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Appendix A: Technical Results

We provide statements and proofs of five results claimed in the main text.

1. Statement 1 (Positive Definite, Special Case 1): Let Σ1 ≡ ΣY −Σw, σ2 > 0, and ΣY

and Σw are symmetric positive-definite real valued matrices. Then the matrix,

 ΣY −Σ1

−Σ1 Σ1 + σ2In

 , (A.1)

is positive definite provided that Σw and Σ1 are positive definite.

Proof: The Schur complement of (A.1) is given by

 ΣY 0n,n

0n,n σ2In + Σw −Σ′wΣ−1Y Σw

 , (A.2)

where 0n,n is a n × n matrix of zeros. If Σw − Σ′wΣ−1Y Σw is positive definite then

we have that the Schur complement of (A.1) (and hence (A.1)) is positive definite.
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Consider the matrix,

 Σw −Σw

−Σw ΣY

 =

 In 0n,n

−In In


 Σw 0n,n

0n,n ΣY −Σw


 In −In,n

0n,n In

 , (A.3)

which is positive definite by the conditions of Statement 1. However, one can also

rewrite (A.3) as,

 Σw −Σw

−Σw ΣY

 =

 In −ΣwΣ−1Y

0n,n In


 Σw −Σ′wΣ−1Y Σw 0n,n

0n,n ΣY


 In 0n,n

−Σ−1Y Σw In

 ,

(A.4)

which is positive definite if and only if Σw − Σ>wΣ−1Y Σw is positive definite. Thus, it

follows from (A.3) and (A.4) that Σw −Σ>wΣ−1Y Σw is positive definite.

2. Statement 2 (Positive Definite, Special Case 3): Let Σ ≡ ΣY,w −ΣY , σ2 > 0, and ΣY

and ΣY,w be real symmetric matrices. Then the matrix,

 ΣY Σ

Σ> σ2In − 2Σ

 , (A.5)

provided ΣY is positive semi-definite and ΣY −Σ>Y,wΣ−1Y ΣY,w is positive semi-definite.

Proof: The Schur complement is given by

 ΣY 0n,n

0n,n σ2In + ΣY −Σ>Y,wΣ−1Y ΣY,w

 , (A.6)

where 0n,n is a n × n matrix of zeros. Since ΣY −Σ>Y,wΣ−1Y ΣY,w and ΣY are positive
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definite, the Schur complement, and the matrix in (A.5) is positive definite.

3. Statement 3 (Positive Definite, Special Case 4): Let ΣY be a real symmetric positive

definite matrix, Ψ ∈ Rn × Rr, P = Ψ(Ψ>Ψ)−1Ψ>, and σ2 > 0. Then the matrix,

cov


 y

δ


 =

 ΣY −ΣY (In −P)

−(In −P)ΣY ΣY + PΣY P + 2ΣY (In −P) + σ2In

 . (A.7)

provided ΣY is positive semi-definite.

Proof: We can write ΣY −ΣY (In −P)

−(In −P)ΣY ΣY + PΣY P + 2ΣY (In −P) + σ2In


=

 ΣY −ΣY

−ΣY ΣY + 2ΣY (In −P)

+

 ΣY ΣY P

PΣY ΣY + σ2In

 . (A.8)

The sum of two positive semi-definite matrices is positive definite, and hence, we aim

to show that both matrices on the right-hand-side of (A.8) are positive semi-definite.

The Schur complement of the first matrix on the right-hand-side of (A.8) is given by

 ΣY 0n,n

0n,n ΣY + 2ΣY (In −P)

 , (A.9)

where 0n,n is a n × n matrix of zeros. Since ΣY is positive definite, we only need to

show that 2ΣY (In − P) is positive semi-definite. Recall the product of a stable and

Hermitian square matrix A and a positive semi-definite matrix B satisfies the following
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inequality (Zhang and Zhang, 2006),

λn(A)λ1(B) ≤ λn(AB) ≤ λ1(A)λ1(B),

where λn(A) is the smallest eigenvalue of A, λ1(B) is the largest eigenvalue of B,

λn(AB) is the smallest eigenvalue of AB, and λ1(A) is the largest eigenvalue of A.

Letting A = In−P and B = 2ΣY , we see that the smallest eigenvalue of 2ΣY (In−P)

is in the set [0, λ1(2ΣY )]. Hence, the first matrix on the right-hand-side of (A.8) is

positive semi-definite.

The Schur complement of the second matrix on the right-hand-side of (A.8) is given

by  ΣY 0n,n

0n,n σ2In

 , (A.10)

which is positive definite.

4. Statement 4: Assume the Regularity Conditions stated in Section D. Define µ ≡

(µ(s1), . . . , µ(sn))>, σ2 and s1, . . . , sm ∈ D. Then, we have

f̂(s; θ, z) = µ(s) + cov {Y (s), z|θ}
{

cov (w|θ) + σ2In
}−1

(z− µ); s ∈ D, (A.11)

minimizes

min
f

(
E
[
{Y (s)− f(s)}2 |θ

])
,

where f falls in the space of linear unbiased estimators. Additionally, the variance of

4



f̂ is given by

σ2
f (s; θ, z) ≡ E

[{
Y (s)− f̂(s)

}2

|θ
]

= var {Y (s)|θ} − cov {Y (s), z|θ}
{

cov (w|θ) + σ2In
}−1

cov {z, Y (s)|θ} ,

where s ∈ D.

Proof: Write our linear estimator in z as,

q(s) + λ(s)>z, (A.12)

where q : D → R and λ : D → Rn. For s ∈ D let a(s) = q(s) + λ(s)>µ. Then the

mean squared error for a given s ∈ D can be written as

E
[{
q(s) + λ(s)>z− Y (s)

}2 |θ]
= E

[{
a(s) + λ(s)>(z− µ)− Y (s)

}2 |θ]
= E

[{
λ(s)>(z− µ)− Y (s)

}2 |θ]+ a(s)2 − 2a(s)µ(s)

= λ(s)>
{

cov (w|µ,θ) + σ2In
}
λ(s) + E

{
Y (s)2|θ

}
− 2λ(s)>cov {z, Y (s)|θ}+ a(s)2 − 2a(s)µ(s). (A.13)

For a given s ∈ D, take the derivative of (A.13) with respect to λ(s) and set it equal

to zero to obtain,

λ̂(s) =
{

cov (w|µ,θ) + σ2In
}−1

cov {z, Y (s)|θ} .

Also, for a given s ∈ D, take the derivative of (A.13) with respect to a(s) and set it
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equal to zero to obtain,

â(s) = µ(s).

Substituting λ̂ and q(s) = â(s) − λ̂(s)>µ into (A.12), we obtain f̂ in (A.11). Upon

computing second derivatives of (A.13) it is clear that the Hessian matrix is positive

definite indicating that f̂ in (A.11) is a minimum. Notice also that f̂ is unbiased for

µ, so that it is the best linear unbiased predictor of Y .

The mean squared error of f̂ follows from straightforward algebra. For a given s,

E

[{
f̂(s; θ, z)− Y (s)

}2

|θ
]

= E

[{
f̂(s; θ, z)− µ(s)

}2

|θ
]

+ E
[
{Y (s)− µ(s)}2 |θ

]
− 2E

[{
f̂(s; θ, z)− µ(s)

}
{Y (s)− µ(s)} |θ

]
= cov {Y (s), z|θ}

{
cov (w|µ,θ) + σ2In

}−1
cov {z, Y (s)|θ}+ var {Y (s)|θ}

− 2cov {Y (s), z|θ}
{

cov (w|µ,θ) + σ2In
}−1

cov {z, Y (s)|θ}

= var {Y (s)|θ} − cov {Y (s), z|θ}
{

cov (w|µ,θ) + σ2In
}−1

cov {z, Y (s)|θ} ,

which completes the proof.

Appendix B: Model Implementation

In Section 4.3 of the main text, we describe a two step method for implementation. Namely,

the first step is to implement a Gibbs sampler to simulate from the posterior distribution

of the augmented process w(·), and associated parameters. The second step is to simulate

from the posterior predictive distribution of the latent process. We now outline these steps
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in full to aid the reader in reproducing these results.

Step I:

The statistical model used to obtain β[b], η[b], ξ[b], σ
2[b]
β , σ

2[b]
ξ , and θ[b] for b = 1, ..., B is

outlined in Algorithm 1 (below) using the hierarchical modeling notation of Berliner (1996).

Let K be defined according to Equation (8), where

cov(η|θ) ≡ (Ψ>Ψ)−1Ψ>ΣY (θ)Ψ(Ψ>Ψ)−1, (B.1)

θ = (σ2
Y , τ)′, σ2

Y > 0, and τ > 0. The basis functions Ψ are chosen using the algorithm

outlined in Appendix F. We consider two choices for ΣY (τ). In Section 5.1, we let ΣY (τ) be

formed by a Matérn covariogram; see Equation (E.4). Also, in Section 5.2, we set ΣY (θ) =

σ2
Y (I− τA)−1, where A is a 72361× 72361 first-order adjacency matrix associated with U.S.

census tracts and θ = (σ2
Y , τ)′. The inverse (I− τA)−1 is straightforward to compute using

sparse matrix inversion techniques.

It is important to emphasize that we never need to store every column of ΣY (θ) at

the same time. Write the columns of 1
σ2
Y

ΣY (θ) as 1
σ2
Y

ΣY (θ) = (k1, . . . ,kr). A schematic

of the code is given in Schematic 1. Storage, requires an N -dimensional vector (ki), an

r-dimensional vector ((Ψ′Ψ)−1Ψ′ki), and an r × N matrix (LeftK), which requires O(Nr)

storage. If we place a continuous prior on τ , we have to repeat this loop in Schematic 1 every

time we update τ , which is not computationally feasible. Thus, we place a discrete uniform

prior on τ , where τ = τ1, . . . , τM with equal probability. Then, before implementing the

Gibbs sampler, we use Schematic 1 to compute cov(η|θ = (1, τ1)
′), . . . , cov(η|θ = (1, τM)′).

The statistical model used for inference is given in Algorithm 1. We now specify the full-

conditional distributions for the process variables (i.e., η and ξ) and the parameters (i.e.,

β, σ2
Y , σ2

ξ , σ
2
β, and τ). Using standard conjugacy results (Berger, 1985), the full conditional
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# initialize a variable (called LeftCovEta) to store 1
σ2
Y

(Ψ>Ψ)−1Ψ>ΣY (θ)

LeftCovEta = empty;
for (i=1:n)

Step 1: compute ki;

Step 2: Let LeftCovEta be the column concatenation of LeftCovEta with (Ψ′Ψ)−1Ψ′ki;

Step 3: remove ki from memory;

end
cov(η|θ = (1, τ)′) = LeftCovEta times Ψ(Ψ′Ψ)−1;
remove LeftCovEta from memory;

Schematic 1: A representation of the code used to compute and store (B.1).

Algorithm 1: Summary of statistical model to obtain β[b], η[b], ξ[b], τ [b], σ
2[b]
Y , σ

2[b]
β ,

and σ
2[b]
ξ for b = 1, ..., B.

Data Model : Z(s)|β,η, ξ, σ2
K , θ

ind∼ Normal
{
x(s)>β +ψ(s)>η + ξ(s), σ2

ε (s)
}

;

Process Model 1 : η|θ ∼ Gaussian {0, cov(η|θ)} ;

Process Model 2 : ξ|σ2
ξ ∼ Gaussian

(
0, σ2

ξIN
)

;

Parameter Model 1 : β ∼ Normal
(
0, σ2

βIp
)

;

Parameter Model 2 : σ2
Y ∼ IG (1, 1) ;

Parameter Model 3 : σ2
ξ ∼ IG (1, 1) ;

Parameter Model 4 : σ2
β ∼ IG (1, 1) ;

Parameter Model 5 : τ ∼ I(τ ∈ {τ1, ..., τM}); s ∈ DO.
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distributions are as follows:

• The full conditional distribution for η is given by η ∼ Gaussian
(
µ∗η,Σ

∗
η

)
, where Σ∗η ≡(

Ψ>σ2I−1n Ψ + K(θ
)−1

, µ∗η ≡ Σ∗η ×Ψ>σ2I−1n × (z −Xβ − ξ), σ2In = diag(var(ε(si) :

i = 1, . . . , n), Ψ ≡ (ψ(s1), . . . ,ψ(sn))>, X ≡ (x(s1), . . . ,x(sn))>, and s1, . . . , sn are

the observed data locations.

• The full conditional distribution for ξ is given by ξ ∼ Gaussian
(
µ∗ξ ,Σ

∗
ξ

)
, where Σ∗ξ ≡(

σ2I−1n + 1
σ2
ξ
In

)−1
, and µ∗η ≡ Σ∗η × σ2I−1n × (z−Ψη −Xβ).

• The full-conditional distribution for β is given by β ∼ Normal
(
µ∗, σ∗µ

)
, where σ∗µ ≡(

X>σ2I−1n X + σ−2µ Ip
)−1

, and µ∗ ≡ σ∗µ ×X>σ2I−1n (z−Ψη).

• The full conditional distributions for σ2
β, σ2

Y , and σ2
ξ are IG(p/2 + 1, 1 + β>β/2),

IG(r/2 + 1, 1 + η>cov(η|θ)−1η/2), and IG(n/2 + 1, 1 + ξ>ξ/2) respectively.

• The full conditional distributions for τ is given by

p(τ) =

1
σrY |cov(η|θ)|1/2

exp(−η>cov(η|τ)−1η)/2∑
θ∈{θ1,...,θM}

1
σrY |cov(η|θ)|1/2

exp(−η>cov(η|τ)−1η)/2
,

where τ = τ1, ..., τM .

The choices for τ1, ..., τM were chosen after a sensitivity analysis. For both the conditional

autoregressive model and the Matérn model we let τ = 0.01, · · · , 0.99. A Gibbs sampler

based on the full-conditional distributions in the bulleted list can be used to obtain β[b], η[b],

ξ[b], and θ[b] for b = 1, ..., B.

Step II:

We now discuss simulating from the posterior predictive distribution; that is, simulating
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from f(Y (s)|η, ξ,θ, z) = Gau
{
e(s)>E(y|η, ξ,θ), e(s)>K(θ)e(s)

}
. The steps involved for

implementing the predictions in Section 5.1 are as follows.

1. Let b = 1.

2. Store a sparseN×N diagonal matrix, which we denote with D(θ[b]) = diag{e(si)
>K(θ[b])e(si) :

i = 1, . . . , N}. Here, e(s) = {I(s = s1), . . . , I(s = sn)} and K(θ[b]) = cov(y|θ[b]) −

cov
(
y,η|θ[b]

)
K−1(θ[b])cov

(
η,y|θ[b]

)
. The specification in Section 5.1 is given by

K(θ[b]) = σ
2[b]
Y ΣY (τ [b])− σ2[b]

Y ΣY (τ [b])Ψ(Ψ>ΣY (τ [b])Ψ)−1Ψ>ΣY (τ [b]),

where ΣY (τ [b]) is formed from a Matérn covariogram with smoothing parameter 0.5

(i.e., an exponential covariagram), unit variance, and spatial range parameter τ [b].

3. Store a sparseN×N diagonal matrix, which we denote with D(θ[b]) = diag{e(si)
>K(θ)e(si) :

i = 1, . . . , N}.

4. Compute

y[b] = Xβ[b] + ΣY (τ [b])Ψ(Ψ>ΣY (τ [b])Ψ)−1(Ψ>Ψ)η[b] + ξ[b] + D(θ[b])1/2φ,

where φ is a draw from a standard multivariate normal distribution. Store y[b].

5. Let b = b+ 1.

6. Repeat Steps 2 through 5 until b = B.

7. Compute and store,

Ê(y|z) =
1

B

B∑
b=1

y[b].
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8. Let residb(s) = e(s)>(y[b] − Ê(y|z)) For each s ∈ {si : i = 1, . . . , N} compute and

store,

v̂ar(Y (s)|z) =
1

B

B∑
b=1

residb(s)2.

Steps 1 − 8 above produce the predictions in Section 5.1 using Special Case 4. The

predictions based on Special Case 1, illustrated in Section 5.2, are very similar. In fact

there are only two differences. The first is that we have different specifications of cov(y)

and cov(y,η|θ), and the second difference is that we select σ2
Y w and ρ using the criterion

in Equation (14) of the main text. We outline the procedure used in Section 5.2 in Steps 1

through 17 listed below.

1. Let σ2
Y w = 0.1.

2. Let ρ = 0.01.

3. Let b = 1.

4. Store a sparseN×N diagonal matrix, which we denote with D(θ[b]) = diag{e(si)
>K(θ[b])e(si) :

i = 1, . . . , N}. Here, e(s) = {I(s = s1), . . . , I(s = sn)} and K(θ[b]) = σ2
Y w(I− ρA)−1.

5. Store a sparseN×N diagonal matrix, which we denote with D(θ[b]) = diag{e(si)
>K(θ)e(si) :

i = 1, . . . , N}.

6. Compute

y[b] = Xβ[b] + Ψη[b] + ξ[b] + D(θ[b])1/2φ,

where φ is a draw from a standard multivariate normal distribution. Store y[b].
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7. Let b = b+ 1.

8. Repeat Steps 4 through 7 until b = B.

9. Compute and store,

Ê(y|z, ρ, σ2
Y w) =

1

B

B∑
b=1

y[b].

10. Let residb(s) = e(s)>(y[b] − Ê(y|z)) For each s ∈ {si : i = 1, . . . , N} compute and

store,

v̂ar(Y (s)|z, ρ, σ2
Y w) =

1

B

B∑
b=1

residb(s)2.

11. Compute and store an estimate of Equation (17),

̂criterion(ρ, σ2
Y w) =

{
z− Ê(y|z, ρ, σ2

Y w)
}> {

z− Ê(y|z, ρ, σ2
Y w)
}

+ 2
1

B

B∑
b=1

(
z− y[b]

)>
Ê(y|z, τ, σ2

Y w).

12. Let ρ = ρ+ 0.01.

13. Repeat Steps 3 through 11 until τ = 0.99.

14. Let σ2
Y w = σ2

Y w + 0.1.

15. Repeat steps 2 through 14 until σ2
Y w = 10.

16. Compute (ρ̂, σ̂2
Y w) = arg min

{
̂criterion(ρ, σ2

Y w) : ρ = 0.01, . . . , 0.99, σ2
Y w = 0.1, . . . , 10

}
.

17. Use Ê(y|z, ρ̂, σ̂2
Y w) and v̂ar(Y (s)|z, ρ̂, σ̂2

Y w) for prediction and uncertainty quantifica-

tion, respectively.
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Appendix C: Specification of Spatial Basis Functions

We consider two different choices for ψ(s) ≡ {ψ1(s), ..., ψr(s)}>; namely, the local bisquare

radial basis function (Cressie and Johannesson, 2006, 2008), and the Moran’s I basis function

(Griffith, 2000, 2002, 2004). These two basis functions are chosen to represent a commonly

used point-referenced basis function and areal-referenced basis function, respectively. How-

ever, many other choices are available and can be used within our framework. For other

choices of point-referenced basis functions see Wikle (2010) and Bradley et al. (2015a), and

see Bradley et al. (2017) for other choices of areal-referenced basis functions. The local

bisquare radial basis functions are defined as follows:

ψj(s) ≡

 {1− (||s− cj||/wr)2}2 if ||s− cj|| ≤ wr

0 otherwise; s ∈ D, j = 1, ..., r
, (C.1)

with pre-specified knots cj and wr is 1.5 times the smallest distance between two different

knots in the set {cj}.

The Moran’s I basis function is motivated by removing random effects that are confounded

with covariates. This is done in an effort to facilitate inference on β. Then, the N × N

matrix Ψ is specified to be contained within the orthogonal complement of the column space

of X(X>X)−1X>. That is, define the MI operator as

G(X,A) ≡
(
IN −X(X>X)−1X>

)
A
(
IN −X(X>X)−1X>

)
; t = 1, . . . , T, (C.2)

where A is a generic N×N weight matrix. We let A be the adjacency matrix corresponding

to the edges formed by D. Notice that the MI operator in (C.2) defines a column space that

is orthogonal to X. Then, let the spectral representation G(X,A) = ΦΛΦ>, and denote

the N × r real matrix formed from the first N columns of Φ as ΨN . As done in Bradley
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et al. (2015b), we set the row of Ψ that corresponds to areal unit A equal to ψ(A).

There are many algorithms that exist to select r knot locations: see Bradley et al. (2011),

Nychka (2001), and Section 12.4.4 of Banerjee et al. (2008), among many others. However, we

would like to use our unique modeling perspective to guide this choice. Thus, in what follows

we use the relationship between Y (·) and w(·) to determine r and the knot locations. We

outline the choice of knots when using local bisquare radial basis functions in the following

enumerated list.

0. Let t = 0. Define {cj} to be a g0 × g0 equally spaced grid of locations in D, where g0

is a positive integer. Define a threshold value for

∑
s∈DO

[E {w(s)|z} − E {Y (s)|z}]2 . (C.3)

We consider the average squared distance between Y (·) and w(·) to be reasonable if it

is less than or equal to 0.1. This decision was made based on simulation.

1. Set t = t + 1. If (C.3) is less than or equal to the threshold (e.g., 0.1) stop, otherwise

set gt = 2gt−1.

2. Let {cj} be the knots formed by a gt × gt grid.

3. Repeat steps 1−2.

The step-by-step instructions on choosing the rank for the MI basis functions are very similar

to choosing knots of spatial basis functions.

0. Let t = 0. Let r0 equal roughly 10% of the available basis functions from the Moran’s

I operator in (C.2) (note that this is the rule of thumb used in Hughes and Haran

(2013)). Define a threshold distance between Y (·) and w(·). In Section 5, we consider
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(C.3) to be reasonable if it is less than or equal to 0.1. This decision was made based

on simulation.

1. Set t = t + 1. If (C.3) is less than or equal to the threshold (e.g., 0.1) stop, otherwise

set rt = 2rt−1.

2. Let r = rt.

3. Repeat steps 1−2.

From our experience, the two algorithms given above tend to stop after three iterations.

Additionally, when using Special Case 4, one should check to see if the eigenvectors of ΣY

fall in the column space of P.

Appendix D: Regularity Conditions

The regularity conditions for Statement 4 in Appendix A, Theorem 1, and Corollary 1 are

listed below.

1. Let (Ω,A,P) be a probability space, where Ω is a generic sample space, A is defined

to be a sigma-algebra on Ω, and P is a generic probability measure.

2. For the mapping Z : D × Ω → R, it is assumed that Z(s) is measurable for every

s ∈ D ⊂ Rd.

3. For the mapping Y : D × Ω → R, it is assumed that Y (s) is measurable for every

s ∈ D ⊂ Rd.

4. For the mapping δ : D × Ω → R, it is assumed that δ(s) is measurable for every

s ∈ D ⊂ Rd.
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5. Assume var {δ(s)} <∞ for every s ∈ D.

6. For every ω ∈ Ω and s ∈ D let Z(s) = Y (s) + δ(s).

7. For the mapping ε : D × Ω → R, it is assumed that ε(s) is measurable for every

s ∈ D ⊂ Rd.

8. Assume var {ε(s)} <∞ for every s ∈ D.

9. Assume Y (·) and ε(·) are mutually independent for any finite collection of locations in

D.

10. Let θ be a general real-valued parameter vector.

11. Let w(·) be a mapping w : D×Ω→ R, where w(s) is measurable for every s ∈ D ⊂ Rd.

12. Assume that the expected value of ε(s) is zero for every s ∈ D.

13. Assume that var {ε(s)} <∞ for every s ∈ D.

14. Assume that cov {ε(s1), ε(s2)} = 0 for every s1, s2 ∈ D.

15. Assume w(·) and ε(·) are mutually independent for any finite collection of locations in

D.

16. For every ω ∈ Ω and s ∈ D the General Assumption in the main text is given by the

following: δ(s) = w(s)− Y (s) + ε(s); s ∈ D.

17. Let f(Y (s1), . . . , Y (sk)|w, z,θ) be a valid probability density on Rk, where recall S ⊂

D ⊂ Rd is an open set for each k ∈ N = {1, 2, 3, . . .} and finite collection of locations

s1, . . . , sk ∈ S.

18. Define f(Y (s1), . . . , Y (sk)|w, z,θ), f(z|w,θ), f(z|w,θ, Y (s1), . . . , Y (sk)),

f(Y (s1), . . . , Y (sk)|w,θ), f(w|θ) to be valid probability densities on R.

16



19. Let f(Y (s1), . . . , Y (sk)|w,θ) be Kolmogorov consistent.

Appendix E: Review of Current Methods for Spatial

Prediction

In this section, we review three spatial predictors already in the literature, which arise from

a spatial mixed model. This is done, in part, to show the primary difference in our proposed

method and current methods for spatial prediction. For an in-depth review of many of the

current spatial predictors see Bradley et al. (2016a).

The Spatial Mixed Effects Model: Let

Y (s) = x(s)>β + γ(s) + ξ(s),

where x(s) is a known p-dimensional vector of spatial covariates, γ(·) is a mean-zero spatial

process with a generic spatial covariance function C : D ×D → R, and the process ξ(·) has

mean-zero, finite variance, and no spatial covariances. Let DP ⊂ D consists of N prespecified

prediction locations and define the N -dimensional random vector γ = {γ(s) : s ∈ DP}>.

Denote the N ×N covariance matrix of γ with ΣY .

The spatial mixed effects model can be written as,

w(s) = x(s)>β +ψ(s)>η + ξ(s); s ∈ D, (E.1)

where ψ : D → Rr is a generic set of spatial basis functions, r � n, η is an r-dimensional

random vector of expansion coefficients that is mean zero and has r × r covariance matrix

K, and η is mutually independent of the process ξ(·). The covariance of η is chosen so that

17



cov(w) ≈ cov(y), where the N -dimensional random vector y = {Y (s) : s ∈ DP}>, and the

N -dimensional random vector w = {w(s) : s ∈ DP}>. Note that

w = Xβ + Ψη + ξ,

where the N×p matrix X ≡
{
x(s)> : s ∈ DP

}>
, the N×r matrix Ψ ≡

{
ψ(s)> : s ∈ DP

}>
,

and the N -dimensional random vector ξ ≡ {ξ(s) : s ∈ DP}>.

The spatial mixed effects model has been used for areal data as well (i.e., when DP con-

sists of areal units); (Griffith, 2000; Hughes and Haran, 2013; Porter et al., 2014; Bradley

et al., 2016b, 2015c,b, 2017). For this setting ΣY is assumed to be the covariance matrix

of an intrinsically autoregressive model, and ψ is defined to be the Moran’s I basis function

(Griffith, 2000, 2002, 2004). In Section 5, we use the spatial mixed effects model for areal

data.

Fixed Rank Kriging: Cressie and Johannesson (2008) aggregate w and y by postmulti-

plying by an M×N matrix J, which is row-normalized version of a matrix of zeros and ones.

Then, Cressie and Johannesson (2008) define

K ≡ arg min
K

(
||cov(Jw)− cov(Jy)||2F

)
= arg min

K

(
||JΨKΨ>J> − JΣY J>||2F

)
, (E.2)

where for any real-valued square matrix G we have that ||G||2F = trace(G>G). (The matrix-

valued distance function || · ||F is referred to as the Frobenius norm.) The closed form

expression for (E.2) is well-known (Cressie and Johannesson, 2008) and given by:

K = (Ψ>J>JΨ)−1Ψ>JΣY J>Ψ(Ψ>J>JΨ)−1. (E.3)

Cressie and Johannesson (2008) substitute a method of moments estimator of JΣY J> into
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(E.3), and use the Sherman-Morrison-Woodbury formula (Searle, 1982) to efficiently calcu-

late the best linear unbiased predictor, which they refer to as fixed rank Kriging (FRK).

Now, Cressie and Johannesson (2008) assume that w(·) ≡ Y (·) (cf. Equations (2.6)

and (2.12) of Cressie and Johannesson (2008)), which is a key difference with our approach.

That is, Cressie and Johannesson (2008) assume that their reduced rank approximation w

is exactly equal to Y , where we assume w(s) 6= Y (s) for at least one location s ∈ D.

Modified Predictive Processes: Consider the modified predictive process (MPP) (Finley

et al., 2009) approach, which is motivated by defining an approximation to a full rank model.

Let {γ(s) : s ∈ D} be assumed to have an isotropic covariagram denoted by C(||h||) and

h ∈ Rd. Specifically, let

ΣY ≡ {CM(h; θ) : h = ||s− s||E, s, s ∈ DP} ,

where || · ||E is the Euclidean distance, the Matérn covariance function (Matérn, 1960) is

defined as,

CM(h; θ) =
σ2
Y

Γ(α)2α−1
(τ ||h||E)αKα(τ ||h||E); h = ||s1 − s2||E, s1, s2 ∈ D, (E.4)

θ ≡ (σ2
Y , α, τ)>, Kα is the modified Bessel function of the second kind of order α > 0, the

correlation parameter τ > 0, and the variance parameter σ2
Y > 0.

Consider the spatial mixed effects model withψ(s)> = {C(||s− s∗1||), . . . , C(||s− s∗r||)}K−1,

s∗1, . . . , s
∗
r ∈ D are prespecifed knot locations, r � n, and the r-dimesensional ran-

dom vector η is assumed to be Gaussian with mean zero and r × r covariance matrix

K =
{
C(||s∗i − s∗j ||) : i, j = 1, . . . , r

}
. The motivation here is that the likelihood for the

r-dimensional random vector η is easier to compute than the likelihood associated with
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the n-dimensional vector {Y (s) : s ∈ D}, since r � n. Additionally, if r = N and

{s∗1, . . . , s∗r} = DP then for Gaussian η we have that ψ(s)>η is almost surely equal in

distribution to γ(s) for s ∈ DP . Finley et al. (2009) note that

var
{
ψ(s)>η

}
= ψ(s)>K−1ψ(s) 6= var {γ(s)} ,

and suggest setting

w1(s) = x(s)>β +ψ(s)>η + ξ(s); s ∈ D, (E.5)

where var {ξ(s)} = var {γ(s)} − ψ(s)>K−1ψ(s), ξ(s1) is independent of ξ(s2) for s1 6= s2,

and ξ(·) is mutually independent of η. This modification guarantees that w1(·) has the same

variance as γ(·).

Further, Banerjee et al. (2008) and Finley et al. (2009) assume that w1(·) ≡ Y (·) (cf.

Equations (5) and (7) of Finley et al. (2009)), which is a key difference with our approach.

That is, Finley et al. (2009) assume that their reduced rank approximation w1 is exactly

equal to Y , where we assume w1(·) 6= Y (·).

Full Scale Approximation: Sang and Huang (2012) is another predictive process-type

approach that bares some similarity to the augmented process w(·). They approximate the

process {Y (s) : s ∈ D} with

w2(s) = Ytaper(s) + w1(s), (E.6)

where

cov {Ytaper(s1), Ytaper(s2)} =
[
cov {Y (s1), Y (s2)} − g(s1)

>K−1g(s2)
]
Ktaper(s1, s2); s1, s2 ∈ D,

Ktaper is a taper function, and Ytaper(·) and w1(·) are mutually independent. Sang and Huang
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(2012) assume their full-scale approximation w2(·) is exactly equal to Y (·) (cf. Equation (13)

of Sang and Huang (2012)). Again, the key difference with our approach is that we assume

w2(·) 6= Y (·).

Appendix F: Proof of Theorem 1

Let y = (Y (s1), . . . , Y (sk))
>. We have that [y|w,θ, z] = [y|w,θ, ε = z − Xβ − Ψη],

where ε ≡ (ε(sk+1), . . . , ε(sk+n))′, the n×p matrix X ≡ (x(sk+1), . . . ,x(sk+n))>, and the n×r

matrix Ψ ≡ (ψ(sk+1), . . . ,ψ(sk+n))>. Since Y is independent of ε, [y|w,θ, z] = [y|w,θ, ε =

z−Xβ −Ψη] = [y|w,θ], which completes the proof.

To prove Equation (20) of the main text, we show the conditions of the Kolmogorov

Extension theorem. First, we have that,

P {Y (s1) ∈ A1, ..., Y (sk) ∈ Ak|w,θ, z} =∫
A1

...

∫
Ak

∫
R
...

∫
R
f(Y (s1), ..., Y (sk), Y (sk+1), ..., Y (st+m)|w,θ, z)dY (s1)...dY (sk)dY (sk+1) . . . dY (st+m)

= P {Y (s1) ∈ A1, ..., Y (sk) ∈ Ak, Y (sk+1) ∈ R, ..., Y (st+m) ∈ R|w,θ, z} .

Additionally, we have that f(y|w,θ, z) = f(y|θ,w) from the conditional independence result

shown above. Since f(y|θ,w) is Kolmogorov consistent, it follows from the Kolomogorov

Extension Theorem that there exists a probability space (with sample space Ω, sigma-algebra

F , and probability measure P) and stochastic process Y : S × Ω→ R, such that

P {Y (s1) ∈ A1, . . . , Y (sk) ∈ Ak} =

∫
A1

. . .

∫
Ak

f(Y (s1), . . . , Y (sk)|w,θ, z)dY (s1) . . . dY (sk).

A similar argument to the one presented in the first paragraph of the proof provides the last
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Figure 1: In Panel (a), we display the simulated data {Z(·)} over a collection of observed

locations, which are generated by randomly selecting points outside of a rectangular region

in D. Here, D is a 40×40 grid D ≡ {(s1, s2)> : s1, s2 = 0, 0.025, . . . , 1}. White areas indicate

a missing observation. Panel (b) represents a simulation of the latent process with a Matérn

covariance function with unit variance and range parameter 1/12. In Panels (c), (d), (e), (f)

we present the kriging predictor and variances under the Standard Assumption and Special

Case 1, respectively. The data and the process were generated according to Special Case 1.

equation in (20) of the main text.

Appendix G: Simulation Study: Special Case 1

In this small simulation study we provide empirical results to investigate the performance

of the kriging predictor assuming Special Case 1. The goal of this simulation study is to

illustrate that the expression of the kriging predictor (with known covariances) is the same
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for both the Standard Assumption and Special Case 1; however, the prediction variances

become larger when Special Case 1 holds.

The spatial domain is set equal to a 40×40 grid D ≡ {(u1, u2)> : u1, u2 = 0, 0.025, . . . , 1}.

Then, let Σw = ΣY,w, where Σw consists of Matérn covariances (Matérn, 1960) with unit

variance. The range parameter is set equal to 1/12, so that the spatial range is moderate

at 1/4. Additionally, let µ(·) ≡ 0. Let ΣY = Σw + Σ1, where Σ1 consists of Matérn

covariances (Matérn, 1960) with variance 0.001 and range parameter 1/12. In Figure 2(a),

we present simulated data, where {s1, . . . , sm} consists of locations randomly selected from

D and m = 800. In Figure 2(c,d) we display the kriging predictor and kriging variances

under the Standard Assumption. Figure 1(d,e) displays a map of the kriging predictor and

kriging variances under Special Case 1. Both predictors were computed using the known

parameters, and the true model was simulated from Special Case 1. Upon comparisons

of Figures 2(c,d,e,f), we see that the two kriging predictors are identical, which is to be

expected (see Proposition 2). However, the kriging variances are under estimated when

using the Standard Assumption. This is true even though the variance of Σ1 was very small.

Appendix H: Summary of Models Implemented in Sec-

tion 5.2

In Table 1, we provide details on the models that were compared in Section 5.2 of the main

text. Specifically, we outline the model, the assumptions made on the augmented process,

the assumptions on the latent process, and notes on implementation.
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Model Name (MD) w(·) Assumptions Y (·) Assumptions Implementation

Special Case 1 Let w = Ψη + ξ, where
Ψ are the Moran’s I basis
functions, η is assumed
to be Gaussian, and ξ is
assumed to be Gaussian
with independent compo-
nents with mean zero and
variance σ2

ξ . The vari-
ances of ε(·) are assumed
known and constant.

Let y follow an intrin-
sically autoregressive
model.

We perform a fully
Bayesian implementation
of this model. For de-
tails see Supplemental
Appendix E.

Fixed Rank kriging
(FRK)

Let w = Ψη + ξ, where
Ψ are the Moran’s I basis
functions, η is assumed
to be Gaussian, and ξ is
assumed to be Gaussian
with independent compo-
nents with mean zero and
variance σ2

ξ . The vari-
ances of ε(·) are assumed
known and constant.

Let w = y. We perform a fully
Bayesian implementation
of this model. For de-
tails see Supplemental
Appendix E.

Conditional Autoregres-
sive (CAR)

Let w follow an in-
trinsically autoregressive
model. The variances of
ε(·) are computed from
the margins of errors
made publicly available
by ACS.

Let w = y. We perform a fully
Bayesian implementation
of CAR. Predictions of
Y (·) were implemented
using R, and the Gibbs
sampling details can
be found in De Oliveira
(2012).

Table 1: We list the models compared in Section 5.2. The leftmost column contains the

model name (MD). We consider MD = SC1, FRK, and CAR. The middle two columns give

the assumptions of the SC1 and the latent process imposed by MD. The rightmost column

describes the implementation of MD.
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