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Abstract: The de facto standard approach of promoting sparsity by means of `1-

regularization becomes ineffective in the presence of simplex constraints, that is,

when the target is known to have non-negative entries summing to a given con-

stant. The situation is analogous for the use of nuclear norm regularization for the

low-rank recovery of Hermitian positive semidefinite matrices with a given trace.

In the present paper, we discuss several strategies to deal with this situation, from

simple to more complex. First, we consider empirical risk minimization (ERM),

which has similar theoretical properties w.r.t. prediction and `2-estimation error

as `1-regularization. In light of this, we argue that ERM combined with a sub-

sequent sparsification step (e.g., thresholding) represents a sound alternative to

the heuristic of using `1-regularization after dropping the sum constraint and the

subsequent normalization. Next, we show that any sparsity-promoting regularizer

under simplex constraints cannot be convex. A novel sparsity-promoting regular-

ization scheme based on the inverse or negative of the squared `2-norm is proposed,

which avoids the shortcomings of various alternative methods from the literature.

Our approach naturally extends to Hermitian positive semidefinite matrices with a

given trace.

Key words and phrases: D.C. programming, density matrices of quantum systems,

estimation of mixture proportions, simplex constraints, sparsity.

1. Introduction

In this paper, we study the case in which the parameter of interest β∗ is

sparse and non-negative with a known sum, i.e., β∗ ∈ c∆p ∩ Bp0(s), where, for

c > 0 and 1 ≤ s ≤ p, c∆p = {β ∈ Rp+ : 1>β = c} is the (scaled) canonical

simplex in Rp, Bp0(s) = {β ∈ Rp : ‖β‖0 ≤ s}, and ‖β‖0 = |S(β)| = |{j : βj 6= 0}|
is referred to as the `0-norm (the cardinality of the support S(β)). Unlike the

constant c, the sparsity level s is regarded as unknown. The specific value of

c is not essential; in the sequel, we shall work with c = 1, as for all problem

instances studied herein, the data can be re-scaled accordingly. The elements of

∆p = {β ∈ Rp+ : 1>β = 1} can represent probability distributions over p items,

proportions, or normalized weights. The following are examples of quantities
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that arise frequently in contemporary data analyses:

• Estimation of proportions. Specific examples include determining the pro-

portions of chemical constituents in a given sample and endmember com-

position of pixels in hyperspectral imaging (Keshava (2003)).

• Probability density estimation, cf. Bunea et al. (2010). Let (Z,A, P ) be

a probability space, with P having a density f w.r.t. some dominating

measure ν. Given a sample {Zi}ni=1
i.i.d.∼ P and a dictionary {φj}pj=1 of

densities (w.r.t. ν), the goal is to find a mixture density φβ =
∑p

j=1 βjφj
that well approximates f , where β ∈ ∆p.

• Convex aggregation/ensemble learning. The following problem has attracted

much interest in the field of non-parametric estimation; see Nemirovski

(2000). Let f be the target in a regression/classification problem, and let

{φj}pj=1 be an ensemble of regressors/classifiers. The goal is to approximate

f by a convex combination of {φj}pj=1.

• Markowitz portfolios (Markowitz (1952)) without short positions. Given

assets with expected returns r = (rj)
p
j=1 and covariance Σ, the goal is to

invest according to proportions β ∈ ∆p s.t. the variance β>Σβ is minimized,

subject to a lower bound on the expected return β>r.

Sparsity is often prevalent or desired in these applications.

• In hyperspectral imaging, a single pixel usually contains few endmembers.

• In density estimation, the underlying density may be concentrated in certain

regions of the sample space.

• In aggregation, it is common to work with a large ensemble to improve the

approximation capacity, although specific functions may be well approxi-

mated by just a few members of the ensemble.

• Portfolios involving only few assets incur less transaction costs and are easier

to manage.

At the same time, promoting sparsity in the presence of the constraint β ∈ ∆p

appears to be more difficult, as `1-regularization no longer serves this purpose.

As clarified in §2, the naive approach of employing `1-regularization and drop-

ping the sum constraint results in discarded information. The situation is sim-

ilar for nuclear norm regularization and low-rank matrices that are Hermitian
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positive semidefinite, with a fixed trace. For example, this arises in quan-

tum state tomography (Gross et al. (2010)) when the constraint set results as

∆m = {B ∈ Cm×m : B = BH , B � 0, tr(B) = 1}, with H denoting conju-

gate transposition. Thus, the presence of simplex constraints and their matrix

counterparts require that we use different strategies to deal with sparsity and

low-rankedness. Here, we propose strategies that are statistically sound, straight-

forward to implement, adaptive, in the sense that the sparsity level s (resp., the

rank in the matrix case) is not required to be known, and work with a minimum

amount of hyperparameter tuning.

Related work. The problem outlined above is discussed well by Kyrillidis et al.

(2013). They consider the sparsity level s to be known, and suggest dealing with

the constraint set ∆p
0(s) = ∆p ∩ Bp0(s) by projected gradient descent based on a

near-linear time algorithm used to compute the projection. This approach can be

viewed as a natural extension of iterative hard thresholding (IHT, Blumensath

and Davies (2009); Shen and Li (2018)).

Pilanci, Ghaoui and Chandrasekaran (2012) suggest using the regularizer

β 7→ 1/ ‖β‖∞ to promote sparsity on ∆p. In addition, they show that in the case

of squared loss, the resulting nonconvex optimization problem can be reduced

to p second-order cone programs. In practice, however, the computational cost

quickly becomes prohibitive, particularly when combined with the tuning of the

regularization parameter.

Relevant prior studies include the works of Larsson and Ugander (2011) and

Shashanka, Raj and Smaragdis (2008), who discuss the aforementioned problem

in the context of latent variable models for image and bag-of-words data. Larsson

and Ugander (2011) propose a so-called pseudo-Dirichlet prior, akin to the log-

penalty in Candes, Wakin and Boyd (2007). Shashanka, Raj and Smaragdis

(2008) suggest using Shannon entropy as a regularizer. A conceptually different

approach is pursued in Jojic, Saria and Koller (2011). Instead of the usual loss

+ `1-norm formulation with the `1-norm arising as the convex envelope of the

`0-norm on the unit `∞-ball, the authors work with the convex envelope of the

loss + `0-norm.

Finally, it is worth mentioning a line of research on sparse regression under

linear inequality or equality constraints. Here, relevant works include those of

James, Paulson and Rusmevichientong (2015), Lin et al. (2014), and Shi, Zhang

and Li (2016). Meinshausen (2013) and Slawski and Hein (2013) study the case

in which the constraint set is the non-negative orthant. It is shown that, under

specific conditions, this constraint has similar effects to those of `1-regularization.
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With simplex constraints, this effect applies more broadly, as discussed in §2.

Outline and contributions. As a preliminary step, we provide a brief analysis

of high-dimensional estimations under simplex constraints in §2. Such analyses

provide valuable insights when designing sparsity-promoting schemes. Note that

empirical risk minimization (ERM) and the elements of ∆p contained in a “high

confidence set” for β∗ (a construction inspired by the Dantzig selector of Candes

and Tao (2007)) already enjoy nice statistical guarantees, including adaptation

to sparsity under a restricted strong convexity condition that is weaker than

that in Negahban et al. (2012). Next, we discuss strategies to improve on ERM,

particularly with respect to the sparsity of the solution and support recovery.

As a basic strategy, we consider simple two-stage procedures, thresholding and

reweighted `1-regularization on top of ERM (see §3).

As an alternative, we propose a novel regularization-based scheme in §4, in

which β 7→ 1/ ‖β‖22 serves as a relaxation of the `0-norm on ∆p. This regularizer

naturally extends to the case of positive semidefinite Hermitian matrices of unit

trace, as discussed in §5. On the optimization side, the approach can be imple-

mented using difference-of-convex (DC) programming (Pham Dinh and Le Thi

(1997)). Unlike other forms of concave regularization, such as the SCAD, capped

`1, or MCP penalties (Zhang and Zhang (2013)) no parameter other than the reg-

ularization parameter needs to be specified. For this purpose, we employ a generic

BIC-type criterion (Schwarz (1978); Kim, Kwon and Choi (2012)) with the aim

of selecting the correct model (resp., rank, in the matrix case). The Supplemen-

tary Material (Li, Rangapuram and Slawski (2018)) contains all proofs, as well

as numerical experiments on compressed sensing, density estimation, portfolio

optimization and quantum state tomography that demonstrate the effectiveness

of both the two-stage procedures and the regularization-based approach. The

following orgchart provides a quick overview of the organization of the paper.

§2-§4 Sparse vectors

§2 Empirical Risk Minimization

§3 Two-stage procedures §4 Regularization with the negative ℓ2-norm

Optimization

§5 Low-rank matrices
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Notation. For the convenience of readers, we first present the essential notation.

We denote ‖·‖q for q ∈ [0,∞], as the usual `q-norm or the Schatten `q-norm,

depending on the context, and 〈·, ·〉 as the usual Euclidean inner product. We

use | · | for the cardinality of a set. The support of v ∈ Rd is denoted by S(v) =

{j : vj 6= 0}. For J ⊆ {1, . . . , d}, we let vJ = (vj)j∈J . We write I(·) for the

indicator function. We denote {e1, . . . , ed} as the canonical basis of Rd. For

A ⊆ Rd, ΠA : Rd → A denotes the Euclidean projection on A. For the functions

f(n) and g(n), we write f(n) & g(n) and f(n) . g(n) if f(n) ≥ Cg(n) and

f(n) ≤ Cg(n), respectively, for some constant C > 0. We write f(n) � g(n) if

both f(n) & g(n) and f(n) . g(n). We also use the Landau symbols O(·) and

o(·).

2. Simplex Constraint in High-dimensional Problems: Basic Analysis

Before designing schemes that promote sparsity under the constraint β ∈ ∆p,

it is worth deriving basic performance bounds and establishing adaptivity to

underlying sparsity when only simplex constraints are used for the estimation,

without explicitly enforcing sparse solutions. Note that the constraint β ∈ ∆p

is stronger than the `1-ball constraint, ‖β‖1 ≤ 1. As a result, ERM enjoys

properties known from analyses of (unconstrained) `1-regularized estimations,

including the adaptivity to sparsity under certain conditions. This already sets

a substantial limit on what can be achieved by sparsity-promoting schemes.

Let {Zi}ni=1 be independently and identically distributed (i.i.d.) copies of

a random variable Z following a distribution P on a sample space Z ⊆ Rd.
Let L : Rp × Z → R be a loss function, such that ∀z ∈ Z, L(·, z) is convex

and differentiable. For β ∈ Rp, R(β) = E[L(β, Z)] denotes the expected risk,

and Rn(β) = n−1
∑n

i=1 L(β, Zi) denotes its empirical counterpart. The goal is to

recover β∗ = argminβ∈∆p E[L(β, Z)]. ERM yields β̂ ∈ argminβ∈∆p Rn(β). Figure

1 provides an overview of the key quantities and their relationships.

In addition to ERM, our analysis simultaneously covers all elements of the

set

D(λ) = {β ∈ ∆p : ‖∇Rn(β)‖∞ ≤ λ}, (2.1)

for suitably chosen λ ≥ 0, as discussed below. The construction of D(λ) is in-

spired by the constraint set of the Dantzig selector (Candes and Tao (2007)),

which is extended to general loss functions by Lounici (2008); James and Rad-

chenko (2009); Fan (2013). Elements of D(λ) are shown to have performance

comparable to β̂. The set D(λ) need not be convex, in general. For squared loss,
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∇Rn(β) Rn(β) R(β)

D(λ) ⊆ ∆p

β̃λ β̂ β∗

defines

E[·]

∈

minimizes minimizes

Figure 1. Diagram summarizing the relationships between the quantities employed in
this study.

it becomes a convex polyhedron, which is nonempty as long as λ ≥ λ∗, where

λ∗ = ‖∇Rn(β∗)‖∞. In many settings of interest (cf., Lounici (2008); Negahban

et al. (2012)), it can be shown that

P

(
λ∗ &

√
log(p)

n

)
= o(1) as n→∞. (2.2)

2.1. Excess risk

The first result bounds the excess risk of β̂ and β̃λ, where in what follows,

β̃λ represents an arbitrary element of D(λ) in (2.1).

Proposition 1. For β ∈ Rp, let ψn(β) = Rn(β) − R(β) and ψn(β) = ψn(β) −
ψn(β∗). For r > 0, let Bp1(r;β∗) = {β ∈ Rp : ‖β − β∗‖1 ≤ r} denote the `1-ball

of radius r centered at β∗ and Ψn(r) = sup{|ψn(β)| : β ∈ Bp1(r;β∗)}. We then

have

R(β̂)−R(β∗) ≤ Ψn(‖β̂ − β∗‖1) ≤ Ψn(2),

R(β̃λ)−R(β∗) ≤ Ψn(‖β̃λ − β∗‖1) + λ‖β̃λ − β∗‖1 ≤ Ψn(2) + 2λ.

The excess risk of ERM and points in D(λ) can thus be bounded by con-

trolling Ψn(r), the supremum of the empirical process ψn(β) over all β, with

`1-distance at most r from β∗. This supremum is well studied in the literature

on `1-regularization. For example, for linear regression with a fixed or ran-

dom sub-Gaussian design and sub-Gaussian errors, as well as for a Lipschitz loss

(e.g., logistic loss), it can be shown that (van de Geer (2008))

P

(
Ψn(r) & r

√
log(p)

n

)
= o(1) as n→∞. (2.3)

Using β̂ ∈ ∆p and β̃λ ∈ ∆p, choosing λ � λ∗, and invoking (2.2), Proposition 1
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yields that the excess risk of ERM and points in D(λ) scale as O(
√

log(p)/n).

As a result, ERM and finding a point in D(λ) constitute persistent procedures,

in the sense of Greenshtein and Ritov (2004).

2.2. Adaptation to sparsity

Proposition 1 does not entail further assumptions on β∗ or Rn. In this

subsection, we suppose that β∗ ∈ ∆p
0(s) and that Rn obeys a restricted strong

convexity (RSC) condition, defined as follows. Consider the set

C∆(s) = {δ ∈ Rp : ∃J ⊆ {1, . . . , p}, |J | ≤ s s.t. 1>δJc = −1>δJ , δJc � 0}.
(2.4)

Observe that {β − β∗ : β ∈ ∆p} ⊆ C∆(s). For the next result, we require Rn to

be strongly convex over C∆(s).

Condition 1. We say that the ∆-RSC condition is satisfied for sparsity level

1 ≤ s ≤ p and constant κ > 0 if, for all β ∈ ∆p
0(s) and δ ∈ C∆(s),

Rn(β + δ)−Rn(β)−∇Rn(β)>δ ≥ κ‖δ‖22.
Condition 1 is an adaptation of a condition employed in Negahban et al.

(2012) for the analysis of (unconstrained) `1-regularized ERM. Note that for

squared loss, Condition 1 becomes the restricted eigenvalue condition in Bickel,

Ritov and Tsybakov (2009), the range of validity of which has been investigated

by, among others, Raskutti, Wainwright and Yu (2010); Rudelson and Zhou

(2013); Lecue and Mendelson (2017). Our condition here is weaker, because the

RSC condition in Negahban et al. (2012) is over the larger set

C(α, s) = {δ ∈ Rp : ∃J ⊆ {1, . . . , p}, |J | ≤ s s.t. ‖δJc‖1 ≤ α‖δJ‖1},
for α ≥ 1. We can now state a second set of bounds.

Proposition 2. Let the ∆-RSC condition hold for sparsity level s and κ > 0.

We then have

‖β̂ − β∗‖22 ≤
4sλ2
∗

κ2
, ‖β̃λ − β∗‖22 ≤

4s(λ+ λ∗)
2

κ2
,

‖β̂ − β∗‖1 ≤
4sλ∗
κ

, ‖β̃λ − β∗‖1 ≤
4s(λ+ λ∗)

κ
.

Invoking (2.2) and choosing λ � λ∗, we recover the rates O(s log(p)/n) for

the squared `2-error and O(s
√

log(p)/n) for the `1-error, respectively. Combining

the bounds on the `1-error with (2.3) and Proposition 1, we obtain

R(β̂)−R(β∗) .
s log p

n
, R(β̃λ)−R(β∗) .

s log p

n
.
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The above rates are known to be minimax optimal for the parameter set Bp0(s)

and squared loss (Ye and Zhang (2010)). Thus under the ∆-RSC condition, there

does not seem to be much room for improving over β̂ and β̃λ as far as the `1-error,

`2-error, and excess risk are concerned. An additional advantage of β̂ is that it

does not depend on any hyperparameters.

3. Two-stage Procedures

While β̂ has appealing adaptation properties with regard to underlying spar-

sity, ‖β̂‖0 may be significantly larger than the sparsity level s. Note that the `2-

bound of Proposition 2 yields that S(β̂) ⊇ S(β∗) as long as b∗min & λ∗
√
s, where

b∗min = min{β∗j : j ∈ S(β∗)}. If the aim is an estimator θ̂ that achieves support

recovery, that is, S(θ̂) = S(β∗), β̂ needs to be further sparsified by a suitable

form of post-processing. Here, we consider two schemes, namely thresholding

and weighted `1-regularization:

Stage 1 Stage 2

Compute β̂ thresholding: β̂τ = (β̂j · I(β̂j ≥ τ))1≤j≤p (3.1)

or weighted `1: β̂wλ ∈ argmin
β∈∆p

Rn(β) + λ 〈w, β〉 , (3.2)

where I(·) denotes the indicator function and w = (wj)
p
j=1 are non-negative

weights. We restrict ourselves to the common choice wj = 1/β̂j if β̂j > 0, and

wj = +∞ otherwise (s.t. (β̂wλ )j = 0), for j = 1, . . . , p. Note that weighted `1-

regularization is often referred to as the “adaptive lasso” method (Zou (2006)).

While its primary purpose is model selection, thresholding (3.1) can option-

ally be complemented by a refitting step with fixed support, that is, ERM with

the additional constraints βj = 0 ∀j /∈ S(β̂τ ).

A third approach is to ignore the unit sum constraint first, such that `1-

regularization has a sparsity-promoting effect, and then to divide the output by

its sum as a simple way to satisfy the following constraint:

Stage 1 Stage 2

β̂`1λ ∈ argmin
β∈Rp

+

Rn(β) + λ1>β Normalize: β̂`1λ /(1
>β̂`1λ ). (3.3)

From the point of view of optimization, (3.3) offers several advantages. Non-

negativity constraints alone tend to be easier to handle than simplex constraints.

For projected gradient-type algorithms, the projection on the constraint set be-

comes trivial. Moreover, coordinate descent is applicable because non-negativity
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constraints do not couple several variables (whereas simplex constraints do). Co-

ordinate descent is one of the fastest algorithms for sparse estimation (Friedman,

Hastie and Tibshirani (2010); Mazumder, Friedman and Hastie (2011)), partic-

ularly for large values of λ. On the other hand, from a statistical perspective,

(3.3) is an ad hoc rather than a well-grounded approach. It is advisable to prefer

β̂ because it incorporates all given constraints into the optimization problem,

which leads to a weaker RSC condition and eliminates the need to specify λ ap-

propriately. Indeed, taking a large value of λ in (3.3) in order to obtain a highly

sparse solution increases the bias and may lead to false negatives. In addition,

(3.3) may also lead to false positives if the “irrepresentable condition” (Zhao and

Yu (2006)) is violated. Our experimental results (cf., Supplementary Material,

Li, Rangapuram and Slawski (2018)) confirm that (3.3) has a considerably larger

estimation error than that of ERM.

Model selection. In this paragraph, we briefly discuss a data-driven approach

for selecting the parameters τ and λ in (3.1) and (3.2) when the aim is support

recovery. It suffices to pick τ from T = {β̂j}pj=1, whereas for (3.2), we consider

a finite set Λ ⊂ R+. We first obtain {β̂τ , τ ∈ T} or {β̂wλ , λ ∈ Λ}, and then

select one of the candidate models induced by the support set {S(β̂τ ), τ ∈ T} or

{S(β̂wλ ), λ ∈ Λ}, respectively. Model selection can be performed using a hold-out

data set or an appropriate model selection criterion, such as the RIC in the case

of squared loss (Foster and George (1994)). Specifically, let Zi = (Xi, Yi), for

i = 1, . . . , n, and suppose that

Yi = X>i β
∗ + εi, εi ∼ N(0, σ2), i = 1, . . . , n. (3.4)

Then, for S ⊆ {1, . . . , p}, the RIC is defined as

RIC(S) = min
β∈Rp:βSc=0

1

n

n∑

i=1

(Yi −X>i β)2 +
2σ2 log p

n
|S|. (3.5)

While computationally intractable in general, minimizing (3.5) has been shown to

be model-selection consistent in high-dimensional regimes (Kim, Kwon and Choi

(2012); Zhang and Zhang (2013)). Here, we minimize (3.5) over {S(β̂τ )}τ∈T
or {S(β̂wλ )}λ∈Λ only. The rationale is that support recovery is still achieved

whenever the RIC is satisfied, provided that

S(β∗) ∈ {S(β̂τ )}τ∈T (3.6)

or S(β∗) ∈ {S(β̂wλ )}λ∈Λ. (3.7)
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Condition (3.6) is met if minj∈S(β∗) β̂j > maxj∈S(β∗)c β̂j , which can in turn

be deduced from a bound on ‖β̂ − β∗‖2 (cf., Proposition 2) and a corresponding

lower bound on b∗min = min{β∗j : j ∈ S(β∗)}. For weighted `1-regularization,

(3.7) is implied by a similar, albeit slightly more stringent condition.

Proposition 3. Consider model (3.4) with {Xi}ni=1 deterministic, such that

(1/n)
∑n

i=1X
2
ij = 1 for all j, and β̂wλ in (3.2) with Rn(β) = (1/2n)

∑n
i=1(Yi −

X>i β)2. Then, (3.7) is satisfied with probability at least 1−O(p−1) if

i) min
j∈S(β∗)

β̂j & max
j∈S(β∗)c

β̂j ,

ii) Λ 3 λ s.t. λ = min
j∈S(β∗)

β̂jλ0 with σ

√
log(p)

n
. λ0 . b∗min.

The constants hidden in & and O(·) are provided in the proof of the above

statement.

On a practical note, we point out that consistent model selection based on

the RIC (3.5) presumes knowledge of σ, or an estimator σ̂ obeying at least σ̂ � σ
(Kim, Kwon and Choi (2012)). We refer to Sun and Zhang (2012); Fan, Guo

and Hao (2012); Dicker (2014); Reid, Tibshirani and Friedman (2016) for specific

estimators σ̂.

4. Regularization with the Negative `2-norm

A concern with ERM (optionally followed by a sparsification step) is that

potential prior knowledge about sparsity is not incorporated into the estimation.

The hope is that by taking sparsity into account, the guarantees of §2 can be

improved. In particular, it may be possible to weaken Condition 1.

It turns out that any sparsity-promoting regularizer Ω on ∆p cannot be

convex. To see this, note that if Ω is sparsity-promoting and homogeneous across

coordinates, it should assign strictly smaller values to any of the vertices {ej}pj=1

of ∆p (which are maximally sparse) than to its barycentre (which is maximally

dense); that is,

Ω(ej) < Ω

({e1 + · · ·+ ep}
p

)
, j = 1, . . . , p. (4.1)

However, (4.1) contradicts the convexity of Ω, because by Jensen’s inequality,

Ω

({e1 + · · ·+ ep}
p

)
≤ {Ω(e1) + · · ·+ Ω(ep)}

p
.
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Figure 2. Contours of β 7→ ‖β‖22 (left) and β 7→ ‖β‖∞ (right) on ∆3.

4.1. Approach

For 0 6= β ∈ Rp, consider Ω(β) = ‖β‖21/‖β‖22. Here, Ω can be viewed as

a “robust” measure of sparsity. We have ‖β‖0 ≥ Ω(β), with equality holding

iff {|βj |, j ∈ S(β)} is constant. By “robustness” we mean that Ω is small for

vectors that have few entries of large magnitude, whereas the number of nonzero

elements may be as large as p. From ‖β‖22 ≤ ‖β‖∞‖β‖1, we have the alternative,

Ω(β) = ‖β‖1/‖β‖∞. As ‖β‖1 = 1 ∀β ∈ ∆p, we have

1

‖β‖∞
≤ 1

‖β‖22
≤ ‖β‖0 ∀β ∈ ∆p. (4.2)

The map β 7→ 1/‖β‖∞ is proposed as a sparsity-promoting regularizer on ∆p

by Pilanci, Ghaoui and Chandrasekaran (2012). It yields a looser lower bound

on β 7→ ‖β‖0 than that of the map β 7→ 1/‖β‖22 advocated in the present work.

Both lower bounds are sparsity-promoting on ∆p as indicated by Figure 2.

This lets us propose the following modifications of β̂ and β̃λ, respectively,

β̂`2λ ∈ argmin
β∈∆p

Rn(β)− λ‖β‖22, (4.3)

β̃`2λ ∈ argmin
β∈D(λ)

−‖β‖22, with D(λ) as in (2.1). (4.4)

Note the correspondence of (4.3) / (4.4) on the one hand, and the lasso (resp.,

Dantzig selector) on the other hand.

For (4.3), it appears to be better to use 1/‖β‖22 rather than of −‖β‖22,

given (4.2). Eventually, this becomes a matter of parameterization. Although

β 7→ ‖β‖0 is the canonical measure of sparsity, β 7→ −1/‖β‖0 provides another

measure. It is lower bounded by β 7→ −1/‖β‖22. We prefer the negative over

the inverse, for computational reasons: the optimization problem in (4.3) is a

DC program (Pham Dinh and Le Thi (1997)) and, hence, is more amenable to

optimization. The problem in (4.4) is also a DC program if D(λ) is convex. Note

that for (4.4), minimizing the negative `2-norm is equivalent to minimizing the

inverse `2-norm.
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4.2. Least squares denoising

In order to show that the negative `2-norm combined with simplex con-

straints promotes exactly sparse solutions, we elaborate on (4.3) in the simple

setup of denoising. Let Zi = β∗i + εi, for i = 1, . . . , n = p, where β∗ ∈ ∆n
0 (s)

and {εi}ni=1 represents random noise. We consider squared loss, i.e., L(β, Zi) =

(Zi − β)2, i = 1, . . . , n. This yields the optimization problem

min
β∈∆n

1

n
‖Z− β‖22 − λ‖β‖22, Z = (Zi)

n
i=1. (4.5)

As stated below, (4.5) can be recast as a Euclidean projection of Z/γ on ∆n,

where γ is a function of λ. Using this property, we derive conditions on β∗ and

λ such that β̂`2λ achieves support recovery.

Proposition 4. Consider (4.5) and suppose that z(1) > · · · > z(n), where {z(i)}ni=1

denotes the ordered realizations of {Zi}ni=1. For all λ ≥ 1/n, we have β̂`2λ =(
I(Zi = z(1))

)n
i=1

. For all 0 ≤ λ < 1/n, we have β̂`2λ = argminβ∈∆n‖Z/γ − β‖22,

where γ = 1 − nλ. Moreover, if 2smax1≤i≤n |εi|/n < λ < 1/n and b∗min >

(nλ)/s+ 2 max1≤i≤n |εi|, we have S(β̂`2λ ) = S(β∗).

In particular, for λ = (1 + δ)2smax1≤i≤n |εi|/n, for any δ > 0, the required

lower bound on b∗min becomes 4(1 + δ) max1≤i≤n |εi|. For the sake of reference,

note that in the Gaussian sequence model with εi ∼ N(0, σ2/n) (cf., Johnstone

(2013)), we have max1≤i≤n |εi| �
√

log(n)/n.

The denoising problem (4.5) can be viewed as a least squares regression

problem in which the design matrix is the identity matrix. For general design

matrices, the analysis becomes more difficult, particularly because the optimiza-

tion problem may be neither convex nor concave. In the latter case, the minimum

is attained at one of the vertices of ∆p.

4.3. Optimization

Both (4.3) and (4.4) are nonconvex in general. Furthermore, maximizing the

Euclidean norm over a convex set is NP-hard in general (Pardalos and Vavasis

(1991)). To solve these two problems, we exploit the fact that both objectives

are in DC form, that is, they can be represented as f(β) = g(β) − h(β), with

g and h both being convex. Linearizing −h at a given point yields a convex

majorant of f that is tight at that point. Repeatedly minimizing the majorant

yields an iterative procedure known as the concave-convex procedure (CCCP,

Yuille and Rangarajan (2003)), which falls into the more general framework of
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majorization-minimization (MM) algorithms (Lange, Hunter and Yang (2000)).

When applied to (4.3) and (4.4), this approach yields Algorithm 1.

Algorithm 1

(4.3): minβ∈∆p Rn(β)− λ‖β‖22
Initialization: β0 ∈ ∆p

repeat βk+1 ∈ argminβ∈∆p Rn(β)− 2
〈
βk, β − βk

〉

until Rn(βk+1)− 2
〈
βk, βk+1

〉
= Rn(βk)

(4.4): minβ∈D(λ)−‖β‖22
Initialization: β0 ∈ D(λ)
repeat βk+1 ∈ argminβ∈D(λ)−2

〈
βk, β − βk

〉

until
〈
βk, βk+1 − βk

〉
= 0

For the second part of Algorithm 1 to be practical, we assume that D(λ) is

convex. The above algorithms can be shown to yield strict descent until conver-

gence to a limit point satisfying the first-order optimality condition of problems

(4.3)/(4.4). This is the content of the next proposition.

Proposition 5. Let f denote the objective in (4.3) or (4.4). The elements of

the sequence {βk}k≥0 produced by Algorithm 1 satisfy f(βk+1) < f(βk) until

convergence. Moreover, the limit satisfies the first-order optimality condition of

the respective problem.

An appealing feature of Algorithm 1 is that solving each subproblem in the

repeat step involves only minor modifications to the computational approaches

used for ERM (resp. finding a feasible point in D(λ)). With Rn assumed to be

convex, ERM is a convex optimization problem. If Rn is also smooth, off-the-

shelf algorithms such as interior point methods, projected gradient descent, and

conditional gradient descent (Bertsekas (1999)) can be employed. For common

nonsmooth losses, such as an absolute loss or hinge loss, ERM can be converted

into a linear program. For the squared loss and absolute loss, specialized algo-

rithms are proposed in Vila and Schniter (2014).

When selecting the parameter λ using a grid search, we suggest solving the

associated instances of (4.3)/(4.4) from the smallest to the largest value of λ,

using the solution from the current instance as the initial iterate for the next

one. For the smallest value of λ, we recommend using β̂ and any point from D(λ)

as the initial iterate for (4.3) and (4.4), respectively. Running Algorithm 1 for

formulation (4.4) has the advantage that all iterates are contained in D(λ), and

thus enjoy at least the statistical guarantees of β̃λ derived in §2. According to our
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numerical results, formulation (4.3) achieves better performance (cf., supplement

Li, Rangapuram and Slawski (2018)).

5. Extension to the Matrix Case

As pointed out in the introduction, there is a matrix counterpart to the

aforementioned problem in which the object of interest is a low-rank Hermi-

tian positive semidefinite matrix of unit trace. This set of matrices includes the

density matrices of quantum systems (Nielsen and Chuang (2000)). The task

of reconstructing such density matrices from so-called observables (e.g., noisy

linear measurements) is termed quantum state tomography (Paris and Rehacek

(2004)). In the past few years, quantum state tomography based on Pauli mea-

surements has attracted considerable interest in the field of mathematical signal

processing and statistics (Gross et al. (2010); Gross (2011); Koltchinskii (2011);

Wang (2013); Cai et al. (2016)).

Specifically, the setup we employ throughout this section is as follows. Let

Hm = {B ∈ Cm×m : B = BH} be the Hilbert space of complex Hermitian

matrices with inner product 〈F,G〉 = tr(FG), (F,G) ∈ H×H, and, henceforth,

let ‖·‖q, for 0 ≤ q ≤ ∞, denote the Schatten q-“norm” of a Hermitian matrix,

defined as the `q-norm of its eigenvalues. Here, ‖·‖0 denotes the number of

nonzero eigenvalues, or equivalently, the rank. We suppose that the target B∗ is

contained in ∆m
0 (r) := Bm

0 (r) ∩∆m, where

Bm
0 (r) := {B ∈ Hm : ‖B‖0 ≤ r}, ∆m := {B ∈ Hm : B � 0, tr(B) = 1}.

That is, B∗ is also positive semidefinite, of unit trace, and has rank at most

r. In low-rank matrix recovery, the Schatten 1-norm (typically referred to as

the nuclear norm) is commonly used as a convex surrogate for the rank (Recht,

Fazel and Parillo (2010)). Because the nuclear norm is constant over ∆m, a

different strategy is needed to promote low-rankedness under that constraint. In

the sequel, we carry over our treatment of the vector case to the matrix case.

The analogies are mostly direct; at certain points, however, the matrix case yields

additional complications, as detailed below. For simplicity, we restrict ourselves

to the setup in which Zi = (Xi, Yi) are such that

Yi = 〈Xi, B
∗〉+ εi, εi ∼ N(0, σ2), i = 1, . . . , n, (5.1)

with {Xi}ni=1 ⊂ Hm. Equivalently,

Y = X (B∗) + ε, Y = (Yi)
n
i=1, ε = (εi)

n
i=1,

where X : Hm → Rn is a linear operator defined by (X (B))i = 〈Xi, B〉, B ∈ Hm,
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for i = 1, . . . , n. We consider squared loss; that is, for B ∈ ∆m, the empirical

risk is given by

Rn(B) =
‖Y −X (B)‖22

n
.

Basic estimators. As basic estimators, we consider the empirical risk minimiza-

tion given by B̂ ∈ argminB∈∆m Rn(B), as well as B̃λ, where B̃λ is any point in

the set

D(λ) = {B ∈∆m : ‖∇Rn(B)‖∞ ≤ λ}

=

{
B ∈∆m :

2

n
‖X ?(X (B)− y)‖∞ ≤ λ

}
,

(5.2)

where X ? : Rn → Hm is the adjoint of X . Both B̂ and B̃λ adapt to the rank

of B∗ under a restricted strong convexity condition. For B ∈ Bm
0 (r), let T(B)

be the tangent space of Bm
0 (r) ⊂ Hm at B (see Definition 1 in Supplementary

Material, Li, Rangapuram and Slawski (2018)), and let ΠV denote the projection

on a subspace V of Hm.

Condition 2. We say that the ∆-RSC condition is satisfied for rank r and

constant κ > 0 if ∀Φ ∈ K∆(r), it holds that ‖X (Φ)‖22/n ≥ κ‖Φ‖22, where

K∆(r) = {Φ ∈ Hm : ∃B ∈ Bm
0 (r) s.t.

tr(ΠT(B)⊥(Φ)) = − tr(ΠT(B)Φ) and ΠT(B)⊥(Φ) � 0}.
The ∆-RSC condition is weaker than the corresponding condition employed

in Negahban and Wainwright (2011), which, in turn, is weaker than the matrix

RIP condition (Recht, Fazel and Parillo (2010)). The next statement parallels

Proposition 2, asserting that the constraint B ∈ ∆m alone is strong enough to

take advantage of low-rankedness.

Proposition 6. Suppose that the ∆-RSC condition is satisfied for rank r and

κ > 0. Set λ∗ = 2‖X ?(ε)‖∞/n, where X ? : Rn → Hm is the adjoint of X . We

then have

‖B̂ −B∗‖22 ≤
4sλ2
∗

κ2
, ‖B̃λ −B∗‖22 ≤

4s(λ+ λ∗)
2

κ2
,

‖B̂ −B∗‖1 ≤
4sλ∗
κ

, ‖B̃λ −B∗‖1 ≤
4s(λ+ λ∗)

κ
.

Obtaining solutions of low rank. Although B̂ may have a low estimation error,

its rank can far exceed that of B∗, even though the extra nonzero eigenvalues of B̂

tend to be small. The simplest approach to obtaining solutions of low rank is to
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threshold the spectrum of B̂ = Û Φ̂Û> (the r.h.s. representing the usual spectral

decomposition); that is, B̂τ = Û Φ̂τ Û
>, where Φ̂τ = diag({I(φ̂j ≥ τ) φ̂j}mj=1)

for a threshold τ > 0. Similarly, we may use the following analog to weighted

`1-regularization:

B̂w = Ûdiag({φ̂w,j}mj=1)Û>

with φ̂w ∈ argmin
φ∈∆p

1

n
‖Y −X (Ûdiag({φj}mj=1)Û>)‖22 + λ 〈w, φ〉 , (5.3)

for non-negative weights {wj}mj=1, as in the vector case. Note that the matrix

of eigenvectors Û is kept fixed at the second stage; the optimization is only

over the eigenvalues. Alternatively, we can consider optimization over ∆m, with

regularizer B 7→ ‖B‖w =
∑m

j=1wjφj(B), for eigenvalues φ1(B) ≥ · · · ≥ φm(B) ≥
0 of B, in decreasing order. However, from the point of view of optimization ‖·‖w
poses difficulties, including possible nonconvexity (depending on w).

Regularization with the negative `2-norm. An additional positive aspect about

the regularization scheme proposed in §4 is that it allows a straightforward exten-

sion to the matrix case, including the algorithm used for optimization (Algorithm

1). In contrast, for regularization with the inverse `∞-norm, which can be re-

duced to p convex optimization problems in the vector case, no such reduction

seems to be possible in the matrix case. The analogs of (4.3) and (4.4) are given

by

B̂`2
λ ∈ argmin

B∈∆m

Rn(β)− λ‖B‖22, (5.4)

B̃`2
λ ∈ argmin

B∈D(λ)
−‖B‖22. (5.5)

Algorithm 1 can be employed for optimization mutatis mutandis. In the

vector case and for squared loss, formulations (4.3) and (4.4) are comparable

in terms of their computational requirements: each minimization problem inside

the repeat-loop becomes a quadratic (resp., a linear) program, with a comparable

number of variables/constraints. In the matrix case, however, (5.4) appears to

be preferable because the subproblems are better suited to the proximal gradient

method. In contrast, the constraint set in (5.5) requires a more sophisticated

approach.

Denoising. Negative `2-regularization, together with the constraint set ∆m en-

forces a solution of low rank, as exemplified here in the special case of denoising
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of a real-valued matrix (i.e., B∗ ∈ Hm∩Rm×m) contaminated by Gaussian noise.

Specifically, the sampling operator X (·) = (〈Xi, ·〉)ni=1, for n = m(m + 1)/2, is

equal to the symmetric vectorization operator; that is

X1 = e1e
>
1 , X2 =

e1e
>
2 + e2e

>
1√

2
, . . . , Xm =

e1e
>
m + eme

>
1√

2
, Xm+1 = e2e

>
2 , . . . ,

X2m−1 =
e2e
>
m + eme

>
2√

2
, . . . , Xm(m+1)/2 =

em−1e
>
m + eme

>
m−1√

2
. (5.6)

The following proposition uses a result in random matrix theory of Peng (2012).

Proposition 7. Let B∗ ∈ ∆m
0 (r) ∩ Rm×m with eigenvalues φ∗1 ≥ · · · ≥ φ∗r > 0

and φ∗r+1 = · · · = φ∗m = 0, let X be defined according to (5.6), and let ε ∼
N(0, σ2Im/m), Y = X (B∗) + ε. Consider the optimization problem

min
B∈∆m

1

n
‖Y −X (B)‖22 − λ‖B‖22,

with minimizer B̂`2
λ , and define Υ = B∗ + X ?(ε). Then, for all λ ≥ 1/n, we

have B̂`2
λ = u1u

>
1 , where u1 is the eigenvector of Υ corresponding to its largest

eigenvalue. For all 0 ≤ λ < 1/n, we have B̂`2
λ = argminB∈∆m‖Υ/γ−B‖22, where

γ = 1 − nλ. Moreover, there exist constants c0, c, C > 0 so that if r < c0m,

λ ≥ 6σr/n, and φ∗r ≥ 5σ + nλ/r, we have ‖B̂`2
λ ‖0 = r, with probability at least

1− C exp(−cm).

In particular, for λ = (1 + δ)6σr/n for some δ > 0, the required lower bound

on φ∗r becomes 11(1+δ)σ, which is proportional to the noise level of the problem,

as follows from the proof of the proposition.

6. Conclusion

Simplex constraints are beneficial in high-dimensional estimations, empiri-

cally achieving lower estimation errors than when using `1-norm regularization

in place of the constraint. In order to enhance the sparsity of the solution,

simple two-stage methods (i.e., thresholding and weighted `1-regularization) are

effective. A more principled way to incorporate sparsity is to use a suitable regu-

larizer. We have pointed out that under simplex constraints, sparsity cannot be

promoted by convex regularizers. We have therefore considered nonconvex alter-

natives, among which regularization using the negative `2-norm turns out to be a

natural approach, lending itself to a straightforward computational strategy. As

an attractive feature, there is a direct and practical generalization to the matrix

counterpart, in contrast to the two-stage methods.
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Supplementary Material

The Supplementary Material (Li, Rangapuram and Slawski (2018)) contains

proofs of all statements, as well as extensive numerical results and simulations

illustrating the central aspects of this work.
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