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Abstract: The conditional main effect (CME) parameterization system resolves the

long-standing aliasing dilemma associated with the traditional orthogonal compo-

nents system for two-level regular fractional factorial designs. However, the algebra

of the CME system is not yet fully understood, which impedes the development of

general results on this system that possess a broad scope of application across de-

signs. Therefore, we establish a comprehensive algebra for the CME system based

on indicator functions. Our algebra facilitates derivations of general partial alias-

ing relations for a wide variety of two-level designs. Using the proposed algebra,

we examine the implications for resolution IV designs of traditional design criteria

under the CME system. A novel feature of our algebra is that it enables immediate

and simple D-efficiency calculations for two-level regular designs and for models

consisting of multiple conditional and traditional effects.

Key words and phrases: Complex aliasing, experimental design, regular fractional

factorial design.

1. Introduction

Two-level regular fractional factorials are convenient designs for inferences

on main effects and interactions in experiments with many factors and run size

constraints. The traditional method of analysis is based on the orthogonal com-

ponents parameterization of the factorial effects (Wu and Hamada (2009, p. 274)).

Ever since the work of Finney (1945), the major disadvantage of regular designs

was thought to be that, under this traditional system, no two aliased effects can

be disentangled without follow-up runs (Wu (2015)). Su and Wu (2017) recently

resolved this long-standing dilemma by reparameterizing the traditional main

effects and two-factor interactions into main effects and conditional main effects

(CMEs). In contrast to the orthogonal components system, analyses of regular

designs under the CME system are similar to those of nonregular designs, due

to the partial aliasing among the conditional and traditional effects. From the

work of Hamada and Wu (1992) on the analysis of nonregular designs and partial

aliasing, this feature of the CME system can be used to eliminate the need to
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employ follow-up runs to perform conclusive analyses on regular designs. Wu

(2015, p. 615) first noted this advantage of the CME system and its utility for

real-life applications. Su and Wu (2017) then proposed an analysis strategy for

resolution III and IV designs under this system, based on partial aliasing rela-

tions among conditional and traditional effects. They leveraged the structure

of their groupings of CMEs to develop simple rules for selecting parsimonious

and interpretable models that yield unambiguous inferences in two-level regular

fractional factorials.

The innovation of the CME system created several novel avenues of research

for both experiments and observational studies. Mukerjee, Wu and Chang (2017)

proposed an effect hierarchy for this system. Furthermore, they developed a

design strategy incorporating a minimum aberration criterion to sequentially

minimize the bias in estimations of main effects by successive iterations in the

effect hierarchy. Mak and Wu (2019) proposed an analysis strategy for general

observational data under this system that can perform bi-level variable selection

and separate active effects from correlated groups of inert effects. A unified and

insightful review on this system, the above recent advances, and related topics

are provided by Wu (2018).

However, a significant feature of the CME system that has yet to be ad-

dressed is its algebra, which is not as transparent as the Galois field theory of

the traditional orthogonal components system. The lack of an accessible alge-

bra impedes the development of general results on CMEs that can be applied

across the spectrum of two-level designs. For example, Su and Wu (2017, p. 10)

noted that, although they could determine partial aliasing relations between con-

ditional and traditional effects in small regular designs, their approach would not

be feasible for deriving general partial aliasing relations in large designs. In ad-

dition, Mukerjee, Wu and Chang (2017) considered simple models consisting of

traditional effects and just one CME, because more general models involving any

number of conditional and traditional effects would incur heavy algebra under

their framework. These examples highlight the need for an algebra that can fa-

cilitate the derivation of general results and properties under the CME system

for broad types of two-level designs.

We establish an algebra for the CME system based on indicator functions

for two-level designs. Fontana, Pistone and Rogantin (2000) introduced the in-

dicator function based on the algebraic perspective of Pistone and Wynn (1996).

They applied indicator functions to address multiple aspects of the classification

of unreplicated two-level regular fractional factorials. Ye (2003) extended indi-
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cator functions to two-level nonregular fractions with replicate runs for ranking

designs. Ye (2004) then used indicator functions to prove that a two-level design

with no partial aliasing under the orthogonal components system must be a two-

level regular fractional factorial, potentially with replicate runs. The orthogonal

components system was always considered in these and other investigations on

two-level designs that involved indicator functions. In contrast, we use an or-

thogonal basis of functions, the span of which contains indicator functions, to

explicitly represent both conditional and traditional effects, and we define an

inner product of these representations using the indicator function for a two-

level design, the properties of which are studied here under the CME system.

The contributions of our algebra are threefold. First, in contrast to the work of

Su and Wu (2017), it facilitates general derivations of partial aliasing relations

among conditional and traditional effects for broad classes of large designs. For

example, Properties 2–5 of Su and Wu (2017, pp. 3–6) follow as simple calcu-

lations under our inner product, with no, or rather weak conditions. Second,

our algebra reveals the implications for CME analyses of resolution IV designs of

the maximum clear two-factor interactions (Wu and Hamada (2009, p. 217)) and

minimum aberration (Fries and Hunter (1980)) design criteria. Third, it enables

immediate and simple D-efficiency calculations for two-level regular designs and

models consisting of multiple CMEs, main effects, and two-factor interactions.

This particular contribution distinguishes our work from that of Mukerjee, Wu

and Chang (2017).

We begin in Section 2 with a review of the CME system, its connections

with traditional effects and nonregular designs, and its groupings of effects. Our

algebra is defined in Section 3. We apply our algebra in Section 4 to derive general

partial aliasing relations among conditional and traditional effects. In Section 5,

we discuss the implications of traditional design criteria for CME analyses of

resolution IV designs. We apply the proposed algebra to D-efficiency calculations

in Section 6. Illustrative examples of our results are provided throughout the

latter three sections, and the proofs are provided in the Supplementary Material.

A practical application that demonstrates the importance of our results for real-

world CME analyses is presented in Section 7. Section 8 concludes the paper.

2. Review of the CME System

Let Dr denote the 2r full factorial for r ≥ 2 factors, with the levels of fac-

tors A1, . . . , Ar denoted by − and +. A fraction of Dr is denoted by F ⊆ Dr.
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As described by Cheng (2014, pp. 71–75), the main effects and interactions

for a two-level design Dr are defined as contrasts of all of its 2r treatment ef-

fects α(s1, . . . , sr), where s1, . . . , sr ∈ {−,+} denote the factors’ levels. The

α(s1, . . . , sr) are unknown, and, in general, the factorial effects are estimated us-

ing a least squares linear regression (Cheng (2014, pp. 81–83)). Similarly, a CME

is defined as a contrast of the treatment effects that captures the main effect of

one factor conditional on the level of a second. The estimation of a CME is also

performed using a regression. A general description of the CME is given by Wu

and Hamada (2009, p. 164) and Cheng (2014, pp. 71–72).

To illustrate the traditional and conditional effects, consider D2, and let

α = (α(−,−), α(−,+), α(+,−), α(+,+))T, where α(s1, s2) is the treatment ef-

fect for (s1, s2) ∈ {−,+}2. The main effects of A1 and A2 are ME(A1) =

2−1(−1,−1, 1, 1)α and ME(A2) = 2−1(−1, 1,−1, 1)α, respectively, and their in-

teraction is INT(A1, A2) = 2−1{(−1,−1, 1, 1) � (−1, 1,−1, 1)}α, where � is the

Hadamard product. The CMEs of A1 given A2 are

CME(A1 | A2+) = {(−1,−1, 1, 1)� (0, 1, 0, 1)}α,

CME(A1 | A2−) = {(−1,−1, 1, 1)� (1, 0, 1, 0)}α.

The sum and difference of CME(A1 | A2+) and CME(A1 | A2−) effectively de-

fine ME(A1) and INT(A1, A2), respectively (Wu and Hamada (2009, p. 164)),

and thus reparameterize them. Wu (2018, p. 252) provides physical interpre-

tations of these effects, as well as the connections between them. If we let

y = (y(−,−), y(−,+), y(+,−), y(+,+))T denote the observed outcomes, where

y(s1, s2) is the response for the experimental unit assigned (s1, s2) ∈ {−,+}2,
then the estimators of these effects are M̂E(A1) = 2−1(−1,−1, 1, 1)y, M̂E(A2) =

2−1(−1, 1,−1, 1)y, ̂INT(A1, A2) = 2−1(1,−1,−1, 1)y, ̂CME(A1 | A2+) = (0, −1,

0, 1)y, and ̂CME(A1 | A2−) = (−1, 0, 1, 0)y. The correlations between the esti-

mators of the traditional effects and the CMEs, and between estimators of the

distinct CMEs themselves, are strictly less than one in absolute value. Con-

sequently, including CMEs with traditional effects in the analysis of a regular

design introduces partial aliasing relations, and results in the design becoming of

the nonregular type in its analysis (Wu (2018, p. 251)).

To simplify the exposition in this paper, our references to partial aliasing

relations or to correlations between effects in a design signify the aliasing rela-

tions or correlations between the corresponding estimators. Formal definitions

of different groups of conditional and traditional effects under the CME system

follow below.
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Definition 1 (Twin CMEs (Su and Wu (2017))). For distinct factors A1 and

A2, CME(A1 | A2+) and CME(A1 | A2−) are twins, with A1 the parent effect,

A2 the conditioned effect, and conditioned levels + and −, respectively.

Definition 2 (Parent-child pair (Mak and Wu (2019))). For distinct factors A1

and A2, CME(A1 | A2s), with s ∈ {−,+}, and its corresponding parent main

effect ME(A1) constitute a parent-child pair.

Definition 3 (Uncle-nephew pair (Mak and Wu (2019))). For distinct factors

A1 and A2, CME(A1 | A2s), with s ∈ {−,+}, and its corresponding conditioned

main effect ME(A2) constitute an uncle-nephew pair.

Definition 4 (Sibling CMEs (Su and Wu (2017))). For distinct factors A1, A2,

and A3, CME(A1 | A2s) and CME(A1 | A3s
′), with s, s′ ∈ {−,+}, are siblings.

Definition 5 (Cousin CMEs (Mak and Wu (2019))). For distinct factors A1, A2,

and A3, CME(A1 | A2s) and CME(A3 | A2s), with s ∈ {−,+}, are cousins.

Definition 6 (Family of CMEs (Su and Wu (2017))). For a fraction F ⊆ Dr,
any two CME(Ai | Ajs) and CME(Al | Aks′), with i, j, l, k ∈ {1, . . . , r} and

s, s′ ∈ {−,+}, whose corresponding two-factor interactions INT(Ai, Aj) and

INT(Al, Ak) are fully aliased in F , belong to one family of CMEs of F , and

are referred to as family members.

For a regular fractional factorial, any two of its distinct families must be disjoint,

by virtue of the Galois field theory construction of regular designs. In addition,

by inspection, a two-factor interaction INT(A1, A2) that is orthogonal to all

other main effects and two-factor interactions in a regular fraction (i.e., a clear

two-factor interaction) corresponds to the trivial family of CMEs {CME(A1 |
A2+),CME(A1 | A2−),CME(A2 | A1+),CME(A2 | A1−)}. The number of

nontrivial families, each of which contain distinct pairs of factors in their CMEs,

in a regular fraction is equal to the number of aliasing relations that contain more

than one two-factor interaction.

3. Indicator Functions and the Inner Product for the CME System

A design F ⊆ Dr with distinct runs is specified completely by its indicator

function FF : {−,+}r → R, defined by Fontana, Pistone and Rogantin (2000,

p. 153) as
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FF (x) =

{
1 if x ∈ F ,
0 otherwise.

This function generalizes traditional design descriptions, for example, those based

on defining relations, via the concept of algebraic variety (Fontana, Pistone and

Rogantin (2000, p. 150)). Indicator functions also exist for designs with replicate

runs (Ye (2003)), but we do not consider those here.

From Fontana, Pistone and Rogantin (2000, pp. 152–153) and Ye (2003,

p. 985), FF is expressed as a unique linear combination of the following set of

orthogonal functions over {−,+}r. Let Pr denote the power set of {1, . . . , r}. For

each I ∈ Pr, define XI : {−,+}r → R as XI(x) =
∏
i∈I xi, with Xφ ≡ 1 being a

constant function. Then, {XI : I ∈ Pr} is an orthogonal basis of functions over

{−,+}r, and

FF (x) =
∑
I∈Pr

bF ,IXI(x),

for unique bF ,I ∈ R. Each XI in this basis represents a traditional effect. For

example, X{i} represents ME(Ai), and X{i,j} represents INT(Ai, Aj), for distinct

i, j ∈ {1, . . . , r}. For any fraction F ⊆ Dr, the work of Fontana, Pistone and

Rogantin (2000, p. 154) yields that bF ,φ = 2−r|F|, and bF ,I = 2−r
∑

x∈F XI(x)

for I ∈ Pr. The indicator function coefficients bF ,I encode information on the

correlations between the effects in F . This is illustrated for the case of regular

designs and traditional effects in the following proposition of Fontana, Pistone

and Rogantin (2000, p. 154).

Definition 7. The symmetric difference of I, J ∈ Pr is I4J = (I ∪J)− (I ∩J).

Proposition 1 (Fontana, Pistone and Rogantin (2000)). The correlation be-

tween any two traditional effects in a regular design F ⊆ Dr, corresponding to

I, J ∈ Pr and not belonging to the defining contrast subgroup of F , is bF ,I4J/bF ,φ.

The above orthogonal basis of functions underlies our algebra for the CME

system. Specifically, CMEs are easily expressed using this orthogonal basis, with

CME(Ai | Aj+) and CME(Ai | Aj−), for distinct i, j ∈ {1, . . . , r}, represented

by X+
i|j ≡ 2−1(X{i} + X{i,j}) and X−i|j ≡ 2−1(X{i} − X{i,j}), respectively. In

these expressions, CMEs are again seen to be functions of traditional effects, and

can be considered additional factors of interest in a two-level design. We then

apply the indicator function of a fraction to define the following inner product of

the functions over {−,+}r that correspond to conditional and traditional effects,

thus establishing our algebra for the CME system.
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Definition 8. For a fractional factorial design F ⊆ Dr, i, j, l, k ∈ {1, . . . , r},
s, s′ ∈ {−,+}, and I, J ∈ Pr,

〈XI , XJ | F〉 = 2−r
∑
x∈Dr

FF (x)XI(x)XJ(x),〈
Xs
i|j , XI | F

〉
= 2−r

∑
x∈Dr

FF (x)Xs
i|j(x)XI(x),〈

Xs
i|j , X

s′

l|k | F
〉

= 2−r
∑
x∈Dr

FF (x)Xs
i|j(x)Xs′

l|k(x).

As we show in the following sections, the partial aliasing relations and other prop-

erties of a two-level design under the CME system can be derived in a simple and

unrestricted manner using this inner product of coordinate-free representations

of the conditional effects, traditional effects, and the design’s indicator function.

Note that if we wish to use a different orthogonal basis containing functions

corresponding to CMEs, then we must necessarily select a set of conditional and

traditional effects that are orthogonal in Dr. However, such selections may fail to

permit a coordinate-free presentation. They may also unduly restrict the CMEs

that can be studied under the corresponding algebra, thus hindering our ability

to understand the CME system for broad types of two-level designs.

4. Partial Aliasing Relations Under the CME System

The inner product in Definition 8 facilitates derivations of the partial aliasing

relations among conditional and traditional effects.

Lemma 1 (Fontana, Pistone and Rogantin (2000); Ye (2003)). For F ⊆ Dr and

I, J ∈ Pr,

〈XI , XJ | F〉 = 〈Xφ, XI4J | F〉 = bF ,I4J .

Proposition 2. For F ⊆ Dr and any i, j, l, k ∈ {1, . . . , r}, with i 6= j, l 6= k, and

s, s′ ∈ {−,+},〈
Xs
i|j , X

s′

l|k | F
〉

= 2−2
(
bF ,{i}4{l} + s′bF ,{i}4{l,k}

+ sbF ,{i,j}4{l} + ss′bF ,{i,j}4{l,k}
)
.

Corollary 1. The correlation between CME(Ai | Ajs) and CME(Al | Aks′) in

a regular design F ⊆ Dr of resolution at least III, for any i, j, l, k ∈ {1, . . . , r},
with i 6= j, l 6= k, and s, s′ ∈ {−,+}, is

2−1b−1F ,φ
(
bF ,{i}4{l} + s′bF ,{i}4{l,k} + sbF ,{i,j}4{l} + ss′bF ,{i,j}4{l,k}

)
.
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Proposition 3. For F ⊆ Dr and any i, j ∈ {1, . . . , r}, with i 6= j, I ∈ Pr, and

s ∈ {−,+}, 〈
Xs
i|j , XI | F

〉
= 2−1(bF ,{i}4I + sbF ,{i,j}4I).

Corollary 2. For a regular design F ⊆ Dr of resolution at least III and any

i, j ∈ {1, . . . , r}, with i 6= j, I ∈ Pr, and s ∈ {−,+}, the correlation between

CME(Ai | Ajs) and the traditional effect corresponding to I is

2−1/2b−1F ,φ
(
bF ,{i}4I + sbF ,{i,j}4I

)
.

Thus:

(a) If ME(Ai) is aliased with the traditional effect corresponding to I in F ,

then the correlations of CME(Ai | Aj+) and CME(Ai | Aj−) with the latter

effect are both 2−1/2.

(b) If INT(Ai, Aj) is aliased with the traditional effect corresponding to I in F ,

then the correlations of CME(Ai | Aj+) and CME(Ai | Aj−) with the latter

effect are 2−1/2 and −2−1/2, respectively.

(c) If neither ME(Ai) nor INT(Ai, Aj) are aliased with the traditional effect

corresponding to I in F , then the correlations of CME(Ai | Aj+) and

CME(Ai | Aj−) with the latter effect are both zero.

These results clearly demonstrate that the partial aliasing relations among the

conditional and traditional effects in a design follow immediately from its indi-

cator function coefficients.

Example 1. For our first, simple illustration of these results, consider the 23−1III

design F in Table 1 with indicator function FF (x) = 1/2+X{1,2,3}(x)/2. Suppose

we wish to calculate the correlation between the siblings CME(A1 | A2+) and

CME(A1 | A3−) in F . From Corollary 1 and the indicator function coefficients,

we immediately have that this correlation is 1/2. Now, suppose we wish to

calculate the correlations of CME(A1 | A2+) and CME(A1 | A2−) with ME(A3)

in F . In this case, from Corollary 2(b), their respective correlations are 2−1/2

and −2−1/2.

Example 2. To illustrate the utility of these results for larger designs of practical

interest, let F1 denote the minimum aberration 29−4IV design, and let F2 denote

the 29−4IV design that maximizes the number of clear two-factor interactions, as

provided by Wu and Hamada (2009, p. 254). Following the notation of Wu and

Hamada (2009, p. 215), the defining contrast subgroups of F1 and F2 are
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Table 1. The 23−1
III design defined by A3 = A1A2.

A1 A2 A3

− − +
− + −
+ − −
+ + +

{1236, 1247, 1258, 13459, 3467, 3568, 24569, 4578, 23579, 23489, 12345678,

15679, 14689, 13789, 26789} and

{1236, 1247, 1348, 23459, 3467, 2468, 14569, 2378, 13579, 12589, 1678,

25679, 35689, 45789, 123456789},

respectively, with the identity elements excluded from these subgroups, without

loss of essential information. For this example, suppose we wish to conduct

inferences on CME(A1 | A2+) and CME(A1 | A2−). Corollary 2 immediately

yields that, in F1, these CMEs are correlated with INT(A3, A6), INT(A4, A7),

and INT(A5, A8). However, in F2, they are correlated only with INT(A3, A6)

and INT(A4, A7). The absolute magnitudes of these correlations are all equal

to 2−1/2. Accordingly, we may choose design F2 over F1 to be able to obtain

more conclusive inferences on these selected CMEs. Another immediate, and

related, result is that F2 has fewer CMEs that are aliased with at least one main

effect or two-factor interaction (excluding the corresponding parent main effect

and two-factor interaction) than F1. Note that our orthogonal basis of functions

enables us to derive these properties of F1 and F2 in a coordinate-free manner.

As such, we can easily consider the conditional and traditional effects for large

designs. We continue to explore the properties of F1 and F2 in later examples.

The properties of CMEs derived by Su and Wu (2017, pp. 4–6) follow as

simple corollaries of our Propositions 2 and 3, with the formal proofs provided

in the online Supplementary Material.

Corollary 3 (Su and Wu (2017)). Twin CMEs are orthogonal.

Corollary 4 (Property 2 of Su and Wu (2017)). In regular designs, a CME is

orthogonal to all traditional effects, except those fully aliased with its parent main

effect or corresponding two-factor interaction.

Corollary 5 (Property 3 of Su and Wu (2017)). Sibling CMEs are correlated in

regular designs of resolution at least III.
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Corollary 6 (Properties 4 and 5 of Su and Wu (2017)). In regular designs

of resolution at least IV, nontwin CMEs in a family are correlated, and CMEs

with different parents and non-aliased corresponding two-factor interactions are

orthogonal.

Example 3. Consider designs F1 and F2 from Example 2. Recall that F2 has

fewer CMEs that are aliased with at least one main effect or two-factor interac-

tion (excluding the corresponding parent main effect and two-factor interaction)

than F1. Furthermore, from Corollary 6 and the fact that F1 has less aberra-

tion than F2, F1 has fewer nontwin CME family members with different parent

effects but with the same interaction effect than F2. In general, the makeup of

CME families can be an important consideration when choosing between several

candidate designs for a robust type of CME analysis. This is illustrated in the

practical application discussed in Section 7, in which we consider four 28−3IV de-

signs that have different CME family compositions with respect to three distinct

temperature factors.

Two additional properties related to uncle–nephew effect pairs and cousin

CMEs follow immediately from Propositions 2 and 3.

Corollary 7. Uncle–nephew effect pairs are orthogonal in regular designs of

resolution at least III.

Corollary 8. Cousin CMEs are orthogonal in regular designs of resolution at

least IV.

These orthogonalities are useful when employing models with CMEs and their

conditioned main effects.

5. Traditional Design Criteria and CMEs in Resolution IV Designs

In this section, we apply our derived partial aliasing relations to examine

the implications of the maximum clear two-factor interactions and minimum

aberration criteria for CME analyses of resolution IV regular designs. Our focus

on such designs corresponds to an original motivation for the maximum clear

two-factor interactions criterion, namely, comparing and rank-ordering regular

designs that have the same number of clear main effects, but different numbers

of clear two-factor interactions (Mukerjee and Wu (2006, p. 64)).

Definition 9. A CME is clear in a design if it is orthogonal to all main ef-

fects, excluding its parent main effect, and two-factor interactions, excluding its
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corresponding two-factor interaction.

Proposition 4. For the class of 2r−pIV fractional factorials, a design has the max-

imum number of clear two-factor interactions if and only if it has the maximum

number of clear CMEs.

Corollary 9. A fractional factorial with the maximum number of clear two-

factor interactions among 2r−pIV designs minimizes the total number of CMEs

across families containing more than four members for the class of 2r−pIV designs.

Example 4. We illustrate these implications of the maximum clear two-factor

interactions criterion using the 27−2IV designs F3 and F4, with respective defining

contrast subgroups {1236, 12457, 34567} and {1236, 3457, 124567}. The identity

elements in each are excluded, without loss of essential information. From Wu

and Hamada (2009, p. 254), F3 has the maximum number of clear two-factor

interactions among the 27−2IV designs. Thus, from Proposition 4, F3 has more

clear CMEs than F4. Furthermore, F3 has three families with more than four

members in each, because it has three aliasing relations containing more than

one two-factor interaction. Similarly, F4 has six families with more than four

members in each, because it has six aliasing relations containing more than one

two-factor interaction. Following the notation of Wu and Hamada (2009, p. 215),

the aliasing relations for F3 are

12 = 36 = 457 = 1234567,

13 = 26 = 23457 = 14567,

16 = 23 = 24567 = 13457,

and the aliasing relations for F4 are

12 = 36 = 123457 = 4567,

13 = 26 = 1457 = 234567,

16 = 23 = 134567 = 2457,

34 = 1246 = 57 = 123567,

35 = 1256 = 47 = 123467,

37 = 1267 = 45 = 123456.

Note that each of these families has exactly eight members. Hence, in comparison
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with F4, F3 has a smaller total number of CMEs across its families that contain

more than four members in each, which follows from Corollary 9.

To present the implications of the minimum aberration criterion for CME

analyses, we introduce notation to denote the number of distinct factor pairs

among the CMEs in a design’s family.

Definition 10. For a design F ⊆ Dr, with TF families, let Nt(F) denote the

number of distinct factor pairs among the CMEs in its family t, for t = 1, . . . , TF .

Example 5. The distinct factor pairs in the three families of F3 that have more

than four members are {(A1, A2), (A3, A6)}, {(A1, A3), (A2, A6)}, and {(A1, A6),

(A2, A3)}. Thus, Nt(F3) = 2 for all of these families, for t = 1, 2, 3. In addition,

Nt(F4) = 2 for all families t = 1, . . . , 6 of F4 that have more than four members.

Cheng, Steinberg and Sun (1999) and Cheng (2014, p. 172) provide an expression

for a regular design’s count of defining words of length four, in terms of the num-

bers of two-factor interactions in its aliasing sets. Using Definition 10, Lemma 2

reformulates this into a corresponding expression for minimum aberration de-

signs under the CME system. We then combine it with Corollary 1 to show in

Proposition 5 how minimum aberration designs minimize aggregate measures of

correlations among CMEs.

Lemma 2. For the class of 2r−pIV fractional factorials, a design F∗ has the min-

imum aberration if and only if

TF∗∑
t=1

Nt(F∗){Nt(F∗)− 1} ≤
TF∑
t=1

Nt(F){Nt(F)− 1},

for all 2r−pIV designs F .

Proposition 5. A fractional factorial with minimum aberration among 2r−pIV

designs minimizes, for each exhaustive selection of CMEs such that no two involve

the same pair of factors, both the sum of the absolute correlations and the sum of

the squared correlations between nonsibling effects for the class of 2r−pIV designs.

Example 6. For each exhaustive selection of CMEs in F3, such that no two in-

volve the same pair of factors, the sum of the absolute correlations and the sum

of the squared correlations between nonsibling effects are 1.5 and 0.75, respec-

tively. The corresponding sums for F4 are 3 and 1.5. The inequalities 1.5 < 3

and 0.75 < 1.5 in these two respective sums correspond to Proposition 5 and the

fact that F3 is the minimum aberration 27−2IV design.



AN ALGEBRA FOR THE CME PARAMETERIZATION 915

From Proposition 4 and Corollary 9, a resolution IV design with the maxi-

mum number of clear two-factor interactions among its peer class of 2r−pIV designs

could be useful when employing models composed of main effects, nonsibling

CMEs, and two-factor interactions. Proposition 5 demonstrates that the min-

imum aberration 2r−pIV design could be useful when it is desired to conduct an

experiment with minimum aggregate correlations among distinct types of CMEs.

These implications facilitate immediate comparisons of large designs under the

CME system for practical applications.

Example 7. We illustrate the immediate applicability of this section’s results for

the larger designs F1 and F2 from Example 2. By inspection, F1 has 13 families

that contain more than four members in each. One family has 16 CMEs, and

the remainder have eight CMEs. In addition, F2 has seven families that contain

more than four members, each with 12 CMEs. The total number of CMEs across

the above families of F1 is 112, whereas that of F2 is 84. The smaller number for

F2 corresponds to Corollary 9 and the fact that F2 has the maximum number of

clear two-factor interactions among the 29−4IV designs. Now, for each exhaustive

selection of CMEs in F1, such that no two involve the same pair of factors, the

sum of the absolute correlations and the sum of the squared correlations among

nonsibling effects are 9 and 4.5, respectively. The corresponding sums for F2

are 10.5 and 5.25. The inequalities 9 < 10.5 and 4.5 < 5.25 in the two sums

corresponds to Proposition 5 and the fact that F1 is the minimum aberration

29−4IV design. In addition to demonstrating the applicability of our results for

large designs, this example also illustrates that, as in the case of the orthogonal

components system, the maximum clear two-factor interactions and minimum

aberration criteria may disagree on the choice of design for a CME analysis.

6. D-Efficiency Under the CME System

Our algebra reduces D-efficiency calculations for general classes of designs

and models under the CME system. We demonstrate this result for resolution III

and IV regular designs and models consisting of multiple main effects, two-factor

interactions, and CMEs. Negligible additions of notation will be introduced when

extending these calculations to other designs and models.

We first describe the assumptions and notation utilized in this section. We

assume that the factors for a regular design F ⊆ Dr are partitioned into two sets

S1 and S2, with a selection of conditional and traditional effects involving the

factors in S1 being of interest, and a selection of only traditional effects involving
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the factors in S2 being of interest. For i ∈ {1, 2}, we let STradi denote the set

of functions ZI ≡ 2|F|−1XI that correspond to the selected traditional effects

involving the factors in Si. Similarly, we let SCME
1 denote the set of functions

Zsi|j ≡ 22(s2rbF ,{j}+ |F|)−1Xs
i|j , where 2−1(s2rbF ,{j}+ |F|) is the number of runs

in F in which Aj is at level s ∈ {−,+}, that correspond to the selected CMEs

involving the factors in S1. We specify the model matrix M for this selection of

effects in F as follows:

M =
(
1|F| S

Trad
1 STrad

2 SCME
1

)
, (6.1)

where 1|F| is an |F|×1 vector, with all entries equal to one; STrad
i is an |F|×|STradi |

matrix, the columns of which are the contrast vectors for the effects in STradi , for

i ∈ {1, 2}; and SCME
1 is an |F| × |SCME

1 | matrix, the columns of which are the

contrast vectors for the CMEs in SCME
1 . We let q = 1+ |STrad1 |+ |STrad2 |+ |SCME

1 |
denote the number of columns in M .

Example 8. To illustrate the above notation, consider the 23−1III design F from

Example 1. Suppose S1 = {A1, A2} and S2 = {A3}, with STrad1 = {Z{2}},
SCME
1 = {Z+

1|2}, and STrad2 = {Z{3}}. Then, the model matrix, as specified in

equation (6.1), for this design and model is

M =


1 −0.5 0.5 0

1 0.5 −0.5 −1

1 −0.5 −0.5 0

1 0.5 0.5 1

 .

Definition 11 (Montgomery (2013)). Let F1,F2 ⊆ Dr, with |F1| = |F2|, and

suppose that the same sets of effects STrad1 , STrad2 , and SCME
1 are of interest for

estimation under them. Let Mi denote the model matrix under Fi for i ∈ {1, 2}.
The relative D-efficiency of F1 to F2 is{

det(MT
1 M1)

det(MT
2 M2)

}1/q

.

From Definition 11, the D-efficiency calculation for a model matrix M re-

volves around det(MTM). The following lemma formally presents the derivation

of det(MTM) under our algebra.

Lemma 3. Consider model matrix M in equation (6.1). For c, d ∈ {1, . . . , q},
let Z(c) and Z(d) denote the functions in {Xφ} ∪ STrad1 ∪ STrad2 ∪ SCME

1 that

correspond to columns c and d, respectively, of M , with Z(1) = Xφ. Then, entry

(c, d) of MTM is 2r
〈
Z(c), Z(d) | F

〉
.
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Using this lemma and our partial aliasing relations under the CME sys-

tem, the entries of MTM for a model matrix M containing both conditional

and traditional effects can be described in a simple and general manner using

indicator function coefficients for the fraction F . We proceed to formally reduce

D-efficiency calculations in this manner for resolution III and IV regular frac-

tions, and for models in which STrad1 consists of the main effects for all factors in

S1, and STrad2 consists of all main effects and a selection of non-aliased two-factor

interactions involving the factors in S2.

Proposition 6. Consider a 2r−pIII design F ⊆ Dr, and let its model matrix M be

structured as

M =
(
1|F| S

Trad
1 SME

2 SINT
2 SCME

1

)
,

where the columns of matrix SME
2 are the main effect contrast vectors in STrad

2 ,

and the columns of matrix SINT
2 are the two-factor interaction contrast vectors

in STrad
2 . Let n1 and n2 denote the number of columns in SCME

1 and SINT
2 ,

respectively. Then, MTM is of the form

MTM =

D1 C1 C2

CT
1 D2 C3

CT
2 CT

3 W

 , (6.2)

where

• D1 is a (1 + |S1|+ |S2|)× (1 + |S1|+ |S2|) diagonal matrix, with entry (1, 1)

equal to |F|, and entry (c, c), for c ∈ {2, . . . , (1 + |S1| + |S2|)}, equal to

2p−r+2,

• D2 is an n2 × n2 diagonal matrix, with entry (c, c), for c ∈ {1, . . . , n2},
equal to 2p−r+2,

• W is an n1 × n1 matrix, with entry (c, d), for c, d ∈ {1, . . . , n1} and in

which Zsi|j and Zs
′

l|k correspond to the contrast vectors in columns c and

d, respectively, of SCME
1 , equal to 2p−r+2b−1F ,φ(bF ,{i}4{l} + s′bF ,{i}4{l,k} +

sbF ,{i,j}4{l} + ss′bF ,{i,j}4{l,k}),

• C1 is an (1 + |S1| + |S2|) × n2 matrix, with entry (1, d) equal to zero for

all d ∈ {1, . . . , n2}, and entry (c, d), for c ∈ {2, . . . , (1 + |S1| + |S2|)},
d ∈ {1, . . . , n2}, and in which ZI and ZJ correspond to the contrast vectors

in column c of (1|F| S
Trad
1 SME

2 ) and column d of SINT
2 , respectively, equal

to 2p−r+2b−1F ,φbF ,I4J ,
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• C2 is an (1 + |S1| + |S2|) × n1 matrix, with entry (1, d) equal to zero for

all d ∈ {1, . . . , n1}, and with entry (c, d), for c ∈ {2, . . . , (1 + |S1| + |S2|)},
d ∈ {1, . . . , n1}, and in which ZI and Zsi|j correspond to the contrast vectors

in column c of (1|F| S
Trad
1 SME

2 ) and column d of SCME
1 , respectively, equal

to 2p−r+2b−1F ,φ(bF ,{i}4I + sbF ,{i,j}4I), and

• C3 is an n2×n1 matrix, with entry (c, d), for c ∈ {1, . . . , n2}, d ∈ {1, . . . , n1},
and in which ZI and Zsi|j correspond to the contrast vectors in column c of

SINT
2 and column d of SCME

1 , respectively, equal to 2p−r+2b−1F ,φ(bF ,{i}4I +

sbF ,{i,j}4I).

In addition,

det
(
MTM

)
= |F|2(p−r+2)(|S1|+|S2|)det

{(
D2 C3

CT
3 W

)
−

(
CT
1

CT
2

)
D−11

(
C1 C2

)}
.

Corollary 10. Consider a 2r−pIV design F ⊆ Dr, and let its model matrix M be

structured as in Proposition 6. Then, the entries of matrix C1 in equation (6.2)

are all equal to zero. Furthermore,

det
(
MTM

)
= |F|2(p−r+2)(|S1|+|S2|+n2)det

W − (CT
2 CT

3

)(D1 0

0 D2

)−1(
C2

C3

) .

In Proposition 6, the entries of C1 correspond to correlations between main

effects and two-factor interactions, the entries of C2 correspond to correlations

between main effects and CMEs, and the entries of C3 correspond to correlations

between two-factor interactions and CMEs. The off-diagonal entries of W cor-

respond to correlations between CMEs. Proposition 6 and Corollary 10 reduce

D-efficiency calculations to the determinant of a (n1 +n2)× (n1 +n2) matrix for

resolution III designs, and to the determinant of a n1 × n1 matrix for resolution

IV designs. They also facilitate immediate characterizations of the D-efficiencies

for several candidate designs under broad classes of models that involve different

selections of main effects, two-factor interactions, and CMEs. These features of

our results are illustrated in the case study in Section 7.

Example 9. For designs F1 and F2 from Example 2, let S1 = {A1, A2, A3,

A4, A5}, SCME
1 = {Z+

1|4, Z
−
1|5, Z

+
2|3, Z

−
2|4}, and STrad2 contain the functions ZI that

correspond to the main effects and two-factor interactions from S2 = {A6, A7, A8,

A9}. From Corollary 10, the D-efficiencies of these designs with respect to this
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model, which contains a large selection of conditional and traditional effects, are

reduced to determinants of simple 4× 4 matrices. For design F1,

W −
(
CT
2 CT

3

)(D1 0

0 D2

)−1(
C2

C3

)
=

1

8


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,

and thus det
(
MT

1 M1

)
is nonzero. For design F2,

W −
(
CT
2 CT

3

)(D1 0

0 D2

)−1(
C2

C3

)
=

1

8


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 ,

and thus det
(
MT

2 M2

)
is zero, which means this model is not estimable by F2.

7. Practical Application of a CME Analysis

We demonstrate the utility of our algebra for real-world CME analyses

by considering the painted panel experiment of Lorenzen and Anderson (1993,

pp. 242–249). The data for this experiment are provided in the Supplementary

Material. This case study illustrates how our results can reveal the possible

scope of analyses, and the broad equivalencies and subtle differences, for several

candidate designs under the CME system.

The experimenters’ objective was to study the effects of the factors in Table 2

on painted panel film build. The effects thought a priori to be active were all of

the main effects, INT(A7, A8), and INT(A1, A5), with higher-order interactions

assumed to be inert. They selected a 28−3IV design that had INT(A7, A8) and

INT(A1, A5) clear, with defining contrast subgroup {3456, 12457, 2358, 12367,

2468, 13478, 15678}. Three other such designs exist, with defining contrast sub-

groups {1236, 1247, 13458, 3467, 24568, 23578, 15678}, {2467, 2357, 15678, 3456,

12458, 12368, 13478}, and {3468, 1248, 23578, 1236, 24567, 13457, 15678}, respec-

tively (Wu and Hamada (2009, p. 254)). These four designs are denoted by FLA
1 ,

FLA
2 , FLA

3 , and FLA
4 , respectively. We use our algebra to evaluate their prop-

erties under the CME system. This evaluation is important in practice because

additional interactions are typically active, but fully aliased in candidate designs.

Thus, CMEs should be considered to obtain interpretable and conclusive infer-

ences, and the designs’ properties under the CME system should be assessed

to better inform the final design selection. Here, our algebra explains how the
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Table 2. The factors and their levels in the experiment of Lorenzen and Anderson (1993,
pp. 242, 246).

Booth Substrate Fluid Target Booth Base Coat Atomizing Air Fan Air
Humidity Temperature Flow Rate Distance Temperature Temperature Pressure Pressure

A1 A2 A3 A4 A5 A6 A7 A8

70 (+) 100 (+) 20 (+) 15 (+) 90 (+) 85 (+) 50 (+) 50 (+)
50 (−) 70 (−) 0 (−) 12 (−) 70 (−) 65 (−) 40 (−) 40 (−)

chosen design FLA
1 can yield inferences on CMEs corresponding to potentially

active interactions involving the distinct temperature factors (A2, A5, A6) that

are more ambiguous than those of FLA
2 and FLA

4 .

Our results in Section 4 enable immediate comparisons of the partial aliasing

relations for the CMEs in the four designs. Consider the CMEs involving the

temperature factors. Proposition 2 and Corollary 1 yield, in a simple manner,

all correlated CMEs that involve these factors for any of the designs, and that

their absolute correlations are always 1/2, with the sign equal to the product

of their conditioned levels. In FLA
1 and FLA

3 , triples of CMEs involving A2,

A5, and A6 exist that are correlated. Examples in FLA
1 are CME(A2 | A8s8),

CME(A5 | A3s3), and CME(A6 | A4s4), and examples in FLA
3 are CME(A2 |

A7s7), CME(A5 | A3s3), and CME(A6 | A4s4), for s3, s4, s7, s8 ∈ {−,+}. In

contrast, for FLA
2 and FLA

4 , only pairs of CMEs involving these factors exist that

are correlated. Examples in FLA
2 are CME(A2 | A1s1) and CME(A6 | A3s3), and

examples in FLA
4 are CME(A2 | A3s3) and CME(A6 | A1s1), for s1, s3 ∈ {−,+}.

A practical consequence of this difference in partial aliasing relations is that FLA
2

and FLA
4 can yield CME analyses that are more conclusive than those of FLA

1

and FLA
3 when more than one of the temperature factors have active two-factor

interactions.

The combination of our results in Section 5 with the previously identified

partial aliasing relations reveal several properties of the CME families in these

designs. First, from Corollary 9 and the fact that each design has the maximum

number of clear two-factor interactions among 28−3IV designs, the designs all have

the same (and minimum) number of CMEs across their nontrivial families. In

fact, each design has one nontrivial family that contains 12 members, and six

nontrivial families that each contain eight members. Each design also has 13

trivial families (with four members in each). However, FLA
1 and FLA

3 differ

from FLA
2 and FLA

4 in the composition of the families involving temperature

factors. Specifically, FLA
1 and FLA

3 have CMEs involving A2, A5, and A6 in their

respective families of size 12, whereas FLA
2 and FLA

4 have CMEs involving A2
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and A6 just in their families of size eight, and CMEs involving A5 just in their

families of size four. Second, from Proposition 5 and the fact that each design has

minimum aberration among 28−3IV designs, for any exhaustive selection of CMEs,

such that no two involve the same pair of factors, the sums of their respective

absolute correlations and squared correlations among nonsibling CMEs are equal

(and the minimum possible respective values). These sums are 9/2 and 9/4,

respectively. However, FLA
1 and FLA

3 again differ from FLA
2 and FLA

4 in that,

for any such selection, the former two have larger sums of absolute correlations

and squared correlations among nonsibling CMEs that involve the temperature

factors. The sums for FLA
1 and FLA

3 are 3 and 3/2, respectively, whereas the

sums for FLA
2 and FLA

4 are 1 and 1/2, respectively. These results demonstrate

that, although the designs are broadly equivalent in terms of their CME family

structures and aggregate correlations among nonsibling CMEs, they also have

subtle differences related to the CMEs that involve the temperature factors due to

their distinct partial aliasing relations, which are easily derived from our algebra.

These differences again play a role in the CME analysis for FLA
1 in terms of its

robustness to a temperature factor other than A5 having an active two-factor

interaction, and the degree to which conclusions can be drawn on the CMEs of

the other temperature factors.

The results in Section 6 facilitate our understanding of the designs’ D-

efficiencies for models involving CMEs, main effects, and the previously identified

INT(A7, A8) and INT(A1, A5). Let S1 = {A2, A3, A4, A6}, S2 = {A1, A5, A7, A8},
STrad1 = {Z{2}, Z{3}, Z{4}, Z{6}}, and STrad2 = {Z{1}, Z{5}, Z{7}, Z{8}, Z{1,5},
Z{7,8}}. Then, for any of the designs and choice of SCME

1 , matrix C3 in Propo-

sition 6 has all of its entries equal to zero. Thus, det
(
MTM

)
= 2−25det{W−

CT
2 D
−1
1 C2} for the model matrix M , by Corollary 10. This expression can be

readily evaluated to characterize these designs’ D-efficiencies for broad classes

of models. For the first example, suppose SCME
1 = {Zs2|3, Z

s′

2|4, Z
s′′

6|3, Z
s′′′

6|4}, for

s, s′, s′′, s′′′ ∈ {−,+}, which corresponds to CMEs that involve the two tempera-

ture factors other than A5. The D-efficiencies are equal for all of the designs and

choices of the conditioned levels, thus reducing to the single calculation

det
(
MTM

)
= 2−25det


1

8


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 .

For the second example, consider SCME
1 = {Zsi|j , Z

s′

i|k, Z
s′′

i|l }, for distinct Ai, Aj ,
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Ak, Al ∈ S1 and s, s′, s′′ ∈ {−,+}. The designs’ D-efficiencies are again equal,

and immediately reduce to the determinants of 3 × 3 matrices with the same

structure for each such selection of CMEs. To illustrate, if i = 2, j = 3, k = 4,

and l = 6, then det
(
MTM

)
= 2−34 for any of the designs and conditioned levels.

The ease with which these broad D-efficiency characterizations were obtained

further highlights the significance of our algebra for practical applications.

We now perform a CME analysis of the chosen design FLA
1 . The experi-

menters conducted an ANOVA test and concluded that the following were active:

ME(A1), ME(A2), ME(A3), ME(A4), ME(A5), ME(A8), INT(A4, A7), and one

or more of INT(A2, A8), INT(A3, A5), and INT(A4, A6) (Lorenzen and Anderson

(1993, pp. 246–248)). More conclusive inferences on the last set of two-factor

interactions cannot be obtained from the traditional analysis because they are

all fully aliased in the chosen design. For the corresponding CMEs, we have

from our previous results that FLA
2 and FLA

4 are the preferable designs, because

they can more easily resolve the ambiguity related to which temperature factors

have significant effects beyond the main effects. To complete the CME analysis

of this experiment, we use the three rules in the method of Su and Wu (2017,

pp. 5–6), concluding that CME(A2 | A8−) is significant. Details of the analysis

are provided in the Supplementary Material. Thus, we obtain interpretable, final

conclusions from the CME analysis that substrate temperature affects film build

at low air pressure, but not high air pressure, and that, contrary to the exper-

imenters’ prior knowledge, booth temperature has no significant effects beyond

its main effect.

8. Conclusion

As recognized by Wu (2018), an important theme for modern experimental

design is the consideration of parameterizations for factorial effects that better

address real-life problems than more traditional systems. This study underscores

that theme. We developed an accessible algebra for the CME system that facili-

tates the derivation of general results and properties for broad types of two-level

designs and models consisting of multiple conditional and traditional effects. The

framework for our algebra is based on indicator functions. Our work is distinct

from previous studies on indicator functions, such as those of Fontana, Pistone

and Rogantin (2000), Ye (2003), and Ye (2004), because they only consider ap-

plying indicator functions to derive design properties under traditional effects,

whereas we consider their applications using our inner product in Definition 8,
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under both conditional and traditional effects. Our study of partial aliasing rela-

tions, design criteria, and D-efficiency calculations using our algebra conclusively

demonstrates its advantages. It enables an unrestricted approach to understand-

ing two-level designs under the CME system, with no limits on the designs or

on their effects. The algebra provides concise, simple calculations of design char-

acteristics, based on a small selection of indicator function coefficients. These

points are further supported by our case study, which highlights both the useful-

ness of our algebra and a key advantage of CMEs as interpretable effects in many

applications. A more general lesson of the case study is that our algebra enables

easier comparisons of several large candidate designs under the CME system, and

thus choices that are better informed.

Supplementary Material

The online Supplementary Material contains detailed proofs for the results in

Sections 4, 5, and 6, and extended data analyses for the painted panel experiment

in Section 7.
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83, 653–666.

Su, H. and Wu, C. F. J. (2017). CME Analysis: a new method for unraveling aliased effects in

two-level fractional factorial experiments. Journal of Quality Technology 49, 1–10.

Wu, C.-F. J. (2015). Post-Fisherian experimentation: from physical to virtual. Journal of the

American Statistical Association 110, 612–620.

Wu, C.-F. J. (2018). A fresh look at effect aliasing and interactions: some new wine in old

bottles. Annals of the Institute of Statistical Mathematics 70, 249–268.

Wu, C.-F. J. and Hamada, M. S. (2009). Experiments: Planning, Analysis, and Optimization,

2nd Edition. Wiley Series in Probability and Statistics. Wiley.

Ye, K. Q. (2003). Indicator function and its application in two-level factorial designs. The Annals

of Statistics 31, 984–994.

Ye, K. Q. (2004). A note on regular fractional factorial designs. Statistica Sinica 14, 1069–1074.

Department of Statistics, Purdue University, West Lafayette, IN 47907, USA.

E-mail: sabbaghi@purdue.edu

(Received January 2018; accepted June 2018)

mailto:sabbaghi@purdue.edu

	Introduction
	Review of the CME System
	Indicator Functions and the Inner Product for the CME System
	Partial Aliasing Relations Under the CME System
	Traditional Design Criteria and CMEs in Resolution IV Designs
	D-Efficiency Under the CME System
	Practical Application of a CME Analysis
	Conclusion

