Variable screening with multiple studies

Tianzhou ${\rm Ma}^1,$ Zhao ${\rm Ren}^2$ and George C. ${\rm Tseng}^2$

¹University of Maryland, ²University of Pittsburgh

Supplementary Material

S1. Proof of Lemma 1

Proof. Part (i) immediately follows from Lemma 2 (i) equation (25) in Cai and Liu (2011). To prove part (ii), we need to bound the three terms on the right side of the following inequality,

$$\max_{j,k} |\hat{\theta}_{j}^{(k)} - \theta_{j}^{(k)}| \le \max_{j,k} |\hat{\theta}_{j}^{(k)} - \tilde{\theta}_{j}^{(k)}| + \max_{j,k} |\tilde{\theta}_{j}^{(k)} - \check{\theta}_{j}^{(k)}| + \max_{j,k} |\check{\theta}_{j}^{(k)} - \theta_{j}^{(k)}|, \tag{S1.1}$$

where $\tilde{\theta}_{j}^{(k)} := \frac{1}{n} \sum_{i=1}^{n} (X_{ij}^{(k)} Y_{i}^{(k)} - \tilde{\rho}_{j}^{(k)})^{2}$ with $\tilde{\rho}_{j}^{(k)} = \frac{1}{n} \sum_{i=1}^{n} X_{ij}^{(k)} Y_{i}^{(k)}$, and $\check{\theta}_{j}^{(k)} := \frac{1}{n} \sum_{i=1}^{n} (X_{ij}^{(k)} Y_{i}^{(k)} - \rho_{j}^{(k)})^{2}$. Note that $E(\check{\theta}_{j}^{(k)}) = \theta_{j}^{(k)}$.

By the marginal sub-Gaussian distribution assumption in assumption (C1), we have that $(X_{ij}^{(k)}Y_i^{(k)} - \rho_j^{(k)})^2$ has mean $\theta_j^{(k)}$ and finite Orlicz $\psi_{1/2}$ -norm (see, e.g., Adamczak et al. (2011)). Thus we can apply equation (3.6) of Adamczak et al. (2011), i.e.,

$$P(\max_{j,k} \sqrt{n} |\check{\theta}_j^{(k)} - \theta_j^{(k)}| > t) \le 2Kp \exp(-c \min[\frac{t^2}{n}, t^{1/2}]),$$

with $t = (C_{\theta}/3)\sqrt{n\log p}$ for a large enough constant $C_{\theta} > 0$ depending on M_1, η, b and M only to obtain that,

$$P(\max_{j,k} |\check{\theta}_j^{(k)} - \theta_j^{(k)}| > (C_{\theta}/3)\sqrt{\frac{\log p}{n}}) = O(p^{-M}).$$
(S1.2)

We have used the assumption $\log p = o(n^{1/3})$ in assumption (C2) to make sure $\frac{t^2}{n} \leq t^{1/2}$.

By applying equation (1) in supplement of Cai and Liu (2011), we obtain that,

$$P(\max_{j,k} |\tilde{\theta}_j^{(k)} - \hat{\theta}_j^{(k)}| > (C_{\theta}/3)\sqrt{\frac{\log p}{n}}) = O(p^{-M}).$$
(S1.3)

In addition, by a similar truncation argument as that in the proof of Lemma 2 in Cai and Liu (2011) and equation (7) therein, we obtain that by picking a large enough $C_{\theta} > 0$,

$$P(\max_{j,k} |\tilde{\theta}_j^{(k)} - \check{\theta}_j^{(k)}| > (C_{\theta}/3)\sqrt{\frac{\log p}{n}}) = O(p^{-M}).$$
(S1.4)

We complete the proof by combining (S1.1)-(S1.4) with a union bound argument.

S2. Proof of Lemma 2

Proof. It is easy to check that $E(\check{H}_{j}^{(k)}) = 0$ and $\operatorname{var}(\check{H}_{j}^{(k)}) = 1$. The marginal sub-Gaussian distribution assumption in assumption (C1) implies that $\check{H}_{j}^{(k)}$ has finite Orlicz ψ_{1} -norm (i.e., sub-exponential distribution with finite constants). Therefore, $(\check{H}_{j}^{(k)})^{2}-1$ is centered random variable with finite Orlicz $\psi_{1/2}$ -norm. Note that $\check{H}_{j}^{(k)}$ are independent for $k \in [K]$. The result follows from equation (3.6) of Adamczak et al. (2011).

S3. Proof of Lemma 3

Proof. Note that $\check{H}_{j}^{(k)} - \hat{H}_{j}^{(k)} = \frac{\sqrt{n}\bar{X}_{j}^{(k)}\sqrt{n}\bar{Y}^{(k)}}{\sqrt{n}\theta_{j}^{(k)}}$. By assumption (C1), we have that $E(\sqrt{n}\bar{X}_{j}^{(k)}) = E(\sqrt{n}\bar{Y}^{(k)}) = 0$, $\operatorname{var}(\sqrt{n}\bar{X}_{j}^{(k)}) = \operatorname{var}(\sqrt{n}\bar{Y}^{(k)}) = 1$, and both $\sqrt{n}\bar{X}_{j}^{(k)}$ and $\sqrt{n}\bar{Y}^{(k)}$ are sub-Gaussian with bounded constants. Therefore, the first equation follows from Bernstein inequality (e.g., Definition 5.13 in Vershynin (2010)) applied to centered sub-exponential variable $\sqrt{n}\bar{X}_{j}^{(k)} \cdot \sqrt{n}\bar{Y}^{(k)}$, noting $\theta_{j}^{(k)} \ge \tau_{0}$ by assumption (C1). The second equation follows from the first one, $\log^{3} p = o(n)$, and a Bernstein inequality (e.g., Corollary 5.17 in Vershynin (2010)) applied to the sum of centered sub-exponential variables $\check{H}_{j}^{(k)}$.

- Adamczak, R., Litvak, A. E., Pajor, A., and Tomczak-Jaegermann, N. (2011). Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling. *Constructive Approximation*, 34(1):61–88.
- Cai, T. and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix estimation. Journal of the American Statistical Association, 106(494):672–684.
- Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices. *arXiv* preprint arXiv:1011.3027.

Tianzhou Ma

Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD 20742.

E-mail: tma0929@umd.edu

Zhao Ren (Corresponding Author)

Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15261.

E-mail: zren@pitt.edu

George C. Tseng

Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261.

E-mail: ctseng@pitt.edu