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Abstract: This study establishes the statistical properties of a spectrum-based

Whittle parameter estimation procedure for locally stationary long-range dependent

processes. Both theoretical and empirical behaviors are investigated. In particular,

a central limit theorem for the Whittle likelihood estimation method is derived

under mild distributional conditions, extending its application to a wide range of

non-Gaussian time series. The finite-sample properties of the estimators are exam-

ined using Monte Carlo experiments with gamma and gamma-normal noise distri-

butions. These simulation studies demonstrate that the proposed method behaves

properly, even for small to moderate sample sizes. Finally, the practical application

of this methodology is illustrated using a well-known real-life data example.
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1. Introduction

Locally stationary processes play an important role in modeling and an-

alyzing nonstationary time series. This approach is based on the evolutionary

spectra developed by Priestley (1965) and formally introduced in Dahlhaus (1996,

1997). In this context, the parameters of the spectral density vary smoothly over

time, enabling nonstationary processes to be locally approximated by station-

ary models. Recent reviews of these processes are provided by Dahlhaus (2012)

and Chapter 8 of Palma (2016). A large number of estimation and hypothesis-

testing methods have been developed based on these seminal ideas; see, for exam-

ple, Chandler and Polonik (2017), Paparoditis and Preuss (2015), Guinness and

Fuentes (2015), Chen et al. (2018), Fiecas and Ombao (2016), Song, Banerjee

and Kosorok (2016), Wu and Zhou (2011), Puchstein and Preuss (2016), Rosen,

Wood and Stoffer (2012), Vogt and Dette (2015), Kreiss and Paparoditis (2015),

Preuss, Puchstein and Dette (2015), Zhou (2014), Nason (2013), Preuss, Vetter

and Dette (2013b) Guinness and Stein (2013), Giraitis, Kapetanios and Yates
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(2014), Preuss, Vetter and Dette (2013a), Zhou (2013), Roueff and Von Sachs

(2011), Dette, Preuss and Vetter (2011), Van Bellegem and Dahlhaus (2006) and

Beran (2009), among others.

However, most of these methodologies are designed for handling short-memory

Gaussian linear locally stationary processes such as time-varying ARMA models.

An extension of these techniques Palma and Olea (2010) to the long-memory

case is based on Gaussian input noise. Nevertheless, in many practical settings,

time-series data may exhibit nonstationary behavior, along with long-range de-

pendence and non-Gaussian distribution. Incorporating these three conditions

involves important technical challenges, and the literature on this field is still far

from complete. For instance, analyses of the linear functionals of these processes

lead to highly nonstandard asymptotic results; see Leipus and Surgailis (2013),

Wu and Zhou (2014), and Palma (2010).

This study addresses a novel parameter-estimation technique for non-Gaussian

long-memory locally stationary processes. This method is based on a generalized

version of the quasi-likelihood introduced by Whittle (1953). These estimates

turn out to be asymptotically normally distributed. Note that relaxing the Gaus-

sianity assumption increases the technical complexity of proving the large-sample

theory. Most of these difficulties are related to handling higher-order cumulants

of quadratic forms. In the Gaussian context, there is an explicit formula for these

cumulants. However, there is no such formulation for the general case. Conse-

quently, analyzing their asymptotic behavior becomes much more challenging.

Furthermore, the Whittle estimates are computationally efficient because they

can be calculated using the fast Fourier transform (FFT); see Palma and Olea

(2010). Monte Carlo experiments have shown that the estimates have very good

small-sample properties. Thus, this study provides a computationally efficient

framework for modeling and conducting statistical inferences for non-Gaussian

time-series data that exhibit nonstationarities.

The remainder of this paper is structured as follows. Section 2 discusses

a class of non-Gaussian long-range dependent locally stationary processes and

proposes a quasi-maximum likelihood estimator based on an extended version

of the Whittle spectrum-based methodology. Section 3 investigates their large-

sample properties, establishing a central limit theorem while Section 4 is devoted

to proving these results. Section 5 reports the results from several Monte Carlo

experiments to evaluate the finite-sample performance of the Whittle estimates.

A real-life data example is presented in Section 6 to illustrate the application of

the methodology and the difference with respect to assuming normality. Section 7
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concludes the paper.

2. Methodology

Following Dahlhaus (1997) and Palma and Olea (2010), a class of locally

stationary processes is given by the infinite moving average expansion

Yt,T = σ

(
t

T

) ∞∑
j=0

ψj

(
t

T

)
εt−j , (2.1)

where {εt} is a zero-mean and unit-variance white-noise, and {ψj(u)} are coeffi-

cients satisfying ψ0(u) = 1,
∑∞

j=0 ψj (u)2 <∞; for all u ∈ [0, 1]. In this case, the

transfer function of process given by (2.1) is A(λ, t/T ) = σ (t/T )
∑∞

j=0 ψj (t/T )

e−iλj .

Given a sample {Y1,T , . . . , YT,T } of the process in (2.1), we can estimate the

vector of parameters of the model, denoted by θ, by minimizing the following

Whittle log-likelihood function, as in Palma and Olea (2010):

LT (θ) =
1

4π

1

M

∫ π

−π

M∑
j=1

{
log fθ(uj , λ) +

IN (uj , λ)

fθ(uj , λ)

}
dλ, (2.2)

where fθ(u, λ) = |A(u, λ)|2 is the time-varying spectral density of the process,

IN (u, λ) = |dN (u, λ)|2/(2πN) is the periodogram with

dN (u, λ) =

N−1∑
s=0

Y[uT ]−N/2+s+1,T e
−iλs,

T = S(M − 1) + N , uj = tj/T , and tj = S(j − 1) + N/2, for j = 1, . . . ,M.

In this extended version of the Whittle estimation procedure (2.2), the sample

{Y1,T , . . . , YT,T } is subdivided into M blocks of length N , each shifting S places

from block to block. Then, the spectrum is locally estimated using the peri-

odogram on each of these M blocks and then averaged to form (2.2). Finally,

the Whittle estimator of the parameter vector θ is given by

θ̂T = arg minLT (θ), (2.3)

minimized over a parameter space Θ.

3. Properties

This section examines the large-sample properties of the proposed estimators,

establishing their asymptotic normality in Theorem 1. The first assumption

concerns the time-varying spectral density of the process. The second is related
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to the higher-order cumulants of the process. The third assumption is concerned

with the block sampling scheme. It is assumed that the parameter space Θ is

compact. In what follows, K is always a positive constant that can vary from

line to line.

A1. The time-varying spectral density of the process in (2.1) is strictly positive

and satisfies

fθ(u, λ) ∼ Cf (θ, u) |λ|−2 dθ(u),

as |λ| → 0, where Cf (θ, u) is a strictly positive function and dθ(u) ∈ (0, 1). There

is an integrable function g(λ), such that |∇θ log fθ(u, λ)| ≤ g(λ) for all θ ∈ Θ,

u ∈ [0, 1], and λ ∈ [−π, π]. The function A(u, λ) is twice differentiable with

respect to u and satisfies∫ π

−π
A(u, λ)A(v,−λ) exp(ı̇kλ) dλ ∼ C1(θ, u, v) kdθ(u)+dθ(v)−1,

as k → ∞, where |C1(θ, u, v)| ≤ K for u, v ∈ [0, 1] and θ ∈ Θ. The function

fθ(u, λ)−1 is twice differentiable with respect to θ, u and λ. Furthermore,

ψk(u) = σ(u)−1
∫ π

−π
A(u, λ) exp(ı̇kλ) dλ ∼ C2(θ, u) kdθ(u)−1,

as k →∞, where ψ0(u) = 1 and |C2(θ, u)| ≤ K for u ∈ [0, 1], and θ ∈ Θ.

A2. There is a constant ck, such that gk(λ1, . . . , λk−1) = ck for all λ1, . . . , λk.

A3. The sample size T and the subdivision integers N , S, and M all tend to infin-

ity and satisfy S/N → 0,
√
T log2N/N → 0,

√
T/M → 0, and N3 log2N/T 2 → 0.

Next we establish several large-sample properties of the Whittle estimator

described by (2.3). The proofs of these results are provided in Section 4.

Theorem 1 (Central Limit Theorem). Let θ0 be the true value of the parameter

θ. Under Assumptions A1–A3; the Whittle estimator θ̂T satisfies the following

central limit theorem:
√
T (θ̂T − θ)→ N (0,Σ) ,

where

Σ = Γ−1(Γ +W )Γ−1 = Γ−1 + Γ−1 W Γ−1,

Γ =
1

4π

∫ 1

0

∫ π

−π
[∇θ log fθ(u, λ)] [∇θ log fθ(u, λ)]′ du dλ,

and

W =
g4
8π

∫ 1

0

[∫ π

−π
∇θ log fθ(u, λ) dλ

] [∫ π

−π
∇θ log fθ(u, λ) dλ

]′
du.
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Corollary 1. If the parameter vector θ = (α, β) is separable, such that the scale

parameter σθ = σα,β depends only on the second component of the parameter

space, so we can write σβ. In addition Γ can be written as a block diagonal

matrix

Γ =

(
Γα 0

0 Γβ

)
.

Then, we have that

Γ−1 =

(
Γ−1α 0

0 Γ−1β + Γ−1β Wβ Γ−1β

)
,

where

Γα =
1

4π

∫ π

−π

∫ 1

0
[∇α log fθ(u, λ)] [∇α log fθ(u, λ)]′ du dλ ,

Γβ =
1

4π

∫ π

−π

∫ 1

0
[∇β log fθ(u, λ)] [∇β log fθ(u, λ)]′ du dλ ,

and

Wβ =
g4
8π

∫ 1

0

[∫ π

−π
∇β log fθ(u, λ) dλ

] [∫ π

−π
∇β log fθ(u, λ) dλ

]′
du .

Proof. Note that, by the extension of Kolmogorov’s formula provided by The-

orem 3.2 of Dahlhaus (1996),
∫

log fθ(u, λ) dλ = 2π log σ2β(u). As a result,∫
∇α log fθ(u, λ) dλ = 0 and, thus, the term Wα vanishes from the asymptotic

variance.

Remark 1. Consider the LS-ARFIMA model given by

Yt,T = σ

(
t

T

)
Φ

(
t

T
,B

)−1
Θ

(
t

T
,B

)
(1−B)−d(t/T ) εt, (3.1)

for t = 1, . . . , T , where for u ∈ [0, 1], Φ(u,B) = 1 + φ1(u)B + · · · + φP (u)BP is

an autoregressive polynomial, Θ(u,B) = 1 + θ1(u)B+ · · ·+θQ(u)BQ is a moving

average polynomial, d(u) is a long-memory parameter, σ(u) is a noise scale factor,

and {εt} is a white-noise sequence with zero mean and unit variance. As a

consequence of the preceding corollary, the asymptotic variance of the Whittle

estimators associated with d(u), Θ(u), and Φ(u) of the LS-ARFIMA model given

in (3.1) are not affected by the distribution of the input noise. However, this is

not the case for the estimators corresponding to the scale parameter σ(u). This

is illustrated in the following example.

Example 1. Consider an LS-ARFIMA model with time-varying spectral density

fθ(u, λ), such that σθ(u) = β. In this case,
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Γβ = 2

∫ 1

0

du

β2
=

2

β2
.

On the other hand, we have∫ π

−π
log fθ(u, λ) dλ = 2π log

[
σ2(u)

2π

]
,

for all u ∈ [0, 1]. Therefore,∫ π

−π
log fθ(u, λ) dλ = 2π log

[
σ2(u)

2π

]
= 4π log β − 2π log 2π,

such that, ∫ π

−π
∇β log fθ(u, λ) dλ =

4π

β
.

Therefore,

Wβ =
g4
8π

∫ 1

0

(
4π

β

)2

du =
2πg4
β2

,

and

Γβ +Wβ =
2

β2
+

2

β2
πg4 =

2

β2
(1 + πg4).

Consequently,

Γ−1β (Γβ +Wβ)Γ−1β =
β2

2
(1 + πg4).

Note that if the input noise corresponds to a centered Γ(α, λ)-distribution, the

excess kurtosis is 6/α which means κ4 = (24π2)/α and g4 = 3/(πα). Thus,

Γ−1β (Γβ +Wβ) Γ−1β =
β2

2

(
1 +

3

α

)
.

On the other hand, if the input noise corresponds to a centered log-normal dis-

tribution, the excess kurtosis is e4 + 2e3 + 3e2 − 6. In this case,

κ4 = 4π2(e4 + 2e3 + 3e2 − 6) , g4 =
e4 + 2e3 + 3e2 − 6

2π
.

Therefore,

Γ−1β (Γβ +Wβ) Γ−1β =
β2

4

(
e4 + 2e3 + 3e2 − 4

)
.

4. Proofs

Consider the function φ : [0, 1] × [−π, π] → R and define the functional

operator
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J(φ) =

∫ 1

0

∫ π

−π
φ(u, λ)f(u, λ) dλdu, (4.1)

where f(u, λ) is the time-varying spectral density of the limit process (1). Define

the sample version of J(·) as

JT (φ) =

∫ 1

0

∫ π

−π
φ(u, λ)IN (u, λ) dλdu =

1

M

M∑
j=1

∫ π

−π
φ(uj , λ)IN (uj , λ) dλ+ o(1),

where M and uj , for j = 1, . . . ,M , are as given in Section 2.

Proof. (Theorem 1) We first prove that, for all ` ≥ 3, we have

T `/2 cum`(JT (φ), . . . , JT (φ))→ 0,

as T →∞. For notational simplicity, we proceed with ` = 3; the result for ` ≥ 4

follows analogously. Recall that

dN (u, λ) =

N∑
t=1

YuT+t,T e
−iλt

and

YuT+t,T =

∞∑
s=−∞

ψt−s

(
u+

t

T

)
εs,

with the convention that ψj(u) = 0 for all j < 0, 0 ≤ u ≤ 1, and ψ0 = 1. Thus,

dN (u, λ) =
∑
s

(
N∑
t=1

ψt−s

(
u+

t

T

)
e−iλt

)
εs

=
∑
s

(
0∑

`=1−N
e−iλ(N+`) ψ`+N−s

(
u+

`

T
+
N

T

))
εs

=
∑
s

ϕN−s(u,N, T, λ)εs,

where

ϕj(u,N, T, λ) =

0∑
`=1−N

ψj+`

(
u+

`

T
+
N

T

)
e−iλ(`+N).

Hence,

dN (u, λ) =

∫ π

−π
ϕ(u,N, T, λ, ω)eiω(uT+N)dξ(ω)

with
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ϕ(u,N, T, λ, ω) =
∑
j

ϕj(u,N, T, λ)e−iωj .

Consequently,

|dN (u, λ)|2 =

∫ π

−π

∫ π

−π
ϕ(u, λ, ω)ϕ(u, λ, ω′)ei(uT+N)(ω−ω′) dξ(ω) dξ(ω′),

where for, notation simplicity, we have dropped N and T from ϕ(u,N, T, λ, ω).

Thus, the periodogram can be written as

IN (u, λ) =
1

2πN

∫ π

−π

∫ π

−π
ϕ(u, λ, ω)ϕ(u, λ, ω′)ei(uT+N)(ω−ω′) dξ(ω) dξ(ω′)

and

JT (φ) =

∫ π

−π

∫ 1

0
φ(u, λ)IN (u, λ) du dλ

=
1

2πN

∫ π

−π

∫ π

−π

∫ π

−π

∫ 1

0
φ(u, λ)ϕ(u, λ, ω)ϕ(u, λ, ω′)ei(uT+N)(ω−ω′) du dλ

dξ(ω)dξ(ω′).

By defining

h(ω, ω′) =

∫ π

−π

∫ 1

0
φ(u, λ)ϕ(u, λ, ω′)ϕ(u, λ, ω′) du dλ,

we can write

JT (φ) =
1

2πN

∫ π

−π

∫ π

−π
h(ω, ω′) ei(uT+N)(ω−ω′) dξ(ω) dξ(ω′).

Now,

cum(JT (φ), JT (φ), JT (φ))

=

(
1

2πN

)3 ∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π
h(ω1, ω2)h(ω3, ω4)h(ω5, ω6)

× cum(dξ(ω1)dξ(ω2), dξ(ω3) dξ(ω4), dξ(ω5) dξ(ω6)

=

(
1

2πN

)3 ∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π
h(ω1, ω2)h(ω3, ω4)h(ω5, ω6)

×

{
g6δ

(
6∑
1

ωj

)
+ g4g2

∑
ν4,ν2

cν4,ν2δ

(∑
ν4

ωj

)
δ

(∑
ν2

ωj

)
(4.2)

+g23
∑
ν3,ν3

cν3,ν3δ

(∑
ν3

ωj

)
δ

(∑
ν3

ωj

)}
dω1, . . . , dω6

=

(
1

2πN

)3

(AN +BN + CN ),
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say, where νj denotes a partition with j components, along with its respective con-

stant. Consequently, from Lemma 2, we have that cum(JT (φ), JT (φ), JT (φ)) =

(1/2πN)3 ×O(1). Therefore,

T 3/2cum(JT (φ), JT (φ), JT (φ)) = O

(√
T

N

)3

.

Note that, by assumption,
√
T/N → 0, Hence, T 3/2cum(JT (φ), JT (φ), JT (φ))→

0 as N,T →∞. On the other hand, for ` = 2, we have that

T cum[JT (φ), JT (φ)] =
T

M2

M∑
j,k=1

∫ π

−π

∫ π

−π
φ(uj , λ)φ(uk, µ)

× cum[IN (uj , λ), IN (uk, µ)] dλ dµ ≡ AT +BT ,

where AT corresponds to the term involving the covariance, and BT corresponds

to the fourth cumulant term:

BT =
T

(2πMN)2

M∑
j,k=1

∫ π

−π

∫ π

−π
φ(uj , λ)φ(uk, µ)

× cum[dN (uj , λ), dN (uj ,−λ), dN (uk, µ), dN (uk,−µ)] dλ dµ.

By Proposition 2 of Palma and Olea (2010), AT converges to

lim
T→∞

TAT = 4π

∫ 1

0

∫ π

−π
φ(u, λ)φ(u, λ) f(u, λ)2 dλ du.

On the other hand, by defining

bN (u, ω, λ) =

N−1∑
t=0

A

(
u+

t

T
, ω

)
eit(ω−λ),

we may write

dn(u, λ) =

∫ π

−π
bN (u, ω, λ)eiuTω dξ(ω).

Thus,

BT =
g4T

(2πMN)2

M∑
j,k=1

∫ π

−π

∫ π

−π
φ(uj , λ)φ(uk, µ)

∫ π

−π

∫ π

−π

∫ π

−π
bN (uj , ω1, λ)ei(uj−uk)Tω1

× bN (uj , ω2,−λ)ei(uj−uk)Tω2bN (uk, ω3, µ)bN (uk,−ω1 − ω2 − ω3,−µ)

× dλ dµ dω1 dω2 dω3.

Now, by integrating successively with respect to ω3, ω2, and ω1, we obtain
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BT =
2πg4T

(MN)2

N−1∑
t,s=0

M∑
j,k=1

S(j−k)=s−t

∫ π

−π

∫ π

−π
φ(uj , λ)φ(uk, µ)

∞∑
`,m,n,p=0

ψ`

(
uk +

t

T

)

× ψm
(
uk +

s

T

)
ψn

(
uk +

t

T

)
ψp

(
uk +

s

T

)
eiλ(`−m)+iµ(n−p) dλ dµ.

Given that 0 ≤ t/T ≤ N/T → 0 as N,T →∞, we have that

lim
T→∞

BT = lim
T→∞

2πg4T

(MN)2

N−1∑
t,s=0

M∑
j,k=1

S(j−k)=s−t

∫ π

−π

∫ π

−π
φ(uj , λ)φ(uk, µ)

∞∑
`,m,n,p=0

ψ`(uk)

× ψm(uk)ψn(uk)ψp(uk)e
iλ(`−m)+iµ(n−p) dλ dµ

lim
T→∞

2πg4T

(MN)2

N−1∑
t,s=0

M∑
j,k=1

S(j−k)=s−t

∫ π

−π

∫ π

−π
φ1

(
uk +

S(j − k)

T
, λ

)
φ2(uk, µ)

×A(uk, λ)A(uk,−λ)A(uk, µ)A(uk,−µ) dλ dµ

lim
T→∞

2πg4T

(MN)2

N−1∑
t=0

N−t
S∑

p= t

S

M−|p|∑
k=1

∫ π

−π

∫ π

−π
φ1(uk+p, λ)φ2(uk, µ)f(uk, λ)f(uk, µ) dλ dµ.

Now, by an argument analogous to that in the proof of Proposition 2 of Palma

and Olea (2010), we conclude that

lim
T→∞

BT = 2πg4

∫ 1

0

∫ π

−π

∫ π

−π
φ(u, λ)φ(u, µ)f(u, λ)f(u, µ) dλ dµ du

= 2πg4

∫ 1

0

[∫ π

−π
φ(u, λ)f(u, λ) dλ

] [∫ π

−π
φ(u, µ)f(u, µ) dµ

]
du.

Lemma 1. Let (d, d1, . . . , d`) ∈ (0, 1/2)`+1 for ` ≥ 3, where d = d(u), di = d(ui),

with u, ui ∈ [0, 1] for i = 1, . . . , `, define the function

C(h1, . . . , h`) =

∞∑
j=0

ψj(u)
∏̀
i=1

ψj+hi(ui),

and let d0 = max{d, d`}. Then, for h1, . . . , h` →∞,

|C(h1, . . . , h`)| ≤ C0 h
d1−1
1 · · ·hd`−1−1

d`−1
h2d0−1` .

Proof. We first establish that the function C is well defined. Observe that, by

Assumption A1, for large h1, . . . , h`, we have |ψj+hi(ui)| ≤ Kjdi−1 and
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|C(h1, h2, . . . , d`)| ≤ K
∞∑
j=1

jd−1+
∑`
i=1(di−1) ≤ K

∞∑
j=1

jd+d1+d2+···+d`−`−1.

Furthermore,
∞∑
j=n

jd+d1+d2+···+d`−`−1 ≤ Knd+d1+d2+···+d`−` ≤ Kn(1−`)/2.

Consequently, given that this sum is convergent for all ` ≥ 2, we conclude that

|C(h1, . . . , h`)| <∞.

Finally, because for i = 1, . . . , `− 1, |ψj+hi(ui)| ≤ Kh
di−1
i , we have

|C(h1, . . . , h`)| ≤ Khd1−11 · · ·hd`−1`−1

∞∑
j=1

jd−1(j + h`)
d`−1

≤ Khd1−11 · · ·hd`−1`−1

∞∑
j=1

jd0−1(j + h`)
d0−1

≤ Khd1−11 · · ·hd`−1`−1 h
2d0−1
` ,

as required.

Lemma 2. Let ZN = AN +BN +CN , where these terms are defined as in (4.2).

Then, under the assumptions of Theorem 1, we have that ZN = O(1).

Proof. We proceed by first proving the result for AN ; that is, we consider the

case where the frequencies satisfy the condition ω1 + · · ·+ ω6 = 0 such that that

ω6 = −ω1 − ω2 − · · · − ω5. Define the integral

I =

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π
h(ω1, ω2)h(ω3, ω4)

h(ω5,−ω1 − ω2 − · · · − ω5)dω1, . . . , dω5.

Let ω0 = ω2 + · · ·+ ω5, and write

I1 =

∫ π

−π
h(ω1, ω2)h(ω5,−ω1 − ω0) dω1,

such that

I =

∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π
h(ω3, ω4)I1(ω2, . . . , ω5) dω1, . . . , dω5.

Hence, by writing I1 = I1(ω2, . . . , ω5), for simplicity, we have

I1 =

∫ π

−π
h(ω1, ω2)h(ω5,−ω1 − ω0) dω1

=

∫ π

−π

∫ 1

0

∫ π

−π

∫ 1

0

∫ π

−π
φ(u1, λ1)ϕ(u1, λ1, ω1)ϕ(u1, λ1, ω2)φ(u3, λ3)
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×ϕ(u3, λ3, ω5)ϕ(u3, λ3,−ω1 − ω0) dω1 du1 dλ1 du3 dλ3 .

Observe that ∫ π

−π
ϕ(u1, λ1, ω1)ϕ(u3, λ3,−ω1 − ω0) dω1

=

∫ π

−π

∑
j

ϕj(u1, λ1)e
−iωj

×
∑
k

ϕk(u3, λ3)e
iω1k+iω0k dω1

=
∑
j

∑
k

eiω0kϕj(u1, λ1)ϕk(u3, λ3)

∫ π

−π
eiω1(k−j) dω1

= 2π
∑
j

eiω0jϕj(u1, λ1)ϕj(u3, λ3).

Therefore,

I1 =

∫ 1

0

∫ 1

0

∫ π

−π

∫ π

−π
φ(u1, λ1)ϕ(u1, λ1, ω2)φ(u3, λ3)ϕ(u3, λ3, ω5)

×2π
∑
j

eiω0jϕj(u1, λ1)ϕj(u3, λ3) du1 du3 dλ1 dλ3.

Now, integrating with respect to λ1 yields∑
j

[∫ π

−π
φ(u1, λ1)ϕ(u1, λ1, ω2)ϕj(u1, λ1)dλ1

]
eiω0jϕj(u3, λ3).

Note that ∫ π

−π
φ(u1, λ1)ϕ(u1, λ1, ω2)ϕj(u1, λ1)dλ1

=
∑
k

∫ π

−π
ϕk(u1, λ1)e

−iω2kφ(u1, λ1)ϕj(u1, λ1)dλ1.

In addition,

ϕk(u1, λ1) =

0∑
`=1−N

ψ
(1)
k+`(u1), e

−iλ1` ,

ϕj(u1, λ1) =

0∑
p=1−N

ψ
(1)
j+p(u1)e

−iλ1p.

Thus, by dropping ui from ψ
(i)
k+`(ui) and writing γφ(h) =

∫ π
−π φ(u, λ)eiλh dλ, for

simplicity, we have
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−π
φ(u1, λ1)ϕ(u1, λ1, ω2)ϕj(u1, λ1) dλ1

=
∑
k

∑
`,p

ψ
(1)
k+`ψ

(1)
j+pe

−iω2k

∫ π

−π
φ(u1, λ1)e

iλ1(`−p) dλ1

=
∑
k

∑
`,p

ψ
(1)
k+`ψ

(1)
j+pe

−iω2kγφ(`− p) .

Consequently,∑
j

[∫ π

−π
φ(u1, λ1)ϕ(u1, λ1, ω2)ϕj(u1, λ1) dλ1

]
eiω0jϕj(u3, λ3)

=
∑
j

∑
k,`,p

ψ
(1)
k+` ψ

(1)
j+pϕ(u3, λ3)γφ(`− p)eiω0j−iω2k.

Now, by integrating I1 with respect to ω2, we have∫ π

−π
I1(ω2, . . . , ω5) dω2

= 2π

∫ 1

0

∫ 1

0

∫ π

−π

∫ π

−π

∑
jk

∑
`,p

ψ
(1)
k+`ψ

(1)
j+p ϕj(u3, λ3)

× γφ(`− p)eiω2(j−k)+iω3j+iω4j+iω5jφ(u3, λ3)ϕ(u3, λ3, ω5) du1 du3 dλ3 dω2

= (2π)2
∫ 1

0

∫ 1

0

∫ π

−π

∑
j

∑
`,p

ψ
(1)
j+`ψ

(1)
j+p ϕj(u3, λ3)γφ(`− p)eij(ω3+ω4+ω5)

× φ(u3, λ3)ϕ(u3, λ3, ω5) du1 du3 dλ3.

Integrating with respect to λ3 in the above expression yields∫ π

−π
ϕj(u3, λ3)φ(u3, λ3)ϕ(u3, λ3, ω5) dλ3

=
∑
k

∫ π

−π
ϕj(u3, λ3)φ(u3, λ3)ϕk(u3, λ3)e

−iω5k dλ3,

where

ϕj(u3, λ3) =

0∑
q=1−N

ψ
(3)
j+qe

−iλ3q, ϕk(u3, λ3) =

0∑
n=1−N

ψ
(3)
k+ne

−iλ3n.

Hence, we obtain∫ π

−π
ϕj(u3, λ3)φ(u3, λ3)ϕ(u3, λ3, ω5) dλ3 =

∑
k

∑
q,n

ψ
(3)
j+qψ

(3)
k+ne

−iω5k×∫ π

−π
φ(u3, λ3)e

iλ3(n−q) dλ3 =
∑
k

∑
q,n

ψ
(3)
j+qψ

(3)
k+ne

−iω5kγφ3
(n− q) .
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Define I2 as

I2(ω3, ω4, ω5) =

∫ π

−π
I1(ω2, . . . , ω5) dω2.

Consequently,

I2(ω3, ω4, ω5) = (2π)2
∫ π

−π

∫ π

−π

∑
jk

∑
`pqn

ψ
(1)
j+`ψ

(1)
j+pγφ1

(`− p)

×ψ(3)
j+qψ

(3)
k+nγφj (n− p)e

iω3j+ijω4+iω5(j−k) du1 du3.

Furthermore, by defining I3 as

I3(ω3, ω4) =

∫ π

−π
I2(ω3, ω4, ω5) dω5,

we obtain

I3(ω3, ω4) = (2π)3
∫ 1

0

∫ 1

0

∑
j

∑
`pqn

ψ
(1)
j+`ψ

(1)
j+pγφ1

(`− p)

×ψ(3)
j+qψ

(3)
j+nγφ3

(n− p)eiω3j+ijω4 du1 du3.

On the other hand,

h(ω3, ω4) =

∫ π

−π

∫ 1

0
φ(u2, λ2)ϕ(u2, λ2, ω3)ϕ(u2, λ2, ω4) du2 dλ2.

Thus, integrating with respect to ω3, yields∫ π

−π
ϕ(u2, λ2, ω3)e

iω3j dω3 =
∑
k

ϕk(u2, λ2)

∫ π

−π
e−iω3k+iω3j dω3

= 2πϕj(u2, λ2).

Integrating with respect to ω4, we get∫ π

−π
ϕ(u2, λ2, ω4)dω4 = 2πϕj(u2, λ2) .

Thus, by defining I4 as

I4 =

∫ π

−π
I4(ω3, ω4) dω3 dω4

= (2π)5
∫ π

−π

∑
j

∑
`pqn

ψ
(1)
j+`ψ

(1)
j+pγp1(`− p)ψ

(3)
j+qψ

(3)
j+nγφ3

(h− p)ϕj(u2, λ2)

×du1 du2 du3 dλ2 φ̂(u2, λ2)

∫ π

−π
φ(u2, λ2)ϕj(u2, λ2) dλ2

=
∑
s

∑
t

ψ
(2)
j+sψ

(2)
j+t

∫ π

−π
eiλ2(5−t)φ(u2, λ2) dλ2

∑
s,t

ψ
(2)
j+sψ

(2)
j+tγφ2

(s− t),
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we obtain,

I = (2π)5
∑
j

∑
`,p,q,n,s,t

∫ 1

0

∫ 1

0

∫ 1

0
ψ
(1)
j+`ψ

(1)
j+pγφ1

(`− p)ψ(2)
j+sψ

(2)
j+tγφ2

(s− t)

×ψ(3)
j+qψ

(3)
j+nγφ3

(n− q) du1 du2 du3.

Furthermore, we can write

I = (2π)5
∞∑
j=∞

N∑
`,p,q,n,s,t=1

∫ 1

0

∫ 1

0

∫ 1

0
ψ
(1)
j+sψ

(1)
j+pγφ1

(`− p)ψ(2)
j+sψ

(2)
j+t

×γφ2
(s− t)ψ(3)

j+qψ
(3)
j+nγφ3

(n− q) du1 du2 du3

= (2π)5
N∑

`...t=0

∫ 1

0

∫ 1

0

∫ 1

0

∑
j

ψ
(1)
j+`ψ

(1)
j+pψ

(2)
j+nψ

(2)
j+qψ

(3)
j+tψ

(3)
j+s


×γφ1

(`− p)γφ2
(t− s)γφ3

(n− q) du1 du2 du3.

Now, by writing h1 = `− p, h2 = q − n, and h3 = t− s and applying Lemma 1,

we conclude that I = O(1). The proofs of the remaining cases are analogous.

5. Monte Carlo Studies

The following simulation results are based on 1,000 repetitions from the LS-

FN model defined by the discrete-time equation

Yt,T = σ

(
t

T

)
(1−B)−d(t/T )εt, (5.1)

for t = 1, . . . , T , where {εt} is a white-noise sequence with zero mean and unit

variance. In these Monte Carlo experiments, the evolution of the long-memory

parameter is specified by d(u) = α0+α1 u and the standard deviation is assumed

to be constant, σ(u) = β. In addition, the white-noise sequence {εt} follows either

a gamma distribution or a log-normal distribution. For comparison purposes, the

tables also include the case of Gaussian white-noise. In all these cases, the input

noises have a zero mean and unit variance.

Figure 1 displays a simulated time series of 1,000 observations with gamma

input noise. The histogram and the estimated density of this series are shown

in Figures 3 and 4, respectively. Note the skewness in the empirical distribution

of {Yt,T }. Similar behavior is observed for the log-normal case; see Figures 2, 5,

and 6.

Tables 3 and 2 report the results from several Monte Carlo simulations of the

Whittle likelihood estimates for the LS-FN models. The sample sizes are T = 500
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Figure 1. Time series with a gamma input noise.

Figure 2. Time series with a log-normal input noise.



ESTIMATION OF LSLM PROCESSES 127

−

Figure 3. Histogram of time series with a
gamma input noise.

−

Figure 4. Estimated density of time series
with a gamma input noise.

Figure 5. Histogram of time series with a
log-normal input noise.

Figure 6. Estimated density of time series
with a log-normal input noise.

and T = 1, 000, respectively. The values of N and S are similar to those in

Palma and Olea (2010). These tables show the averages and empirical standard

deviations for the Whittle estimates, as well as the corresponding theoretical

standard deviations. Given that d(u) = α0 + α1 u, in this case, the value of the

time-varying parameter d(u) moves from 0.10 to 0.30.

The theoretical standard deviations shown in these two tables are obtained

using the following general procedure. Assume the following specification:

d(u) = α0 + α1u+ · · ·+ αpu
p, σ(u) = β0 + β1u+ · · ·+ βqu

q,

for u ∈ [0, 1]. In this case, the parameter vector is θ = (α0, . . . , αp, β0, . . . , βq)
′,
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Table 1. Whittle estimation: Sample size T = 500, block size N = 125, and shift S = 30.

Parameters Estimates

Case α0 α1 β0 α̂0 α̂1 β̂0
Gamma 0.10 0.20 1.0 0.0983 0.1868 0.9946
Log-normal 0.10 0.20 1.0 0.1026 0.1817 1.0204
Normal 0.10 0.20 1.0 0.1002 0.1804 0.9987

Theoretical SD Estimated SD

Case σ(α̂0) σ(α̂1) σ(β̂0) σ̂(α̂0) σ̂(α̂1) σ̂(β̂0)
Gamma 0.0697 0.1207 0.0632 0.0830 0.1552 0.0636
Log-normal 0.0697 0.1207 0.2376 0.0888 0.1633 0.2175
Normal 0.0697 0.1207 0.0316 0.0847 0.1607 0.0321

Table 2. Whittle estimation: Sample size T = 1,000, block size N = 160, and shift
S = 50.

Parameters Estimates

Case α0 α1 β0 α̂0 α̂1 β̂0
Gamma 0.10 0.20 1.0 0.0932 0.2001 0.9991
Log-normal 0.10 0.20 1.0 0.0923 0.2040 1.0204
Normal 0.10 0.20 1.0 0.0955 0.1942 0.9986

Theoretical SD Estimated SD

Case σ(α̂0) σ(α̂1) σ(β̂0) σ̂(α̂0) σ̂(α̂1) σ̂(β̂0)
Gamma 0.0493 0.0854 0.0447 0.0598 0.1109 0.0445
Log-normal 0.0493 0.0854 0.1680 0.0612 0.1140 0.1467
Normal 0.0493 0.0854 0.0223 0.0590 0.1117 0.0214

and the asymptotic variance–covariance matrix of the Whittle estimates of θ

corresponds to Σ−1/T , is given by Theorem 1,

Σ = Γ−1(Γ +W )Γ−1 = Γ−1 + Γ−1 W Γ−1,

with

Γ =

(
Γα 0

0 Γβ

)
,

Γα =

[
π2

6 (i+ j + 1)

]
i,j=0,...,p

,Γβ = 2

[∫ 1

0

ui+j du

(β0 + β1u+ · · ·+ βquq)2

]
i,j=0,...,q

,

and

W =

(
I 0

0 Wβ

)
,

where Wβ is given in Example 1.
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Figure 7. IBM daily transaction volume from 1962 to 1972.

Figure 8. Estimated density of centered IBM daily transactions volume data.

Observe from Tables 1 and 2 that for both sample sizes and the three distri-

butions considered (gamma, log-normal and Normal), the estimates are close to

the true parameter values. Furthermore, the empirical standard deviations are

close to their theoretical counterparts provided by Theorem 1.

6. Data Illustration

To illustrate the proposed methodology, consider the IBM daily transaction

volume data for the period January 2, 1962, to December 31, 1972, depicted in

Figure 7. This decade-long period has been selected to avoid market fluctuations
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Figure 9. ACF of IBM daily transaction volume data. Panels: (a) sample ACF, (b)
variance plot.

Figure 10. ACF of IBM daily transaction volume data. Panels: (a) observations 1 to
300, (b) observations 1,300 to 1,300 and (c) observations 2,000 to 2,000.
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Figure 11. Rolling-window estimation of the long-memory parameter d(u) as a function
of u.

due to the oil crisis in 1973. Figure 8 shows the histogram of the centered

series. Note that the data do not seem to be normally distributed. On the

other hand, Figure 9 displays the sample autocorrelation function (ACF) of this

series, along with a variance plot. Both graphs suggest the presence of long-range

dependence. Moreover, Figure 10 shows three segments of data: a) observations

1 to 300; (b) observations 1,000 to 2,300 and (c) observations 2,000 to 2,300.

Note that the sample ACF seems to decrease over time. Based on this plot,

Figure 11 reports a rolling window estimation of the long-memory parameter

d(u) as a function of the standardized time u = t/T . These rolling-windows

correspond to estimates of d on successive blocks of 350 observations and shifts

of 100 days. Note that the long-memory parameter seems to decrease over time.

Consequently, a locally stationary process was selected using the AIC. The fitted

model is a LS-ARFIMA(1, d, 0), defined as follows

Yt,T = β (1− φB)−1 (1−B)−d(t/T )εt,

with d(u) = α0 + α1 u, and a centered log-normal input noise εt. The results of

the model fitting are reported in Table 3. Observe that the standard errors vary

significantly when assuming normality or log-normality.

A residual analysis indicates that the Box–Ljung test statistic is 15.165 with

10 degrees of freedom, producing a P -value = 0.1262. Finally, Figure 12 shows

a histogram of the residuals.
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Table 3. Whittle estimation, IBM transaction data.

Parameter Estimate Std. Error z-value P-value
φ 0.1315 0.0361 3.6402 0.0003
α0 0.4158 0.0302 13.7810 0.0000
α1 -0.2140 0.0339 -6.3054 0.0000
β (Normal) 370,748.0189 5,253.0320 70.5779 0.0000
β (Lognormal) 370,748.0189 39,447.3300 9.3985 0.0000

Figure 12. Estimated probability density of the residuals.

7. Conclusion

This study examines asymptotic and finite-sample properties of a spectrum-

based Whittle parameter estimation procedure for locally stationary long-range

dependent models. In particular, it establishes a central limit theorem for the

Whittle estimator. This result extends previous works on Gaussian time series

to the non-Gaussian cases. Finite-sample performance of the estimates is inves-

tigated using several Monte Carlo experiments, including gamma and log-normal

distributions. In these simulation studies, the proposed estimator exhibits a very

good performance and the empirical precisions obtained are close to their the-

oretical counterparts, as specified by Theorem 1. In addition, a real-life data

application is presented. Thus, we have shown that the Whittle methodology

can be applied to a much broader class of situations.
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