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S1. Proof of Proposition 1

Proof. 1t is easy to verify that Y; = I(Y* > 0)Y;* = I(Y; > 0)Y;, where I(-)
is the indicator function. Then, the proof follows by a routine calculation

as

E(Y|X]'B8) = E{YiI(Y;>0)|X] 5} = B{YI(Y] > 0)|X] 5}

m(X," B)
- / (m(XTB) — e} f(e:)des

m(X;" )

= X HFmOTH) - [ af(a)de

—0o0

= m(X]HFm(X]8) ~ {aF(e) T(ﬂf?m_/mxmp(@)d@}

m(X; )

—0o0
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S2. Proof of Theorem 1

Liang et al.| (2010) considered model
Y, =r(X,'B)+Z a4 e,i=1,2,...,n, (S2.1)

and our model can be expressed as a special case of model , with
a=0,e = —¢ and r(u) = w o m(u), where w(t) = ffoo F(e)de. To prove
Theorem 1, we only need to verify the assumptions for their Theorem 1.
Under our Assumptions A.1-A.4, we can easily verify Conditions (i)-(v) in
Liang et al. (2010), and we don’t need their condition (vi) since we use the

Moore-Penrose inverse of the matrix Wj.

S3. Proof of Theorem 2

Before presenting the proof of Theorem 2, we prove three lemmas to facili-
tate the proof. Lemma [l|is used to prove Lemma [2| which is used to prove
Lemma 3

By using the profile least-squares principle and applying Theorem 1, we
can obtain a root—n consistent estimator B of By. Thus, all calculations in
this section, unless stated otherwise, correspond to v = z' 3, + € Dx and

BE O, ={B:|8—Pol| < con ?} for some ¢y > 0; similar justification
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can be found in Zhu and Xue| (2006]) and Wang et al. (2010). We define

Woi(t: B) = K, (r(X;" 8) — 0)[Sna(t; B, ha) — {r(X,B) — t}Sn1(t; B, ha)]
s Sno(t; B, ha)Sna(t; B, ha) — SE 1 (t; B, ha) ’

where S, 1(t; 8, ha) = 377 {r(X}' 8) — t} K, (r(X] B) —t) for I =0, 1,2.

Lemma 1. Suppose Assumptions A.1- A.4 hold, and r(-) is a known func-

tion. Then, fori—=1,...,,n, = € Dx and 8 € ©,,, we have
{7 ) = W0 g a5 ) = 01
B{ar(a78) = Y Wilrta” 8y tr (KT ) = 08,
5 gvvﬁj(rwx 8)} = Ol(nt) ™),

Proof. Under Assumptions A.1-A.4, the Conditions C4, Cy, C5(i) of [Wang
et al.| (2010) and Conditions 1-3 of |Zhu and Xue, (2006]) are satisfied. Since
here r(-) is assumed to be known, proof then follows by simply replacing

T, = X' B with T; = r(X,;' 8) in Lemmas 1 and 2 of Zhu and Xue| (2006). [

Lemma 2. Suppose Assumptions A.1-A.4 hold, and r(-) is a known func-

tion. Then, for 8 € ©.,, we have
Elg(r(X] 8);r(), 8) — a(r(X; B))| = O(h3 + (nhy)™'2), i = 1,...,n.

Proof. When r(-) is known, by a routine calculation, we have that, Yu =
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x'p, > iy Waj(r(u); 8) = 1, and
Qr(XTB)ir(), 8) = > Wiy (r(X[ 8); B)I(Y; > 0).
j=1
Let I(Y; > 0) = q(r(X," o)) + €, where ¢; is the error term in second stage

estimation for ¢(-). By Assumption A.2(iii), e? is bounded. For notational

convenience, we define u; = X" 8,u;0 = X;' o, i =1,..., n. Then,

q(r(ui);r(-), B) — q(r(w)) = Z Wi (r(ui); B)I(Y; > 0) — q(r(us))

n

= > Wi (r(w); B){a(r(ujo) + e} — q(r(u;))

= > Wl ) {a(r (o) — alr(u) + ;).
It then follows from Lemma [I] that
B{q(r(wi): ) — alr(u)}
= B[ Waslr(w)i Bt uso0)) — alrw)) + )]

=k Z Wi (r(ua); B){a(r(ujo)) — a(r(ug)) + q(r(u;)) — q(r(u)) + Bj}r

= F {—q(r(ul)) + Z Wi (r(us); B)q(r(uyz))}

= 3 W) O){a(r(w) = (g0} + 3 Wa i) )e,)]

J=1

IN

28{q(r(u)) - Z Wostr(w) B)alr(ws)) ) + 2B 3 Wor(w)iBles )+ 00~

j=1

IN

aihd +2 > B{W2 (r(w); B)e2 } < dihi + dy(nha) ™,
j=1
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where d;, dy are some positive constants. The last second inequality holds
due to the fact that {W,;(r(u;); B)e;,j = 1,...,n} are independent mean
zero random variables given u;, and the last inequality holds because e? is

bounded. Using Cauchy-Schwarz inequality, Lemma 2 is proved. O]

Lemma 3. Under the assumptions of Lemma|[3, we have

E) /AT - q > T’ﬁ ds‘ = O(h2 + (nhy)~Y2).

Proof. Noticing that inf,cq ¢(r(u)) > 0 and using Lemma , we have

o [ e = [
:/ /ID Srﬁ‘fx \dds

mf o / / . i(s; . B)\ fx (x)dads

] /M)E|q< ) = (s, B)lds

srﬁ‘de

1
< ————O(h% + (nhy)~/?
= infs QQ(S)O( 2 (n ) )
where inf, ¢*(s) is taken over s = r(u) for u € Q. O

Proof of Theorem 2. By Theorems 2 and 3 of Lewbel and Linton| (2002),
if sup.cq, (€) < sup, 7(u) = A, where the superium is taken over {u : u =

1" B,z € Dx}, m(u) can be written as
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In general, without the assumption above, m(u) can be written as

o
m(u) = ko + A\ — / —ds.
r(u) Q(S)
We can see that the only difference is the constant ky. In what follows, we

use the form without kg as |Lewbel and Linton| (2002).

Note that

. o g
m(u) —m(u) = A\ — A\ + / ——ds — / —ds

r(u) 9(8) (w 4(3)

. ) g g
= A=A\ +/ —ds +/ ——ds —/ —ds. (53.2)
r(u) q(s) () q(s) #(u) q(s)

By Taylor expansion of ¢(-) around r(u), we have

/rf(u) Lds _ /T::) [q(rl B q'(r(u)) {s —r(u)}+O0{s — T(u)}Z} ds

w 4(8) () q2(r(u))
_ 1 r(u) —r(u _M'f’U—TU2 f’U—Tu?’
- q(r(u)){ (u) —r(u)} 2q2(7"(u)){ (u) = r(u)}* + O{F(u) — r(u)}?.(S3.3)

By Taylor expansion of §(-) around A, we have

/xr L /A{ 1 _?;(Ar)(s_)\T)JrO(S_)\T)?}dS

q(s) qaAr)  @*(A\)
-~ q(L) (A=A — 2‘22(—?))@ — A+ 00 = \)°
= o=+ S O
—2‘2;(&3) A = A2+ 00 = \)° (S3.4)
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+O{#(u) — r(u)}® —

YAl — )P gD =) 5 A0 5 e
o @@ T ey AT F gyt )

h+T+T3+Ty+T5+ 16+ T7 + Tz + To,

_|_

where 7(u) is some value between 7 (u) and r(u), and \ is some value between

5\r and A,

We first consider Ty, k = 1,...,4. Since ¢(\,) = 1 by Assumption A.1,

we have 77 = 0. For T3, similar to Theorem 1 in (Carroll et al.| (1997), we

have

Vi {7, = St b 2 {00250} (535

where so(u) = q(r(u)) and ko is some constant. Since T3 and T} are higher

orders of #(u) — 7(u), thus both of them are o,(h? + (nhy)~%/2).

Now we turn to Ty, k = 5,...,9. Define ¢(s) = ¢(s; 7, 3) as the estima-

tor of ¢(-) evaluated at s, ¢(s; 7, B) as the estimator given r(-), and ¢(s;r, o)

as the estimator given r(-) and 5y. We decompose ¢(s;7, 3) — q(s) as

q(s;7,8) —q(s) = 4(s; 7, B) — q4(s;r, B) +q(s;r, B) — q(s).

By Markov inequality, Lemma 3 indicates that [’ oo aeier ) g g — O (nhy) V24

(W) ()
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h3), and thus

[ als) = (s, B) M q(s;r, B) = q(s; 7, B)
fo = /r(u) ¢*(s) d8+/r(u) q*(s) s

= Op(hi + (nh2)™'%) + Op(h3) = Op(h3 + (nhy)™'7?),  (S3.6)

where the order of f (T %(q)”’ﬁ)ds follows from Lemmas 2 and 3 and

Theorem 5 in Lewbel and Linton| (2002)). By Lemma 2 of Lewbel and Linton|

(2002), Var(Ts) = Op(1/n).

By Lemma 1 of Ichimura/ (1993), we have that sup,, |¢(r(u))—q¢(r(u); r, 8)| =

0p(1). By (26) and Theorem 5 of [Lewbel and Linton (2002), we have

sup,, [q(r(u);r, B)=q(r(u); 7, B)| = 0p(1). Thus, sup, |q(r(u))—q(F(u); 7, B)| =
0,(1), where the supreme is taken over u = ' 3,2 € Dx and 3 € O,,.

Then,

o @) —q(r(w) H{r(w) —rw)} _ 0p(1)Op(P3 + (nhy)~/?)
° q(7(u))q(r(u)) ¢*(7(u))(1 + 0p(1))
= 0y(h] + (nh1)'?),

- ( o ?<(>)}2d5</ () R STreTR e

< / o

< T%(l)op(h2 (nha)” 1/2) = 0,(h3 + (nhy) %),
1y = A el OR T o+ k) 1),
Ty = 70) (A = A)? = 0,(h2 + (nhy)~Y2).
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In summary, Ty + T3 + Ty +T5 + Ty + Tz + Ty = 0,(h? + (nhy)~/?) under
Assumption A.3 (ii), and together with (S3.5)-(S3.6)), the proof of Theorem

2 is completed, and the bounded function b,,(+) is determined by 75 and Tg.

S4. Proof of Theorem 3

We first present two lemmas for proving Theorem 3.

TBo—XT
Lemma 4. Under Assumptions A.1-A./, suppose that f € O,,, then K(w)/h—

K(w)/h = O(n~1/?),

Proof. By the mean value theorem, we have

1K<X@T50 —X]-Tﬁo> 1K(X1~T5—XJT5>

}1L /XJB*?—XTW* hXiTﬂo—XhTﬂo X'B—X/p
:EK( hj>< TR h])’

where §** is some value between 3y and 5. By Assumption A.4, there exists
a constant L, such that K'(s) < Cy|s|~2 for some constant C; when s > L.

Then we bound the difference in two cases.

**7XTﬁ**
J

Case 1. When |X’Tﬁ+| > L,
)1K<Xfﬁo—Xfﬂo) - lK(XiTﬂ_XJT5>‘
h h h h
_ lK,(Xfﬂ**—XjTﬁ**MXfﬁo—Xfﬁo_XW—XW‘
h h h h
1 X@TB** _XTB** ")) B
< lal[ = o)

IN

O(n~1?).
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XlTﬂ**_X]Tﬂ**

Case 2. When -

| < L < oo, since the support of X is

bounded, it implies that § < C' < 0o or |X;"** — X7 **| = 0 (this implies

/

K'(0) = 0). Thus,

1 /X8y — X 1/ XTp—XT
G (PR (R
h h h h
) E)K,<Xfﬁ**—Xf5**)HXfﬁo—X]Bo B X?B—X]TB’
h h h h
= O(n~Y?).
Result follows from Cases 1 and 2. O

Lemma 5. (Theorem 1; Hall, 1984) Let Z;,i = 1,2,...,,n be i.i.d ran-
dom wectors, for each n, and let U, = 3 icic, Hu(Zis Zj), My(z,y) =
E{H,(Z1,z)H,(Z1,y)}, where H, is a sequence of measurable function-
s symmetric under permutation, with E{H,(Z1,Z5|Z1)} = 0 a.s. and
E(H*(Zy,7Z,)) < 00, for eachn > 1. If {EMZ*(Zy, Zo)+n " *HX(Z,, Z5)} ) EH?(Zy, Z5) —
0, then U, /n is asymptotically normal distributed with mean zero and vari-

ance EH?(Zy, Zs).

Proof of Theorem 3. We first investigate the asymptotic property of V..
Recall the definition ro(u) = ff(;:cw ®(e/o)de in Section 2.4 of the
main part. To reflect the dependence of r on o, we rewrite the definition

as ro(u,0) = ffﬁjglu ®(e/o)de. Let €; = Y; — ro(X; By, o). Then

& = e —{ro(X;B,5) —ro(X; Bo, o)} (S4.7)
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Thus, we can write V,, as the sum of the following three terms.

]. XZT _X]TB 7

Vi = R K e
1 X'B8-X]8., .

‘/'2” = M;K(T)EZ{To(X;ﬂ,U)—To(XjTﬁo,O')}
1 X B—X]p .

Van = m%K(T){TO(X@T ;&) = 10(X; Bo, o)}

{ro(X;'B8,6) — ro(X] Bo,0)}.

We establish the asymptotic property of Vi,, V5, and V3, separately. For
convenience, we define terms V5;, and V3, by replacing 5 by 5 in Vs, and

Van.

Define Z; = (X]8,¢), and let H,(Z:, Z;) = K(w)e;e;. Tt
can be seen that E{H, (721, Z2|Z1)} = 0 (first take expectation conditional
on Z, and then on ¢) and E{H2(Z,, Z5|Z1)} < oo for each n, as ¢, has
finite second moment. Define M, (z,y) = E{H,(Z1,x)H,(Z1,y)}. Letting
U = XT3, and following the results of Theorem 3.1 in Koul et al.| (2014,

we have

E{M3(Zy,Z5)}
= E[E{H,(Zs, ) Hn(Zs, Z2)}(Z1, Zo))?

- H (B (e,
e [ & (KT8 XT0 (K6 X 8

- €169 h

) (XTB) o (X B}
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= e[ [ (R (B e g v )|

< iE[E’fe’zz{/K(XgTﬁo;XIBO)K(XJBO;X;@))

—=)

_ iE[E?E';{/K(XJﬁo;Hﬁo)K(XJﬁo
+0(0)

= O(1/h) + O(

(X B0 fu (X o)U } |

- X2T50>

- (X0 fu (X o)u } |

7

E{H.(Z1, Z)}

= m (PR = n e (R )
_ Eﬁo{}szz(XTﬁth B)ere ’}+0(\m) O(1/h) + O

=)
Vnh'
Similarly,
XTB—XIB\ , 4
e )6162}

Ta vl o
K4(X1 »BOth 50) 4 4}+O(\/_h3>

).

E{HNZ\,Z,)} = Eﬁ{%K

-
)

1

1
= O(3;) +

Thus,

EM2(Zy, Z,) + n"YHY(Z1, Z,)  O(1/h) + O(1/nh?)

E{H2(Z1, Z5)) = owmw Y

These results indicate that nh'/2V;, — N(0,~?). Furthermore,

X'B-
Vol € g SR (T 2 Y (X7 5.) (X )
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[Van|

IN

IN

XT3 XTﬁ XTB— X7
n—lhz{< - 0>+K< I )

>}|€¢||7”0(X;50, G) — TO(X]-TBO, o){1+ Op(n_1/2)}
Xi' o — X]‘Tﬁo

n(nil)hZK< : h

X 6-x!s X[ Bo— X[ B
n—lhz‘ <—) K( Oh 0)

|TO(X] 507 )

‘/étz{l + Op(n_1/2

)Iro(X B, ) = ro(X] o, 0)lles {1+ Op(n™/2)}

!
‘€i|

(XTﬁo, o){1 + Op(n~"%)}

n=2)op(n ) |E{1 + Op(n1/2)}

Iro(XTﬁ, )—To(X Bo, 0)]

n_th{ (X Bo — X; ﬁo>+K<XiT5—XjT5>_K<X¢T50—Xfﬁo>}

X |T0<X B(), )

h h

TO(XTﬂm )HTO(XJ'Tﬁo, g) — TO(XJ.TBO, o) {1+ 0, (n?)}?

X B — X/
n—l hz ( ﬁo %)'m(XjTﬁo’&)

—ro(X] B, )||7‘0(XT507 )—TO(XTﬁov o) {1+ Op(n 1)}’

n(n —1) hz‘

(-

XTﬁ) K<X¢T50

)

x|ro(X Bo, 0 ) —ro(X] fo, )|{1 +Op(n~'*)}?

Vil + Oy(n~'/?

}2

Op(n™ ') {1 + Oy(n~'12)}?
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= 0,(1/n).

These calculations imply that nh'/2V,, = 0,(1) and nh'/2Vs, = o,(1). It

then follows that

nh?V,, — N(0,~?). (S4.8)

Now we discuss the asymptotic property of our estimator 42. It follows

similarly to the proof to derive the asymptotic property of V,, that

# = S ) e () (B

h h
X€’2*A;2*
_ n_l ;KQ(XTﬁo Xﬁo) l2/2{1—|—0( 1/2)}2
X;'B-X]p X o — X 5 X' Bo— X[ 5
+ n—lhz{ (—> K( Oh 0)}K< Oh 0)

X, e {1+O( —1/2)2

X 8-X]p X[ B — X8
* n—lhz{ <—> K( Oh 0>}2

Thus, 42 = 72 + O,(n"*/2). We have a consistent estimator of ~2.

Theorem 3 then follows from (S4.8§]).
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