected by ρ and α. The results are presented

in Table 1.

The sizes of the unconstrained bootstrap tests are all acceptable, regard-

less of whether the true data generating process is stationary. In addition, the

unit-root-constrained bootstrap test has a smaller size when the true model is

stationary, suggesting that it is a more conservative test. Because the uncon-
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strained bootstrap test has a respectable size in both cases, and because we are

more concerned about the power against the nonlinear alternatives, we propose

to use the unconstrained threshold test for both cases.

5.1.2. Power

Next, we explore the power of the 5% unconstrained Sup-LR test against

various alternative models. We consider the following four cases:

Case 1:

∆yt = ρ1yt−1Rt(γ) + ρ2yt−1(1−Rt(γ)) + α∆yt−1 + et. (5.2)

The stationarity properties in both regimes might not be the same. Denote

∆ρ = ρ1 − ρ2.

Case 2: ∆yt = ρyt−1 + α1∆yt−1Rt(γ) + α2∆yt−1(1−Rt(γ)) + et.

The stationarity properties in both regimes are the same, but the AR structures

differ. Denote ∆α = α1 − α2.

Case 3: ∆yt = (ρ1yt−1 +α1∆yt−1)Rt(γ)+(ρ2yt−1 +α2∆yt−1)(1−Rt(γ))+et
with a genuine buffer effect, where rL < rU .

Case 4: ∆yt = (ρ1yt−1 +α1∆yt−1)Rt(γ)+(ρ2yt−1 +α2∆yt−1)(1−Rt(γ))+et
in the degenerated threshold case, where rL = rU .

The simulation results are summarized in Table 2. Not surprisingly, the Sup-

LR test becomes more powerful, even close to 100%, when the coefficients in the

two regimes move farther apart, or when the sample size increases. Note that

the test becomes more powerful when the process is stationary in one regime and

nonstationary in the other. Intuitively, this is because it is easier to distinguish

between two processes with different stationarity properties. We also consider

the threshold test for the TAR model by (Caner and Hansen (2001)). Suppose we

ignore the buffer effect and fit the data using a two-regime TAR model. Then, we

can test for nonlinearity using a Sup-Wald test (Caner and Hansen (2001)). The

simulation results of the TAR threshold tests are also summarized in Table 2.

In general, when the buffer region is absent in case 4, our proposed test exhibits

similar power to that of the TAR threshold test. However, the TAR threshold

test is less powerful, in general, in the presence of the buffer effect in other three

cases. In summary, the proposed bootstrap Sup-LR test possesses appropriate

size and power, and outperforms the TAR threshold test.

5.1.3. Conditional heteroscedasticity

In reality, the assumption of homoscedasticity does not hold in many eco-

nomic and financial data. Therefore, we propose a wild bootstrap test that is
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Table 2. Power of 5% Sup-LR test (%).

BAR Sup-LR test TAR Sup-Wald test
T = 100 200 500 100 200 500 100 200 500 100 200 500 100 200 500 100 200 500

Case 1: B = 500, α = 0.5, σ = 1, γ = (−0.5, 0.5)
∆ρ = 0.05 ∆ρ = 0.1 ∆ρ = 0.2 ∆ρ = 0.05 ∆ρ = 0.1 ∆ρ = 0.2

ρ1 = 0 19 39 64 38 70 96 75 98 100 14 23 49 29 59 75 67 91 94
ρ1 = 0.1 10 15 17 16 29 55 39 76 98 5 7 10 9 25 44 31 59 72

Case 2: B = 500, α1 = 0.5, σ = 1, γ = (−0.5, 0.5).
∆α = 0.2 ∆α = 0.6 ∆α = 1 ∆α = 0.2 ∆α = 0.6 ∆α = 1

ρ = 0 9 12 32 41 77 98 84 98 100 5 8 19 37 64 87 72 97 99
ρ = 0.25 12 24 42 67 94 100 96 100 100 9 11 28 47 74 92 94 99 100

Case 3: B = 500, α1 = 0.5, σ = 1, γ = (−0.5, 0.5)
ρ1 ρ2 ∆α = 0.2 ∆α = 0.6 ∆α = 1 ∆α = 0.2 ∆α = 0.6 ∆α = 1
0 −0.1 43 78 96 79 98 100 96 100 100 31 66 88 73 95 97 92 99 100
0 −0.2 78 99 100 95 100 100 99 100 100 67 91 95 89 100 100 98 100 100
0 −0.4 98 100 100 99 100 99 100 100 100 97 99 98 96 100 100 100 99 100
−0.1 −0.2 22 51 79 72 82 88 96 99 100 15 46 64 58 75 83 92 98 100
−0.1 −0.3 47 98 100 91 99 100 97 100 100 37 93 97 71 97 100 95 99 99
−0.1 −0.5 92 100 100 96 100 100 100 100 100 78 99 99 94 100 100 100 99 100

Case 4: B = 500, α1 = 0.5, σ = 1, γ = (0, 0)
ρ1 ρ2 ∆α = 0.2 ∆α = 0.6 ∆α = 1 ∆α = 0.2 ∆α = 0.6 ∆α = 1
0 −0.1 36 77 95 77 96 98 98 100 100 33 78 92 74 98 100 96 100 100
0 −0.2 66 95 100 91 100 100 100 100 100 74 91 99 90 100 100 98 100 100
0 −0.4 95 100 100 99 100 100 99 100 100 96 99 100 99 99 100 100 100 100
−0.1 −0.2 16 35 58 62 73 91 94 99 100 15 30 66 57 69 90 88 96 100
−0.1 −0.3 45 93 98 82 99 100 97 100 100 44 94 99 76 100 100 97 100 100
−0.1 −0.5 85 100 100 97 100 100 100 100 100 87 100 100 97 100 100 100 100 100
Rejection frequencies from 200 replications.

robust to unknown heteroscedasticity. Because we focus on testing nonlinearity

and stationarity, heteroscedasticity is not modeled in the BAR(p) model. Here,

we consider the following BAR model with GARCH(1, 1) errors:

ht = 0.01 + 0.19e2
t−1 + 0.8ht−1, εt

iid∼ N(0, 1), et = εt
√
ht. (5.3)

In the standard bootstrap approach, the residuals can be drawn randomly, with

replacement, from the estimated residuals. We compare the performance of both

methods under conditional heteroscedasticity.

First, we consider that the true generating process is a linear AR process

(5.1), with GARCH errors given by (5.3); the results are summarized in Table 3.

The size of the test is distorted if the standard bootstrap method is applied,

whereas the wild bootstrap method solves the problem of over-rejection and

corrects the size.

Next, we consider that the true generating process is a BAR(p) process (5.2),

with GARCH errors given by (5.3); the results are summarized in Table 4. Be-
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Table 3. Size of 5% Sup-LR test with GARCH errors (%).

Wild bootstrap Standard bootstrap
α = −0.5 0.5 −0.5 0.5
T = 100 200 100 200 100 200 100 200
ρ = −0.25 5.8 5.2 6.1 5.5 15.0 16.7 9.7 10.1
ρ = 0 5.4 5.5 4.4 4.6 11.7 11.9 10.1 12.4
B = 500, σ = 1, γ = (−0.5, 0.5). Rejection frequencies from 1,000 replications.

Table 4. Power of 5% Sup-LR test with GARCH errors (%).

Wild bootstrap Standard bootstrap
∆ρ = −0.05 −0.1 −0.2 −0.05 −0.1 −0.2
T = 100 200 100 200 100 200 100 200 100 200 100 200
ρ1 = 0 13.0 18.5 33.0 64.0 60.5 94.5 16.0 23.5 34.5 78.5 71.0 98.0
ρ1 = −0.1 9.5 14.0 13.0 30.5 29.5 69.5 17.5 20.0 19.0 39.5 45.0 80.5
B = 500, α = 0.5, σ = 1, γ = (−0.5, 0.5). Rejection frequencies from 200 replications.

cause the standard bootstrap method suffers from the problem of over-rejection,

it is reasonable that the standard bootstrap method is more powerful than the

wild bootstrap method.

In summary, the simulation results show that the proposed wild bootstrap

method can largely alleviate the oversize problem caused by conditional het-

eroscedasticity, with appropriate size and good power. Based on its good perfor-

mance under homoscedasticity or conditional heteroscedasticity, the wild boot-

strap Sup-LR test is recommended as a robust test under unknown heteroscedas-

ticity.

5.2. Unit root test

The asymptotic distributions of the t-ratios differ depending on the presence

of buffered nonlinearity. Simulations are conducted in both cases.

5.2.1. Unit root test without buffered nonlinearity

First, we consider the case without buffered nonlinearity; in other words, the

data are generated from an AR(2) model

∆yt = ρyt−1 + α∆yt−1 + et.

We nevertheless fit the data using a BAR(2) model, and consider R2 = t21 + t22 as

the test statistic. The simulated results are shown in Table 5, and are based on

1,000 replications for each case. When the true model is a linear unit root test

(ρ = 0), the size of the unit root test is very close to the nominal significance
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Table 5. Size and power of 5% unit root test without buffered nonlinearity (%).

BAR R2 ADF test TAR R2

α = −0.5 0.5 −0.5 0.5 −0.5 0.5
T = 200 500 200 500 200 500 200 500 200 500 200 500
ρ = 0 4.4 5.1 5.5 5.3 4.3 5.0 5.7 4.9 4.6 4.4 5.4 4.9
ρ = −0.1 50.1 89.6 88.7 100.0 92.1 99.8 100.0 99.9 55.0 90.4 83.6 97.8
ρ = −0.25 93.4 99.9 99.8 100.0 100.0 100.0 100.0 100.0 94.3 99.8 99.9 100.0
B = 500, σ = 1. Rejection frequencies from 1,000 replications.

level, even though we cannot derive the validity of the bootstrapped test in

this case. As ρ gets farther from zero, the unit root test becomes increasingly

powerful. However, because of the model misspecification, the BAR unit root

test is less powerful than the ADF test for the AR(2) model. Nevertheless, with

a larger sample size, the discrepancy becomes much smaller. In addition, we can

fit the data using a TAR(2) model, and thus obtain the TAR R2 statistics. The

simulated results show that BAR and TAR R2 perform similarly.

5.2.2. Unit root test with buffered nonlinearity

Next, we consider the case with buffered nonlinearity in a BAR(3):

∆yt =

(
ψ0yt−1 +

2∑
i=1

ψi∆yt−i

)
R(γ) +

(
φ0yt−1 +

2∑
i=1

φi∆yt−i

)
(1−R(γ)) + et.

(5.4)

Because we need to distinguish between three cases (i.e., unit roots in both

regimes, a unit root in only one regime, and no unit roots), we consider the one-

sided tests t21I(t1 ≤ 0) and t22I(t2 ≤ 0), and the combined test R1 = t21I(t1 ≤
0) + t22I(t2 ≤ 0). The simulated results for their size and power are shown in

Tables 6 and 7, respectively.

According to Tables 6 and 7, we can identify the nonstationarity in each

regime using these three tests. If we obtain large p-values for all three statistics,

it is very likely that there are unit roots in both regimes. If the p-value for R1

is small and one of the p-values for t1 or t2 is small, then there could be a unit

root in one regime and no unit root in the other. If the p-values for the three

statistics are all smaller than the significance level, we can reject the unit root

null hypotheses, and conclude that there is strong evidence of stationarity in the

data.

In addition, as we have discussed, the asymptotic distribution of the t-ratio

is a linear combination of a Dickey–Fuller t-distribution and a standard normal
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Table 6. Size of 5% bootstrap unit root tests with buffered nonlinearity (%).

R1 t21I(t1 ≤ 0) t22I(t2 ≤ 0) ADF(t1) ADF(t2)
ψ0 T = 100 200 100 200 100 200 100 200 100 200
0 0.5 0.5 5.9 3.1 3.8 3.0 3.5 2.1 0.9 0.5
−0.1 75.3 96.4 5.6 2.9 94.5 99.1 2.4 1.7 92.6 98.5
−0.25 99.2 99.8 5.4 2.8 99.5 100.0 3.2 1.3 99.2 99.6

B = 500, φ0 = 0, φ1 = −0.4, φ2 = −0.2, ψ1 = ψ2 = 0.3, σ = 1, γ = (−0.5, 0.5).
Rejection frequencies from 1,000 replications.

Table 7. Power of 5% bootstrap unit root tests with buffered nonlinearity (%).

R1 t21I(t1 ≤ 0) t22I(t2 ≤ 0) ADF(t1) ADF(t2)
φ0 ψ0 T = 100 200 100 200 100 200 100 200 100 200

−0.05 18.5 64.0 39.0 65.0 36.0 53.5 29.5 45.0 24.0 39.0
−0.05 −0.1 32.0 91.5 26.5 53.5 54.5 83.0 21.5 35.5 48.0 80.0

−0.25 89.5 100.0 22.0 31.0 94.0 99.0 10.5 17.0 93.5 100.0
−0.05 23.0 83.0 55.0 82.5 25.5 40.5 47.0 78.5 14.0 26.5

−0.1 −0.1 30.5 85.5 48.0 79.5 46.0 67.0 39.5 67.0 35.0 52.5
−0.25 83.0 99.5 37.5 62.5 90.0 96.5 27.0 42.5 88.5 96.0
−0.05 58.5 96.0 86.5 95.0 14.0 20.5 85.5 94.5 7.0 9.5

−0.25 −0.1 49.5 97.0 78.0 97.0 25.5 32.5 74.5 94.5 13.5 18.5
−0.25 76.5 98.0 70.0 91.0 63.0 76.0 62.0 88.5 50.5 71.0

B = 500, ψ1 = ψ2 = 0.3, φ1 = −0.4, φ2 = −0.2, σ = 1, γ = (−0.5, 0.5). Rejection
frequencies from 200 replications.

distribution. Therefore, when there is a strong nonlinear buffer effect, the actual

distribution is far from the Dickey–Fuller distribution; hence, the ADF test is

much less powerful than the bootstrap unit root test, as shown for all of the cases

in Table 7.

5.2.3. Conditional heteroscedasticity

Similarly to the Sup-LR test, we use Monte Carlo simulations to study the

wild bootstrap unit root test with unknown heteroscedasticity. We also con-

sider the BAR model with GARCH(1, 1) errors, as in (5.3), and compare the

performance of the wild bootstrap with that of the standard residual bootstrap.

First, the true data-generating process is a BAR(3) model, as in (5.4), with

at least one unit root process in the two regimes. The rejection frequencies

for the wild bootstrap and standard bootstrap are summarized in Table 8. The

over-rejection problem is again observed for the standard bootstrap, and the wild

bootstrap remains robust under conditional heteroscedasticity, producing quite
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Table 8. Size of 5% bootstrap unit root tests with GARCH errors (%).

Wild bootstrap Standard bootstrap
R1 t21I(t1 ≤ 0) t22I(t2 ≤ 0) R1 t21I(t1 ≤ 0) t22I(t2 ≤ 0)

ψ0 T = 100 200 100 200 100 200 100 200 100 200 100 200
0 0.6 0.8 4.6 5.1 5.0 5.0 0.8 1.0 7.5 8.6 7.6 9.2
−0.1 76.3 97.9 4.9 5.2 90.2 99.0 72.4 98.2 6.9 7.1 93.7 99.0
−0.25 96.2 99.8 5.2 3.9 99.0 100.0 97.5 99.9 8.4 7.9 99.0 100.0

B = 500, φ0 = 0, φ1 = −0.4, φ2 = −0.2, ψ1 = ψ2 = 0.3, σ = 1, γ = (−0.5, 0.5).
Rejection frequencies from 1,000 replications.

Table 9. Power of 5% bootstrap unit root tests with GARCH errors (%).

Wild bootstrap Standard bootstrap
φ0 ψ0 R1 t21I(t1 ≤ 0) t22I(t2 ≤ 0) R1 t21I(t1 ≤ 0) t22I(t2 ≤ 0)

−0.05 27.0 41.5 41.0 30.5 43.0 51.5
−0.05 −0.1 50.0 33.0 65.0 46.5 28.0 66.5

−0.25 89.0 20.0 94.0 89.5 21.0 94.0
−0.05 35.0 59.5 35.0 30.5 55.0 36.0

−0.1 −0.1 45.5 47.5 57.0 36.5 51.5 50.5
−0.25 83.5 41.5 88.0 82.5 38.5 91.5
−0.05 61.0 80.5 23.0 60.0 86.0 23.5

−0.25 −0.1 62.5 83.0 32.0 65.5 80.5 33.0
−0.25 77.5 67.5 72.0 73.5 65.0 71.5

T = 100, B = 500, ψ1 = ψ2 = 0.3, φ1 = −0.4, φ2 = −0.2, σ = 1, γ = (−0.5, 0.5).
Rejection frequencies from 200 replications.

acceptable sizes.

Next, we consider the case that the true data-generating process is a station-

ary BAR process with GARCH errors; the results are summarized in Table 9.

Similarly to the Sup-LR test under conditional heteroscedasticity, the standard

bootstrap unit root test is sometimes slightly more powerful, owing to its over-

rejection phenomenon, whereas the wild bootstrap unit root test exhibits accept-

able power compared with that of the case with homoscedasticity. In summary,

the wild bootstrap unit root test shows good size and power, suggesting that it

is robust to unknown heteroscedasticity.

6. Real-Data Analysis

We apply the BAR model to macroeconomic data on U.S. unemployment

rates and real exchange rates. In what follows, we first obtain the OLS estimators

for different orders p; then we select appropriate values for p and d based on
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information criteria such as the Akaike information criterion (AIC) and Bayesian

information criterion (BIC). After selecting the lag order and delay order of the

threshold variable, we approximate the p-value of the proposed Sup-LR test and

the unit root tests to verify the presence of nonlinearity and stationarity using

the bootstrap approach. In addition, we compare the BAR model with other

linear and nonlinear time series models.

6.1. U.S. unemployment rate

Nonlinear time series models have been applied to characterize the business

cycle in the literature; see Hamilton (1989) and Potter (1995). The U.S. monthly

unemployment rates among adult males were studied using a two-regime TAR

model by Caner and Hansen (2001). We consider a two-regime BAR model for

U.S. seasonally adjusted monthly unemployment rates among the total popula-

tion, from January 1955 to December 2016, from the Bureau of Labor Statistics;

the data are plotted in the upper panel of Figure 1.

By definition, a change (and, particularly, an increase) in the unemployment

rate might imply a structural change in an industry or the start of a long-term

economic depression. However, considering that the length of a contract in reality

is usually at least one year, it is natural to consider the cumulative unemployment

rate change during the past d months as the threshold variable if there is any

structural change. Therefore, we propose the following BAR model:

∆yt =

(
C1 + φ0yt−1 +

p−1∑
i=1

φi∆yt−i

)
R(Zdt−1)

+

(
C2 + ψ0yt−1 +

p−1∑
i=1

ψi∆yt−i

)
(1−R(Zdt−1)) + et,

where Zdt = yt−yt−d is a stationary threshold variable. Based on the information

criteria, we select d = 13 and p = 15. As suggested by a referee, we consider a

subset BAR(15) based on the AIC, because not all estimates are significant. The

estimates for the BAR(15) and subset BAR(15) models are shown in Table 10. In

addition, the fitted regimes in the BAR(15) model are shown in the lower panel

of Figure 1. We can classify the fitted regimes into four categories: absolute high,

absolute low, buffer high, and buffer low. The first two refer to cases in which

Zdt−1 lies outside the buffer interval; the other two indicate that Zdt−1 lies inside

the buffer interval, and the regime is maintained as before.

The fitted BAR(15) model provides a clear interpretation of the long-term
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Figure 1. Panel 1: U.S. monthly unemployment rates from April 1956 to December 2016.
Panel 2: Trajectory of estimated regime in BAR(15) and the corresponding recession
periods.

Table 10. Least squares estimates of BAR(15) and three-regime TAR(15) model.

BAR(15) with Subset BAR(15) with Three-regime TAR(15) with
d = 13, γ = (−0.1, 0.3) d = 13, γ = (−0.1, 0.3) d = 13, γ = (−0.1, 0.3)

Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 3
Regressor Est s.e. Est s.e. Est s.e. Est s.e. Est s.e. Est s.e. Est s.e.
Constant 0.0799 0.0303 0.1644 0.0517 0.0800 0.0303 0.1628 0.0508 0.0738 0.0334 0.0038 0.0677 0.1638 0.0550
yt−1 −0.0209 0.0056 −0.0166 0.0084 −0.0206 0.0055 −0.0162 0.0077 −0.0238 0.0059 0.0003 0.0122 −0.0172 0.0091

∆yt−1 −0.2095 0.0485 0.1848 0.0576 −0.2105 0.0484 0.1824 0.0555 −0.2747 0.0563 −0.1055 0.1501 0.1992 0.0609
∆yt−2 −0.0648 0.0505 0.2610 0.0581 −0.0683 0.0502 0.2637 0.0572 −0.1088 0.0568 −0.1122 0.1546 0.3148 0.0616
∆yt−3 −0.0470 0.0484 0.1201 0.0593 −0.0484 0.0483 0.1258 0.0570 −0.0601 0.0550 0.0828 0.1443 0.0814 0.0629
∆yt−4 0.0482 0.0486 0.0593 0.0586 0.0453 0.0484 0.0632 0.0565 0.0578 0.0558 0.0687 0.1336 0.0054 0.0621
∆yt−5 0.0730 0.0484 0.0208 0.0578 0.0704 0.0483 - - 0.0455 0.0544 0.0928 0.1460 0.0358 0.0597
∆yt−6 0.0636 0.0484 −0.0190 0.0579 0.0640 0.0474 - - 0.0350 0.0532 0.0987 0.1521 0.0266 0.0591
∆yt−7 −0.0110 0.0484 0.0215 0.0586 - - - - −0.0316 0.0522 0.1360 0.1627 −0.0326 0.0615
∆yt−8 0.1139 0.0487 −0.1530 0.0581 0.1162 0.0477 −0.1528 0.0557 0.1022 0.0529 −0.0427 0.1815 −0.1205 0.0598
∆yt−9 0.0475 0.0479 0.0155 0.0590 0.0530 0.0473 - - 0.0172 0.0536 −0.1232 0.1798 0.0310 0.0603
∆yt−10 −0.0314 0.0474 −0.0051 0.0586 - - - - −0.0230 0.0524 −0.1453 0.1582 −0.0006 0.0614
∆yt−11 0.0625 0.0467 0.0096 0.0585 0.0664 0.0462 - - 0.0493 0.0512 0.0015 0.1533 −0.0298 0.0609
∆yt−12 −0.2023 0.0456 −0.1084 0.0599 −0.2041 0.0456 −0.1081 0.0588 −0.2449 0.0497 −0.1252 0.1635 −0.1175 0.0618
∆yt−13 −0.0458 0.0462 −0.0003 0.0605 −0.0472 0.0462 - - −0.0647 0.0519 −0.1429 0.1486 0.0049 0.0629
∆yt−14 −0.0535 0.0439 −0.1045 0.0616 −0.0563 0.0435 −0.1025 0.0608 −0.0408 0.0476 −0.1163 0.0879 −0.0546 0.0664
T 510 217 510 217 421 112 194
σ̂2 0.0205 0.0371 0.0207 0.0372 0.0197 0.0237 0.0374

AIC −2657.83 −2681.41 −2640.64
BIC −2505.72 −2570.72 −2414.78

business cycle. First, strong consistency is evident between unemployment rate

changes and regime switching, as shown in Figure 1. If we consider the absolute

high and buffer high regimes as recession periods, there are in eight recession

periods within the 62-year period. These periods are highly consistent with the

business cycle reported by the National Bureau of Economic Research (NBER

(2010)), implying that the autoregressive structure of unemployment differs be-

tween recession and expansion periods. Second, there is evidence of a buffer
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Table 11. Test statistics and p-values.

Test statistic value bootstrapped p-value
LRT 102.5545 0.000
t1 −3.7527 0.000
t2 −1.8695 0.042

R1(t1, t2) 17.5781 0.002

effect, because 112 out of 727 data points lie in the buffer regime, and most are

in the buffer low regime. The buffer interval [−0.1, 0.3](%) guarantees that a

small-scale unemployment increase during an expansion period will not trigger a

regime switch to a recession. However, the recession period will end if the unem-

ployment rate reaches a level 0.1% below that 13 months previously. Third, the

recession periods obtained using the BAR model are slightly delayed compared

with those reported by the NBER, because the unemployment rate is widely

known as a lagging indicator of an economy (Smith (2009)).

According to Table 10, there is a strong evidence of nonlinearity in the fitted

BAR(15) model, because the estimates in each regime are significantly different.

In addition, in the fitted model, the estimates φ̂0 and ψ̂0 are negative and close

to zero. Therefore, we implement the proposed Sup-LR test for nonlinearity and

the one-sided t-test for nonstationarity based on 2,000 bootstrap samples; the

results are summarized in Table 11.

The Sup-LR test statistic is highly significant, with a p-value of nearly zero,

indicating strong nonlinearity. Therefore, we choose the one-sided unit root test

R1(t1, t2) = t21I(t1 < 0) + t22I(t2 < 0) with buffered nonlinearity. Note that the

statistic t̂2 (−1.8695) is not very significant, because the 1% and 5% critical values

of the ADF test with a constant intercept are −3.43 and −2.86, respectively.

However, we can obtain a much more smaller p-value for the proposed test,

which also indicates that our proposed test is much more powerful than the ADF

test. The results in Table 11 imply the existence of strong nonlinearity and

stationarity in the unemployment rate, consistent with the findings of Caner and

Hansen (2001) and Roed (2002).

Many empirical economic studies employ the three-regime TAR model, and

tests for unit roots in such models are used to verify the stationarity of economic

series; for example, see Taylor (2001), Bec, Ben Salem and Carrasco (2004) and

Chen, Chen and Lee (2013). In most works on three-regime TAR models, the

middle regime, also known as the corridor regime, is assumed to have unit roots,

while the other two regimes are assumed to be stationary. This kind of structure
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preserves global ergodicity and local nonstationarity, which has also been studied

for other nonlinear time series models, such as Chen, Lee and Chen (2016). The

three-regime TAR model is a natural alternative to the two-regime BAR model,

and a Bayesian selection between these two models is conducted by Truong, Chen

and So (2016).

In this work, to facilitate real economic data analysis, we focus particularly

on the comparison between the globally stationary BAR and the three-regime

TAR model with local nonstationarity. First, the three-regime TAR model ex-

hibits global ergodicity property, even though the middle regime exhibits local

nonstationary. Note that geometric ergodicity is an important property in nonlin-

ear time series because, as discussed in Tong (1990), geometric ergodicity implies

the existence of a unique stationary distribution for yt, such that yt converges to

stationarity exponentially fast. Thus, it is preferable to use a globally stationary

process to model an ergodic process. Second, it is highly possible for a globally

stationary two-regime BAR model to be misspecified as a locally nonstationary

three-regime TAR model. In the BAR model, the process in the buffer regime

can be viewed as a two-component mixture model in the long term, and the

heterogeneity from different regimes might lead to over-dispersion if we try to

fit the process in the buffer region using an AR process, as we have done in

the three-regime TAR. In other words, if we fit data generated from a stationary

BAR model using a three-regime TAR model, we might mistakenly conclude that

the middle regime has a unit root, owing to the misspecification. Third, com-

pared with the three-regime TAR model, the two-regime BAR model is more

parsimonious, and provides a more concise regime-switching trajectory. This

might enable better interpretation of a country’s long-term economic status or

the business cycle.

For example, if we fit the three-regime TAR model to the U.S. unemployment

rate data, the fitted coefficient for yt−1 in regime 2 is positive and very close to

zero, whereas those in the other two regimes suggest stationarity, as shown in

Table 10. Based on the AIC and BIC, the two-regime globally stationary (subset)

BAR(15) is preferable to the three-regime TAR(15).

6.2. Real exchange rates

Our second example is based on real exchange rate data. Many studies have

applied the unit root test to real exchange rates, largely owing to the theory

of purchasing power parity (PPP), which states that a bilateral exchange rate

is in equilibrium when the purchasing power of each currency is the same. By
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Figure 2. Real exchange rates from January 1977 to September 2017.

definition, the real exchange rate is defined as E×P ∗/P , where E is the nominal

exchange rate, and P ∗ and P are the purchasing power of the foreign and local

currencies, respectively. Under the theory of PPP, the real exchange rate can-

not have a unit root, because deviations should not be permanent (Steigarwald

(1996)). Zhu, Li and Yu (2017) model exchange rates using a BAR-GARCH

model, finding evidence of conditional heteroscedasticity in exchange rate data.

Our primary interest is buffered nonlinearity and nonstationarity; thus, we ignore

conditional heteroscedasticity and apply wild bootstrap tests, which are shown

to be robust under unknown conditional heteroscedasticity. The data include

monthly exchange rates for the Canadian dollar (CAD), Japanese yen (JPY)

and British pound (GBP) to the U.S. dollar (USD) for the period January 1977

to September 2017; see Figure 2.

Trade between the United States and these three countries has been signifi-

cant and consistent for the past forty years, which supports the PPP theory. The

nominal exchange rates are adjusted by the consumer indices in both countries;

that is, yt = log(Et) + log(P ∗t ) − log(Pt). We fit the BAR(p) model in the data

using the threshold variable yt − yt−d, and select the order p and delay parame-

ter d based on the AIC. The estimates of the BAR(p) model and its linear and

nonlinear alternatives, such as the AR(p) and the three-regime TAR(p) models,

are summarized in Table 12.

We first perform the Sup-LR test for buffered nonlinearity for the three series.

Strong buffered nonlinearity is detected in the CAD/USD and GRB/USD series;

however, JPY/USD appears to be a linear process, because the Sup-LR test is
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Table 12. Estimates of BAR(p), AR(p), and the three-regime TAR(p) models.

C
A

D
/
U

S
D

BAR(3), d = 2, γ = (−0.0084, 0.0021) AR(3) Three-regime TAR(3), d = 2, γ = (−0.0084, 0.0021)
Regressor Est s.e. Est s.e. Est s.e. Est s.e. Est s.e. Est s.e.
Constant −0.0021 0.0022 0.0041 0.0016 0.0023 0.0012 −0.0021 0.0027 0.0036 0.0027 0.0035 0.0021
yt−1 −0.0106 0.0091 −0.0132 0.0072 −0.0118 0.0058 −0.0138 0.0102 −0.0151 0.0125 −0.0089 0.0082

∆yt−1 0.3571 0.0824 0.1345 0.0625 0.2685 0.0453 0.3546 0.0966 0.2237 0.4402 0.1483 0.0749
∆yt−2 −0.3172 0.0892 0.0089 0.0673 −0.0225 0.0453 −0.3453 0.0965 0.1662 0.4577 −0.0142 0.0768
T 180 306 486 145 109 232
σ̂2 0.000199 0.000213 0.000216 0.000209 0.000160 0.000230

AIC −4130.64 −4117.02 −4120.89
BIC −4092.91 −4096.06 −4066.39

J
P

Y
/U

S
D

BAR(2), d = 1, γ = (−0.0195, 0.0067) AR(2) Three-regime TAR(2), d = 2, γ = (−0.0005, 0.0067)
Regressor Est s.e. Est s.e. Est s.e. Est s.e. Est s.e. Est s.e.
Constant 0.0176 0.0527 0.0974 0.0369 0.0711 0.0304 0.0692 0.0445 0.1293 0.0795 0.0640 0.0480
yt−1 −0.0052 0.0115 −0.0210 0.0081 −0.0156 0.0067 −0.0155 0.0097 −0.0272 0.0173 −0.0127 0.0104

∆yt−1 0.1647 0.0886 0.2940 0.0785 0.3156 0.0430 0.2675 0.0859 −3.3215 1.6569 0.1715 0.1287
T 172 315 487 227 60 184
σ̂2 0.000798 0.000676 0.000726 0.000743 0.000876 0.000631

AIC −3527.15 −3526.14 −3525.21
BIC −3497.81 −3509.37 −3483.28

G
B

P
/U

S
D

BAR(3), d = 2, γ = (−0.0236, 0.0021) AR(3) Three-regime TAR(3), d = 2, γ = (−0.0236, 0.0021)
Regressor Est s.e. Est s.e. Est s.e. Est s.e. Est s.e. Est s.e.
Constant −0.0346 0.0097 −0.0103 0.0055 −0.0131 0.0048 −0.0420 0.0138 −0.0123 0.0080 −0.0136 0.0071
yt−1 −0.0408 0.0169 −0.0227 0.0106 −0.0261 0.0093 −0.0400 0.0214 −0.0224 0.0152 −0.0247 0.0133

∆yt−1 0.0834 0.1143 0.2659 0.0613 0.3123 0.0451 −0.0645 0.1767 0.0242 0.2382 0.3648 0.0960
∆yt−2 −0.3252 0.0898 - - −0.0568 0.0455 −0.3817 0.1253 0.0221 0.0684 −0.0431 0.0667
T 121 365 486 72 187 227
σ̂2 0.000601 0.000515 0.000554 0.000571 0.000550 0.000504

AIC −3668.19 −3656.61 −3662.79
BIC −3634.65 −3635.65 −3608.29

Table 13. Test statistics and p-values.

CAD/USD JPY/USD GRB/USD
Test statistic value p-value value p-value value p-value

supLRn 20.92 0.021 6.68 0.589 17.94 0.043
t1 −1.13 0.279 −0.45 0.483 −2.20 0.021
t2 −1.85 0.073 −2.59 0.012 −2.21 0.029
R1 4.71 0.223 6.93 0.129 9.71 0.025

not statistically significant, and the AR(p) is preferred to the BAR(p) and the

three-regime TAR(p), based on the information criteria. To test for stationarity,

we apply the one-sided unit root test to the three series, because the estimates

of the coefficients of yt−1 are all negative and close to zero. The 5% one-sided

unit root test only rejects the null hypothesis for GBP/USD. The ADF test does

not draw the same conclusion because the t-values for both regimes (−2.20 and

−2.21) are not statistically significant for the ADF test. In summary, the theory

of PPP seems to hold only for the GBP/USD, while the JPY/USD rate appears

to be linear and nonstationary, and the CAD/USD rate appears to be buffered

nonlinear and nonstationary.
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7. Conclusion

This work studied the asymptotic theory for a BAR model with possible unit

roots, and proposed two types of tests to identify nonstationarity and nonlinear-

ity. Our asymptotic results extend the theory related to the TAR model (Caner

and Hansen (2001)) to a more general setting, but with a similar form. Thus, the

additional buffer effect does not necessarily make the asymptotic theory much

more complicated. The results of the simulation experiments show that the boot-

strap tests perform well and that the proposed unit root tests are more powerful

than the conventional ADF test.

For real economic and financial data analyses, combining the unit root test

in the BAR model and conditional heteroscedasticity would be interesting and

important, and we leave it for future research.

Supplementary Material

The online Supplementary Material includes auxiliary lemmas and proofs of

the theorems presented here.

Acknowledgments

The authors would like to thank two anonymous referees, the Associate Ed-

itor, and the Co-Editor for their constructive suggestions and comments. This

work was partially supported by the Research Grants Council of the Hong Kong

SAR Government (GRF grant 17304417). The computations were performed

using research computing facilities provided by Information Technology Services,

the University of Hong Kong.

References

Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown

change point. Econometrica 61, 821-856.

Bec, F., Ben Salem, M. and Carrasco, M. (2004). Tests for unit-root versus threshold specifica-

tion with an application to the purchasing power parity relationship. Journal of Business

and Economic Statistics 22, 382–395.

Caner, M. and Hansen, B. (2001). Threshold autoregression with a unit root. Econometrica 69,

1555-1596.

Chan, K. S. (1990). Testing for threshold autoregression. The Annals of Statistics 18, 1886-1894.

Chen, C. W., Chen, S. Y. and Lee, S. (2013). Bayesian unit root test in double threshold

heteroskedastic models. Computational Economics 42, 471-490.

Chen, C. W., Lee, S. and Chen, S. Y. (2016). Local non-stationarity test in mean for Markov



1002 WANG AND LI

switching GARCH models: an approximate Bayesian approach. Computational Statistics

31, 1-24.

Chen, C. W. S., So, M. K. P. and Liu. F. (2011). A review of threshold time series models in

finance. Statistics and Its Interface 4, 167-181.

Chen, C. W. and Truong, B. C. (2016). On double hysteretic heteroskedastic model. Journal of

Statistical Computation and Simulation 86, 2684-2705.

Hamilton, J. (1989), A new approach to the economic analysis of nonstationary time series and

the business cycle. Econometrica 5, 357-384.

Hansen, B. (2011). Threshold autoregression in economics. Statistics and Its Interface 4, 123-

127.

Kapetanios, G., Shin, Y. and Snell, A. (2003). Testing for a unit root in the nonlinear STAR

framework. Journal of Econometrics 112, 359-379.

Kapetanios, G. and Shin, Y. (2006). Unit root tests in three-regime SETAR models. Economet-

rics Journal 9, 252-278.

Li, G., Guan, B., Li, W. K. and Yu. P. L. H. (2015). Hysteretic autoregressive time series

models. Biometrika 102, 717-723.

Maki, D. (2009) Tests for a unit root using three-regime TAR models: power comparison and

some applications, Econometric Reviews 28, 335-363.

National Bureau of Economic Research. (2010). US business cycle expansions and contractions.

Retrieved from http://www.nber.org/cycles/.

Park, J. Y. (2003). Bootstrap unit root tests. Econometrica 71, 1845-1895.

Park, J. Y. and Shintani, M. (2016). Testing for a unit root against transitional autoregressive

models. International Economic Review 57, 635-664.

Potter, S. M. (1995). A nonlinear approach to U.S. GNP. Journal of Applied Econometrics 2,

109-125.

Roed, K. (2002). Unemployment hysteresis and the natural rate of vacancies, Empirical Eco-

nomics 27, 687-704.

Seo, M. H. (2008). Unit root test in a threshold autoregression: asymptotic theory and residual-

based block bootstrap. Econometric Theory 24, 1699-1716.

Smith, C. E. (2009). Economic indicators. In Encyclopedia of Business in Today’s World (Edited

by C. Wankel). California, USA.

Steigerwald, D. G. (1996). Purchasing power parity, unit roots and dynamic structure. Journal

of Empirical Finance 2, 343-357.

Taylor, A. M. (2001). Potential pitfalls for the purchasing-power-parity puzzle? Sampling and

specification biases in mean-reversion tests of the law of one price. Econometrica 69, 473-

498.

Tong, H. (1978). On a threshold model. In Pattern Recognition and Signal Processing (Edited

by C. H. Chen), Sijthoff & Noordhoff, Amsterdam.

Tong, H. (1990). Non-linear Time Series. A Dynamical System Approach. Clarendon Press,

Oxford.

Truong, B. C., Chen, C. W. and So, M. K. (2016). Model selection of a switching mechanism

for financial time series. Applied Stochastic Models in Business and Industry 32, 836-851.

Zhu, K., Yu, P. L. H. and Li, W. K. (2014). Testing for the buffered autoregressive processes.

Statistica Sinica 24, 971-984.

http://www.nber.org/cycles/


UNIT ROOT TEST ON BUFFERED AUTOREGRESSION 1003

Zhu, K., Li, W. K. and Yu, P. L. H. (2017). Buffered autoregressive models with conditional

heteroscedasticity: An application to exchange rates. Journal of Business and Economic

Statistics 35, 528-542.

Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong

Kong.

E-mail: diwang@connect.hku.hk

Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong

Kong.

Department of Mathematics and Information Technology, Education University of Hong Kong,

10 Lo Ping Road, Tai Po, New Territories, Hong Kong.

E-mail: waikeungli@eduhk.hk, hrntlwk@hku.hk

(Received November 2017; accepted June 2018)

mailto:diwang@connect.hku.hk
mailto:waikeungli@eduhk.hk
mailto:hrntlwk@hku.hk

	Introduction
	The BAR Model
	Test for Buffered Nonlinearity with Possible Unit Roots
	Sup-LR test statistic
	Asymptotic distribution
	Wild bootstrap critical value approximation

	Test for Unit Roots with Possible Buffered Nonlinearity
	Asymptotic distribution without buffered nonlinearity
	Asymptotic distribution with buffered nonlinearity
	Wild bootstrap critical value approximation

	Monte Carlo Simulation
	Sup-LR test
	Size
	Power
	Conditional heteroscedasticity

	Unit root test
	Unit root test without buffered nonlinearity
	Unit root test with buffered nonlinearity
	Conditional heteroscedasticity


	Real-Data Analysis
	U.S. unemployment rate
	Real exchange rates

	Conclusion

