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S1. Proof of Lemma 1

Proof. Part (i) immediately follows from Lemma 2 (i) equation (25) in Cai and Liu (2011).

To prove part (ii), we need to bound the three terms on the right side of the following

inequality,
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By the marginal sub-Gaussian distribution assumption in assumption (C1), we have that
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j )2 has mean θ

(k)
j and finite Orlicz ψ1/2-norm (see, e.g., Adamczak et al.

(2011)). Thus we can apply equation (3.6) of Adamczak et al. (2011), i.e.,
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with t = (Cθ/3)
√
n log p for a large enough constant Cθ > 0 depending on M1, η, b and M

only to obtain that,
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We have used the assumption log p = o(n1/3) in assumption (C2) to make sure t2

n
≤ t1/2.
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By applying equation (1) in supplement of Cai and Liu (2011), we obtain that,
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In addition, by a similar truncation argument as that in the proof of Lemma 2 in Cai and

Liu (2011) and equation (7) therein, we obtain that by picking a large enough Cθ > 0,
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We complete the proof by combining (S1.1)-(S1.4) with a union bound argument.

S2. Proof of Lemma 2

Proof. It is easy to check that E(Ȟ
(k)
j ) = 0 and var(Ȟ

(k)
j ) = 1. The marginal sub-Gaussian

distribution assumption in assumption (C1) implies that Ȟ
(k)
j has finite Orlicz ψ1-norm (i.e.,

sub-exponential distribution with finite constants). Therefore, (Ȟ
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j )2−1 is centered random

variable with finite Orlicz ψ1/2-norm. Note that Ȟ
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follows from equation (3.6) of Adamczak et al. (2011).

S3. Proof of Lemma 3
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Gaussian with bounded constants. Therefore, the first equation follows from Bernstein

inequality (e.g., Definition 5.13 in Vershynin (2010)) applied to centered sub-exponential
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√
nX̄

(k)
j ·
√
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j ≥ τ0 by assumption (C1). The second equation follows

from the first one, log3 p = o(n), and a Bernstein inequality (e.g., Corollary 5.17 in Vershynin

(2010)) applied to the sum of centered sub-exponential variables Ȟ
(k)
j .
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