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S1 Appendix

We will use the following notation: for functions f and g and a dataset D with

m samples, we denote the inner product of f and g at covariates D as 〈f, g〉D =

1
m

∑
(xi,yi)∈D f(xi, yi)g(xi, yi).

S1.1 A single training/validation split

Theorem 1 is a special case of Theorem 3, which applies to general model-estimation

procedures. The proof is based on the so-called “basic inequality” below.

Lemma 4. For any λ̃ ∈ Λ̃, we have∥∥∥g∗ − ĝ(nT )(λ̂|T )
∥∥∥2

V
−
∥∥∥g∗ − ĝ(nT )(λ̃|T )

∥∥∥2

V
≤ 2

〈
ε, ĝ(nT )(λ̃|T )− ĝ(nT )(λ̂|T )

〉
V

(S1.1)

Proof. The desired result can be attained by rearranging the definition of λ̂∥∥∥y − ĝ(nT )(λ̂|T )
∥∥∥2

V
≤ min

λ̃∈Λ̃

∥∥∥y − ĝ(nT )(λ̃|T )
∥∥∥2

V
. (S1.2)
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We are therefore interested in bounding the empirical process term in (S1.1). A

common approach is to use a measure of complexity of the function class. For a

single training/validation split, where we treat the training set as fixed, we only need

to consider the complexity of the fitted models from the model-selection procedure

G(T ) =
{
ĝ(nT )(λ|T ) : λ ∈ Λ

}
. (S1.3)

This model class can be considerably less complex compared to the original function

class G, such as the special case in Theorem 1 where we suppose G(T ) is Lipschitz.

For this proof, we will use metric entropy as a measure of model class complexity.

We recall its definition below.

Definition 4. Let F be a function class. Let the covering number N(u,F , ‖ · ‖) be

the smallest set of u-covers of F with respect to the norm ‖ · ‖. The metric entropy

of F is defined as the log of the covering number:

H(u,F , ‖ · ‖) = logN(u,F , ‖ · ‖). (S1.4)

We will bound the empirical process term using the following Lemma, which is

a simplification of Corollary 8.3 in van de Geer [2000].

Lemma 5. Suppose D(m) = {x1, ..., xm} are fixed and ε1, ..., εm are independent ran-

dom variables with mean zero and uniformly sub-gaussian with parameters b and B.

Suppose the model class F satisfies supf∈F ‖f‖D(m) ≤ R and∫ R

0

H1/2(u,F , ‖ · ‖D(m))du ≤ J (R).
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There is a constant a > 0 dependent only on b and B such that for all δ > 0

satisfying

√
mδ ≥ a(J (R) ∨R),

we have

Pr

(
sup
f∈F

∣∣∣∣∣ 1

m

m∑
i=1

εif(xi)

∣∣∣∣∣ ≥ δ

)
≤ a exp

(
− mδ2

4a2R2

)
.

We are now ready to prove the oracle inequality. It uses a standard peeling

argument.

Theorem 3. Consider a set of hyper-parameters Λ. Let training data T be fixed, as

well as the covariates of the validation set XV . Let the oracle risk be denoted

R̃(XV |T ) = arg min
λ∈Λ

∥∥g∗ − ĝ(nT )(λ|T )
∥∥2

V
. (S1.5)

Suppose independent random variables εi for validation set V have expectation

zero and are uniformly sub-Gaussian with parameter b and B. Suppose there is a

function J (·|T ) : R 7→ R and constant r > 0 such that

∫ R

0

H1/2(u,G(T ), ‖ · ‖V )du ≤ J (R|T ) ∀R > r (S1.6)

Also, suppose J (u|T ) /u2 is non-increasing in u for all u > r.

Then there is a constant c > 0 only depending on b and B such that for all δ

satisfying

√
nV δ

2 ≥ c
(
J (δ|T ) ∨ δ ∨ J

(
R̃(XV |T )

∣∣∣T) ∨ 4R̃(XV |T )
)
, (S1.7)
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we have

Pr

(∥∥∥g∗ − ĝ(nT )(λ̂|T )
∥∥∥2

V
− R̃(XV |T ) ≥ δ2

∣∣∣∣T,XV

)
≤ c exp

(
− nV δ

4

c2R̃(XV |T )

)
+ c exp

(
−nV δ

2

c2

)
.

(S1.8)

Proof. Consider any λ̃ ∈ Λ̃. We will use the simplified notation ĝ(λ̂) := ĝ(nT )(λ̂|T )

and ĝ(λ̃) := ĝ(nT )(λ̃|T ). In addition, the following probabilities are all conditional on

XV and T but we leave them out for readability.

Pr

(∥∥∥ĝ(λ̂)− g∗
∥∥∥2

V
− R̃(XV |T ) ≥ δ2

)
(S1.9)

=
∞∑
s=0

Pr

(
22sδ2 ≤

∥∥∥ĝ(λ̂)− g∗
∥∥∥2

V
− R̃(XV |T ) ≤ 22s+2δ2

)
(S1.10)

≤
∞∑
s=0

Pr
(

22sδ2 ≤ 2
〈
ε, ĝ(λ̂)− ĝ(λ̃)

〉
V

(S1.11)

∧
∥∥∥ĝ(λ̂)− ĝ(λ̃)

∥∥∥2

V
≤ 22s+2δ2 + 2

∣∣∣〈ĝ(λ̃)− ĝ(λ̂), ĝ(λ̃)− g∗
〉
V

∣∣∣) , (S1.12)

where we applied the basic inequality (S1.1) in the last line. Each summand in

(S1.11) can be bounded by splitting the event into the cases where either 22s+2δ2

or 2
∣∣∣〈ĝ(λ̃)− ĝ(λ̂), ĝ(λ̃)− g∗

〉
V

∣∣∣ is larger. Splitting up the probability and applying

Cauchy Schwarz gives us the following bound for (S1.9)

Pr

 sup
λ∈Λ:‖ĝ(λ)−ĝ(λ̃)‖

V
≤4‖ĝ(λ̃)−g∗‖

V

2
〈
ε, ĝ(λ)− ĝ(λ̃)

〉
V
≥ δ2

 (S1.13)

+
∞∑
s=0

Pr

 sup
λ∈Λ:‖ĝ(λ)−ĝ(λ̃)‖

V
≤2s+3/2δ

2
〈
ε, ĝ(λ)− ĝ(λ̃)

〉
V
≥ 22sδ2

 . (S1.14)

We can bound both (S1.13) and (S1.14) using Lemma 5. For our choice of δ in

(S1.7), there is some constant a > 0 dependent only on b such that (S1.13) is bounded
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above by

a exp

− nV δ
4

4a2

(
16
∥∥∥ĝ(λ̃)− g∗

∥∥∥2

V

)
 .

In addition, our choice of δ from (S1.7) and our assumption that ψ(u)/u2 is non-

increasing implies that the condition in Lemma 5 is satisfied for all s = 0, 1, ...,∞

simultaneously. Hence for all s = 0, 1, ...,∞, we have

Pr

 sup
λ∈Λ:‖ĝ(λ)−ĝ(λ̃)‖

V
≤2s+3/2δ

2
〈
ε, ĝ(λ)− ĝ(λ̃)

〉
V
≥ 22sδ2

 ≤ a exp

(
−nV

24s−2δ4

4a222s+3δ2

)
.

(S1.15)

Putting this all together, we have that there is a constant c such that (S1.9) is

bounded above by

c exp

(
− nV δ

4

c2R̃(XV |T )

)
+ c exp

(
−nV δ

2

c2

)
. (S1.16)

We can apply Theorem 3 to get Theorem 1. Before proceeding, we determine the

entropy of G(T ) when the functions are Lipschitz in the hyper-parameters.

Lemma 6. Let Λ = [λmin, λmax]J where λmin ≤ λmax. Suppose G(T ) is Lipschitz with

function C(·|T ) over λ. Then the entropy of G(T ) with respect to ‖ · ‖ is

H (u,G(T ), ‖ · ‖) ≤ J log

(
4‖C(·|T )‖ (λmax − λmin) + 2u

u

)
. (S1.17)

Proof. Using a slight variation of the proof for Lemma 2.5 in van de Geer [2000], we
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can show

N (u,Λ, ‖ · ‖2) ≤
(

4 (λmax − λmin) + 2u

u

)J
. (S1.18)

Under the Lipschitz assumption, a δ-cover for Λ is a ‖C(·|T )‖δ-cover for G(T ). The

covering number for G(T ) wrt ‖·‖ is bounded by the covering number for Λ as follows

N (u,G(T ), ‖ · ‖) ≤ N

(
u

‖C(·|T )‖
,Λ, ‖ · ‖2

)
(S1.19)

≤
(

4 (λmax − λmin) + 2u/‖C(·|T )‖
u/‖C(·|T )‖

)J
. (S1.20)

Proof for Theorem 1

Proof. By Lemma 6, we have∫ R

0

H1/2(u,G(T ), ‖ · ‖V )du =

∫ R

0

(
J log

(
4‖CΛ‖V ∆Λ + 2u

u

))1/2

du (S1.21)

≤ J1/2

∫ R

0

[
log

(
4‖CΛ(·|T )‖V ∆Λ + 2R

u

)]1/2

du

(S1.22)

= J1/2R

∫ 1

0

[
log

(
4‖CΛ(·|T )‖V ∆Λ + 2R

vR

)]1/2

dv

(S1.23)

≤ J1/2R

∫ 1

0

log1/2

(
4‖CΛ(·|T )‖V ∆Λ + 2R

R

)
+ log1/2(1/v)dv

(S1.24)

< J1/2R

(
log1/2

(
4‖CΛ(·|T )‖V ∆Λ + 2R

R

)
+ 1

)
.

(S1.25)
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If we restrict R > n−1, then for an absolute constant c, we have

∫ R

0

H1/2(u,G(T ), ‖ · ‖V )du ≤ J (R) := cR (J log(‖CΛ(·|T )‖V ∆Λn+ 1))1/2 . (S1.26)

Applying Theorem 3, we get our desired result.

S1.2 Cross-validation

In order to obtain an oracle inequality for averaged version of cross-validation, we

need to extend Theorem 3.5 in Lecué and Mitchell [2012]. Let the class of fitted

functions for given training data T be denoted

G(T ) = {ĝ(nT )(λ|T ) : λ ∈ Λ}.

In Lecué and Mitchell [2012], they assume that there is a function J that uniformly

bounds the size of the class G(T ) for any training data T . However the complexity of

G(T ) depends on training data – for instance, if there is a lot of noise in the training

data, the size of G(T ) can be very high. In our extension, we allow the function J

to depend on the training data.

Throughout this section, we use Talagrand’s gamma function [Talagrand, 2005]

to characterize the size of a function class. We present it below as it will be used

later on.

Definition 5. For metric space (T, d) and α ≥ 0, define

γα(T, d) = inf sup
t∈T

∞∑
s=0

2s/αd(t, Ts)



Jean Feng and Noah Simon

where the infimum is taken over all sequences {Ts : s ∈ N, Ts ⊆ T, |Ts| ≤ 22s}. (Here,

|A| denotes the cardinality of the set A.)

We begin with some notation. Suppose we have a measurable space (Z, T )

where we observe Z = (X, y) random variables with values in Z. Let G is a class of

measurable functions from Z 7→ R; the model-estimation procedure selects functions

from the class G. In contrast to the main manuscript, we will consider a very general

setting. In particular, the noise ε = y−E[y|X = x] is not necessarily independent of

X. In addition, we consider a general loss function Q : Z×G 7→ R (rather than solely

the least squares loss). Define the risk function R(g) as the expected loss EQ(Z, g)

and suppose the risk function is convex. Let ḡ(n)(D(n)) denote the averaged version

of cross-validation and g∗ denote the minimizer of the risk function over G.

In this more general setting, we require a more general version of Assumption 2:

Assumption 3. There exist constants K0, K1 ≥ 0 and κ ≥ 1 such that for any

m ∈ N and any dataset D(m),

∥∥Q(·, ĝ(nT )(λ|D(nT ))−Q(·, g∗)
∥∥
Lψ1
≤ K0 (S1.27)∥∥Q(·, ĝ(nT )(λ|D(nT ))−Q(·, g∗)

∥∥
L2
≤ K1

(
R(ĝ(nT )(λ|D(nT )))−R(g∗)

)1/2κ
. (S1.28)

Our theorem relies on the basic inequality established in Lemma 3.1 in Lecué

and Mitchell [2012]. We reproduce it here for convenience. From henceforth, ci > 0

denotes absolute constants, that may not necessarily be the same if they share the

same subscript.
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Lemma 7. For any constant a > 0, we have the following inequality

ED(n)

(
R(ḡ(n)(D(n)))−R(g∗)

)
≤ (1 + a) inf

λ∈Λ

[
ED(nV )R(ĝ(nV )(λ|D(nV )))−R(g∗)

]
+ ED(n) sup

λ∈Λ

[
(P − (1 + a)PnV )

(
Q(·, ĝ(nT )(λ|D(nT )))−Q(·, g∗)

)]
(S1.29)

where PnV = 1/nV
∑n

i=nT+1 δZi is the empirical probability measure on {ZnT+1, ..., Zn}.

We need to bound the supremum of the second term on the right hand side,

which is a shifted empirical process term. Lemma 3.4 in Lecué and Mitchell [2012]

already bounds the shifted empirical process term. However to extend their result to

our purposes, we restate it to clarify the conditional dependencies. This allows us to

introduce two new functions h and Jδ that will be used later on.

Lemma 8. Let Q(D(m)) ≡
{
Q(λ|D(m)) : λ ∈ Λ

}
and Q ≡ ∪m∈N ∪D(m) Q(D(m)).

Suppose there exists C1 > 0 and an increasing function G(·) such that ∀Q ∈ Q,

‖Q(Z)‖L2 ≤ G (EQ(Z)) .

Let nT , nV ∈ N. Suppose there exists a function h that maps training data D(nT ) to

R+, a function Jδ : R+ 7→ R+ indexed by δ > 0, and a constant wmin > 0 such that

for any dataset D(nT ) and any w ≥ wmin,

h(D(nT )) ≤ δ =⇒ log nV√
nV

γ1

(
QL2
w (D(nT )), ‖ · ‖Lψ1

)
+ γ2

(
QL2
w (D(nT )), ‖ · ‖L2

)
≤ Jδ(w)

(S1.30)
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where QL2
w (D(nT )) ≡

{
Q ∈ Q(D(nT )) : ‖Q(Z)‖L2 ≤ G(w)

}
.

Then there exists absolute constants L, c > 0 such that for all w ≥ wmin and all

u ≥ 1,

Pr

(
sup

Q∈Q(D(nT )):PQ≤w
((P − PnV )Q)+ ≤ uL

Jδ(w)
√
nV

∣∣∣∣∣h (D(nT )
)
≤ δ

)
≥ 1− L exp(−cu).

(S1.31)

Now that we have established a concentration inequality for the function class

{Q ∈ Q(D(nT )) : PQ ≤ w}, we need to aggregate the results to establish a concen-

tration inequality for the function class Q(D(nT )). Again, we use Lemma 3.2 in Lecué

and Mitchell [2012] but restate it using our new functions h and Jδ.

Lemma 9. Let a > 0. Let Q(D(m)) ≡
{
Q(λ|D(m)) : λ ∈ Λ

}
be a set of measurable

functions. For all m ∈ N and any dataset D(m), suppose EQ(Z) ≥ 0 for all Q ∈

Q
(
D(m)

)
.

Suppose for any nT , nV ∈ N and dataset D(nT ) there exists some absolute constant

L, c > 0 such that for all w ≥ wmin and for all u ≥ 1,

Pr

(
sup

Q∈Q(D(nT )):PQ≤w
((P − PnV )Q)+ ≤ uL

Jδ(w)
√
nV

∣∣∣∣∣h (D(nT )
)
≤ δ

)
≥ 1− L exp(−cu).

For any δ > 0, suppose Jδ is strictly increasing and its inverse is strictly convex. Let

ψδ be the convex conjugate of J−1
δ , e.g. ψδ(u) = supv>0 uv − J−1

δ (v) for all u > 0.

Assume there is a r ≥ 1 such that x > 0 7→ ψδ(x)/xr decreases. For all q > 1 and
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u ≥ 1, define

ψ̃q,δ(u) = ψδ

(
2qr+1(1 + a)u

a
√
nV

)
∨ wmin.

Then there exists a constant L1 that only depends on L such that for every u ≥ 1,

Pr

(
sup

Q∈Q(D(nT ))

((P − (1 + a)PnV )Q)+ ≤
aψ̃q,δ(u/q)

q

∣∣∣∣∣h (D(nT )
)
≤ δ

)
≥ 1−L1 exp(−cu).

Moreover, assume that ψδ(x) is an increasing function in x such that ψδ(∞) =∞.

Then there exists a constant c1 that depends only on L and c such that

E

[
sup

Q∈Q(D(nT ))

((P − (1 + a)PnV )Q)+

∣∣∣∣∣h (D(nT )
)
≤ δ

]
≤ ac1ψ̃q,δ(1/q)

q
. (S1.32)

Finally, we are ready to bound the expectation of the shifted empirical process

term in (S1.29). We accomplish this via a simple chaining argument; we omit its

proof as this is a standard application of the chaining argument.

Lemma 10. Consider any a > 0. Suppose there exists a constant c1 such that for

any nT , nV ∈ N, δ > 0, and q > 1, (S1.32) holds. Then for any σ > 0, we have

E

[
sup

Q∈Q(D(nT ))

((P − (1 + a)PnV )Q)+

]
≤ ac1

q

(
ψ̃q,2σ(1/q) +

∞∑
k=1

Pr
(
h
(
D(nT )

)
≥ 2kσ

)
ψ̃q,2kσ(1/q)

)
.

Putting Lemmas 7 and 10 together, we have the following result.

Theorem 4. Consider a set of hyper-parameters Λ. Consider a loss function Q :

(Z,G) 7→ R with convex risk function R : G 7→ R. Let

Q = {Q(·, ĝ(nT )(λ|D(nT ))−Q(·, g∗) : λ ∈ Λ}.
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Suppose Assumption 3 holds. Suppose there is an wmin > 0 and functions h : Z(nT ) 7→

R and Jδ : R 7→ R such that for all w ≥ wmin,

h(D(nT )) ≤ δ =⇒ log nV√
nV

γ1

(
QL2
w (D(nT )), ‖ · ‖Lψ1

)
+ γ2

(
QL2
w (D(nT )), ‖ · ‖L2

)
≤ Jδ(w)

(S1.33)

where Qw = {Q ∈ Q : ‖Q‖L2 ≤ w1/2κ}. Moreover, suppose that for all δ > 0, Jδ is

a strictly increasing function and J −1
δ (ε) is strictly convex. Let the convex conjugate

of J −1
δ be denoted ψδ. Suppose ψδ(x) increases in x, ψδ(∞) = ∞, and there exists

r ≥ 1 such that ψδ(x)/xr decreases.

Consider any σ > 0. Then there is a constant c > 0 such that for every a > 0

and q > 1, the following inequality holds

ED(n)

(
R
(
ḡ(D(n))

)
−R(g∗)

)
≤ (1 + a) inf

λ∈Λ
ED(nT )

(
R
(
ḡ(λ̂|D(n))

)
−R(g∗)

)
+
ac

q

(
ψ̃q,2σ(1/q) +

∞∑
k=1

Pr
(
h
(
D(nT )

)
≥ 2kσ

)
ψ̃q,2kσ(1/q)

)
.

(S1.34)

where ψ̃q,δ(u) = ψδ

(
2qr+1(1+a)u

a
√
nV

)
∨ wmin for all u > 0.

Of course, this theorem is only useful if we can show that h(D(nT )) is bounded

with high probability. For instance, in an example in the main manuscript, we show

that h(D(nT )) has sub-exponential tails; so the latter term in (S1.34) is well-controlled.

We now apply Theorem 4 to prove Theorem 2. Recall that Theorem 2 concerns

the squared error loss Q((x, y), g) = (y− g(x))2 and only considers model-estimation

methods where the estimated functions are Lipschitz in the hyper-parameters. First
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we need the following lemma that describes the relationship between Lipschitz func-

tions

Lemma 11. Suppose the same conditions as Theorem 4. Suppose Assumptions 1

and 2 hold. Also suppose that ‖ε‖Lψ2 = b < ∞. Define QL2
w = {g∗ − ĝ(λ|D(nT )) :

P (g∗− ĝ(λ|D(nT )))2 < w} for w > 0. Then there is an absolute constant c0 > 0 such

that

N
(
QL2
w (D(nT )), u, ‖ · ‖L2

)
≤ N

(
Λ,

u

c0 (b+
√
w) ‖CΛ(x|D(nT ))‖L2

, ‖ · ‖2

)
. (S1.35)

then we also have

N
(
QL2
w (D(nT )), u, ‖ · ‖Lψ1

)
≤ N

(
Λ,

u

cK0,b‖CΛ(x|D(nT ))‖Lψ2
, ‖ · ‖2

)
(S1.36)

for a constant cK0,b > 0 that only depends on K0 and b.

Proof. Let us first consider a general norm ‖ · ‖ such that for any random variables

X, Y , we have ‖XY ‖ ≤ ‖X‖∗‖Y ‖∗. Then for all λ ∈ Λ such that P (g∗−ĝ(λ|DnT ))2 ≤
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w, we have∥∥∥Q(·, ĝ(nT )(λ(1)|D(nT ))(x))−Q(·, ĝ(nT )(λ(2)|D(nT ))(x))
∥∥∥ (S1.37)

=

∥∥∥∥(y − ĝ(nT )(λ(1)|D(nT ))(x)
)2

−
(
y − ĝ(nT )(λ(2)|D(nT ))(x)

)2
∥∥∥∥ (S1.38)(

ĝ(nT )(λ(2)|D(nT ))(x)− ĝ(nT )(λ(1)|D(nT ))(x)
)2

‖ (S1.39)

≤
∥∥∥2ε+ g∗(x)− ĝ(λ(1)|D(nT ))(x) + g∗(x)− ĝ(λ(2)|D(nT ))(x)

∥∥∥
∗

×
∥∥∥ĝ(nT )(λ(2)|D(nT ))(x)− ĝ(nT )(λ(1)|D(nT ))(x)

∥∥∥
∗

(S1.40)

≤

(
2‖ε‖∗ + 2 sup

λ∈Λ:P (g∗−ĝ(λ|DnT ))2≤w

∥∥∥g∗(x)− ĝ(λ(1)|D(nT ))(x)
∥∥∥
∗

)∥∥CΛ(x|D(nT ))
∥∥
∗ ‖λ

(2) − λ(1)‖2

(S1.41)

For ‖ · ‖ = ‖ · ‖L2 , the L2 norm is its own dual norm so (S1.41) reduces to

c0

(
b+
√
w
)
‖CΛ(x|D(nT ))‖L2‖λ(1) − λ(2)‖2

for an absolute constant c0 > 0.

For ‖ · ‖ = ‖ · ‖Lψ1 , the dual of the Lψ1 norm is Lψ2 . Thus applying Assumption 2

and the fact that ‖ε‖Lψ2 = b <∞, (S1.41) reduces to

2 (b+K0) ‖CΛ(x|D(nT ))‖Lψ2‖λ
(1) − λ(2)‖2.

Talagrand’s gamma function of a class T can be bounded by Dudley’s integral

γα(T,D) ≤ c

∫ Diam(T,d)

0

(logN(T, ε, d))1/α dε (S1.42)

[Talagrand, 2005]. Combining the above bound with Lemma 11 gives the following

lemma.
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Lemma 12. Suppose Assumptions 1 and 2 hold. Suppose ‖ε‖Lψ2 = b < ∞. Define

QL2
w as before. For Λ, let ∆Λ = (λmax − λmin) ∨ 1. Let w > 0. Let QL2

w (D(nT )) be

defined as before.

Then there exist absolute constants c0, c1 > 0 and a constant cK0,b > 0 such that

γ2

(
QL2
w (D(nT )), ‖ · ‖L2

)
≤ c0

√
wJ

[√
log

((
b√
w

+ 1

)
∆Λ‖CΛ(x|D(nT ))‖L2 + 1

)
+ 1

]

(S1.43)

γ1

(
QL2
w (D(nT )), ‖ · ‖Lψ1

)
≤ c1JK0

[
log
(

∆Λ‖CΛ(x|D(nT ))‖Lψ2cK0,b + 1
)

+ 1
]
.

(S1.44)

Proof. By definition ofQL2
w , we have Diam

(
QL2
w (D(nT )), ‖ · ‖L2

)
= 2
√
w.Using Lemma 11

and (S1.42), we have

γ2

(
QL2
w (D(nT )), ‖ · ‖L2

)
≤ c

∫ 2
√
w

0

√
logN

(
QL2
w (D(nT )), u, ‖ · ‖L2

)
du (S1.45)

≤ c

∫ 2
√
w

0

√
logN

(
Λ,

u

c0 (b+
√
w) ‖CΛ(x|D(nT ))‖L2

, ‖ · ‖2

)
du

(S1.46)

≤ c

∫ 2
√
w

0

√
J log

(
4c0∆Λ (b+

√
w) ‖CΛ(x|D(nT ))‖L2 + 2u

u

)
du

(S1.47)

≤ 2c
√
wJ

[√
log

(
4c0∆Λ (b+

√
w) ‖CΛ(x|D(nT ))‖L2 + 4

√
w

2
√
w

)
+

√
π

2

]

(S1.48)

Using very similar logic, we now bound the γ1 function. First we bound the diameter
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of QL2
w with respect to the norm ‖ · ‖Lψ1 :

Diam(QL2
w (D(nT )), ‖ · ‖Lψ1 ) ≤ 2 sup

λ∈Λ

∥∥∥(y − ĝ(nT )(λ|D(nT ))
)2 − (y − g∗(x))2

∥∥∥
Lψ1

≤ c1K0.

(S1.49)

Thus

γ1

(
QL2
w (D(nT )), ‖ · ‖Lψ1

)
≤ c

∫ c1K0

0

logN
(
QL2
w (D(nT )), u, ‖ · ‖Lψ1

)
du (S1.50)

≤ c2JK0

[
log

(
4∆ΛcK0,b‖CΛ(x|D(nT ))‖Lψ2 + 2c1K0

c1K0

)
+ 1

]

(S1.51)

To apply Theorem 4, we need to define h and Jδ so that (S1.33) is satisfied.

Based on the lemma above, we see that it suffices to let

h(D(nT )) := ‖CΛ(x|D(nT ))‖Lψ2 (S1.52)

and

Jδ(w) = c1
log nV√
nV

JK0 [log (∆ΛδcK0,b + 1) + 1] + c3

√
Jw
[√

log (∆Λbδn+ 1) + 1
]
.

(S1.53)

Finally using the results above, we can prove Theorem 2.

Proof for Theorem 2. We now apply Theorem 4 to our Lipschitz case. From (S1.49),

we find that Assumption 3 is satisfied. We have defined h and Jδ so that (S1.33)

is satisfied for all w ≥ 1/n. Moreover, Jδ(w) is strictly increasing and concave in
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w. This implies that J −1
δ is strictly convex. Via algebra, we find that the convex

conjugate of J −1
δ is

ψδ(u) = c1u
log nV√
nV

JK0 [log (∆ΛδcK0,b + 1) + 1] + u2c4J
[√

log (∆Λbδn+ 1) + 1
]2

.

(S1.54)

Now let us determine ψ̃q,δ(1/q) as q → 1. We have

lim
q→1

ψ̃q,δ(1/q) = ψδ

(
2(1 + a)

a

1
√
nV

)
∨ 1

nV
(S1.55)

≤ c5

(
1 + a

a

)2
J log nV
nV

K0 [log (∆ΛδcK0,bn+ 1) + 1] . (S1.56)

So the summation in (S1.34) reduces to

lim
q→1

(
ψ̃q,2σ0(1/q) +

∞∑
k=1

Pr
(
h
(
D(nT )

)
≥ 2kσ

)
ψ̃q,2kσ0(1/q)

)
(S1.57)

≤ c6

(
1 + a

a

)2
J log nV
nV

K0 [log (∆ΛcK0,bnσ0 + 1) + 1]

(
1 +

∞∑
k=1

k Pr
(
‖CΛ(x|D(nT ))‖Lψ2 ≥ 2kσ0

))

(S1.58)

≤ c6

(
1 + a

a

)2
J log nV
nV

K0 [log (∆ΛcK0,bnσ0 + 1) + 1] h̃(nT ). (S1.59)

Taking q → 1 in (S1.34) and plugging in (S1.59) to Theorem 4, we get our desired

result.

S1.3 Penalized regression for additive models

We now show that penalized regression problems for additive models satisfy the

Lipschitz condition.
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Proof for Lemma 1

Proof. We will use the notation θ̂(λ) := θ̂(λ|T ). By the gradient optimality condi-

tions, we have

∇θ

[
1

2
‖y − g(θ)‖2

T +
J∑
j=1

λjPj(θ
(j))

]∣∣∣∣∣
θ=θ̂(λ)

= 0. (S1.60)

After implicitly differentiating with respect to λ, we have

∇λ

∇θ

[
1

2
‖y − g(θ)‖2

T +
J∑
j=1

λjPj(θ
(j))

]∣∣∣∣∣
θ=θ̂(λ)

 = 0. (S1.61)

From the product rule and chain rule, we can then write the system of equations in

(S1.61) as

∇λθ̂(λ)
∣∣∣
θ=θ̂(λ)

= −
(
∇2
θLT (θ,λ)

∣∣
θ=θ̂(λ)

)−1

diag

{
∇θ(j)Pj(θ

(j))
∣∣∣
θ=θ̂(λ)

}
j=1:J

.

(S1.62)

We can bound the norm of the second term in (S1.62) by rearranging (S1.60) and

using the Cauchy-Schwarz inequality:∥∥∥∥∇θ(j)Pj(θ
(j))
∣∣∣
θ=θ̂(λ)

∥∥∥∥
2

≤ 1

λmin

∥∥∥y − g(θ̂(λ))
∥∥∥
T

∥∥∥∥∥∥∇θ(j)gj(x|θ(j))
∥∥∥

2

∥∥∥
T
.

Since gj is Lipschitz by assumption, then

∥∥∥∇θ(j)gj(x|θ(j))
∥∥∥

2
≤ `j(x). (S1.63)

Also, by the definition of θ̂(λ), we have

1

2

∥∥∥y − g(θ̂(λ))
∥∥∥2

T
≤ 1

2
‖ε‖2

T + C∗Λ. (S1.64)
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Hence ∥∥∥∥∇θPj(θ
(j))
∣∣∣
θ=θ̂(λ)

∥∥∥∥
2

≤ ‖`j‖T
λmin

√
‖ε‖2

T + 2C∗Λ. (S1.65)

Plugging in the results from above and using the assumption that the Hessian of the

objective function has a minimum eigenvalue of m(T ), we have for all

∇λk θ̂
(j)

(λ)
∣∣∣
θ=θ̂(λ)

= 0 if j 6= k (S1.66)∥∥∥∥∇λj θ̂
(j)

(λ)
∣∣∣
θ=θ̂(λ)

∥∥∥∥
2

=

∥∥∥∥∇λj θ̂(λ)
∣∣∣
θ=θ̂(λ)

∥∥∥∥
2

(S1.67)

≤ 1

m(T )

‖`j‖T
λmin

√
‖ε‖2

T + 2C∗Λ. (S1.68)

Since the norm of the gradient is bounded, θ̂
(j)

(λ) must be Lipschitz:

∥∥∥θ̂(j)
(λ(1))− θ̂

(j)
(λ(2))

∥∥∥
2
≤ 1

m(T )

‖`j‖T
λmin

√
‖ε‖2

T + 2C∗Λ

∣∣∣λ(1)
j − λ

(2)
j

∣∣∣ . (S1.69)

Finally we combine the above results to get

∣∣∣g (x∣∣∣θ̂(λ(1))
)
− g

(
x
∣∣∣θ̂(λ(2))

)∣∣∣ (S1.70)

≤
J∑
j=1

∣∣∣gj (x∣∣∣θ̂(λ(1))
)
− gj

(
x
∣∣∣θ̂(λ(2))

)∣∣∣ (S1.71)

≤
J∑
j=1

`j(xj)
∥∥∥θ̂(j)

(λ(1))− θ̂
(j)

(λ(2))
∥∥∥

2
(S1.72)

≤
J∑
j=1

`j(xj)
1

m(T )

‖`j‖T
λmin

√
‖ε‖2

T + 2C∗Λ

∣∣∣λ(1)
j − λ

(2)
j

∣∣∣ (S1.73)

≤ 1

m(T )λmin

√√√√(‖ε‖2
T + 2C∗Λ

)( J∑
j=1

‖`j‖2
T `

2
j(xj)

)∥∥∥λ(1) − λ(2)
∥∥∥

2
(S1.74)
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Proof for Lemma 2

Before proving Lemma 2, we need to introduce some notation. Let L(λ(1),λ(2)) be

the line segment connecting λ(1) and λ(2). Let µ1(z) be the 1-dimensional Lebesgue

measure in the direction of z (so if z is a continuous line segment, µ1(z) = ‖z‖2; if z

is composed of multiple line segments zi, then µ(z) =
∑
µ(zi)).

Before proving the Lipschitz property over all of Λ, we show that the fitted

function is Lipschitz over Λsmooth. For convenience, define Λc
smooth := Λ \ Λsmooth.

Lemma 13. Suppose that gj(θ)(x) satisfies the Lipschitz condition in Lemma 1.

Let T ≡ D(nT ) be a fixed set of training data. Suppose the penalized loss function

LT (θ,λ) has a unique minimizer θ̂(λ|T ) for every λ ∈ Λ. Let Uλ be an orthonormal

matrix with columns forming a basis for the differentiable space of LT (·,λ) at θ̂(λ|T ).

Suppose there exists a constant m(T ) > 0 such that the Hessian of the penalized

training criterion at the minimizer taken with respect to the directions in Uλ satisfies

Uλ∇2
θLT (θ,λ)

∣∣
θ=θ̂(λ)

� m(T )I ∀λ ∈ Λ (S1.75)

where I is the identity matrix. Suppose Condition 1 is satisfied by some Λsmooth ⊆ Λ.

Define

Λext =
{

(λ(1),λ(2)) : λ(1),λ(2) ∈ Λ, µ1

(
L(λ(1),λ(2)) ∩ Λc

smooth

)
> 0
}
. (S1.76)

Then any (λ(1),λ(2)) ∈ Λc
ext satisfies (4.24).

Proof. From Condition 1, every point λ ∈ Λsmooth is the center of a ball B(λ) with

nonzero radius where the differentiable space within B(λ) is constant.
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Now consider any λ(1),λ(2) ∈ Λext. By (S1.76), there must exist a countable set

of points ∪∞i=1`
(i) ⊂ L(λ(1),λ(2)) where ∪∞i=1`

(i) ⊂ Λsmooth, λ
(1),λ(2) ∈ ∪∞i=1`

(i), and

the union of their differentiable neighborhoods cover L(λ(1),λ(2)) entirely:

L
(
λ(1),λ(2)

)
⊆ ∪∞i=1B

(
`(i)
)
.

Consider the intersections of boundaries of the differentiable neighborhoods with the

line segment:

P = ∪∞i=1

[
bd
(
B
(
`(i)
))
∩ L(λ(1),λ(2))

]
. (S1.77)

Every point p ∈ P can be expressed as αpλ
(1) + (1−αp)λ(2) for some αp ∈ [0, 1]. We

can order the points in P by increasing αp to get the sequence p(1),p(2), ....

By Condition 1, the differentiable space of the training criterion is constant over

L
(
p(i),p(i+1)

)
since each of these sub-segments are contained in some B(`(i)) for i ∈

N. Moreover, the differentiable space over the interior of line segment L
(
p(i), p(i+1)

)
can be decomposed as the product of differentiable spaces, which we denote as

Ω
(1)
i × ...× Ω

(J)
i . (S1.78)

By Condition 1, (S1.78) is also a local optimality space. Let U (i,j) be an orthonor-

mal basis of Ω
(j)
i for j = 1, ..., J . For each i, we can express θ̂(λ|T ) for all λ ∈

Int
{
L
(
p(i), p(i+1)

)}
as

θ̂
(j)

(λ|T ) = U (i,j)β̂
(j)

(λ|T )

β̂(λ|T ) =

(
β̂

(1)
(λ|T ) ... β̂

(J)
(λ|T )

)
= arg min

β
LT

(
{U (i,j)β(j)}Jj=1,λ

)
.
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We can show that the fitted parameters satisfy the Lipschitz condition (S1.69) over

Λ = L
(
p(i), p(i+1)

)
by using a similar proof as in Lemma 1. The only difference

is that the proofs starts with taking directional derivatives along the columns of

U (i) = (U (i,1)...U (i,J)) to establish the KKT conditions. Then for all j and i, we have∥∥∥β̂(j)
(p(i)|T )− β̂(j)

(p(i)|T )
∥∥∥

2
≤ 1

m(T )

‖`j‖T
λmin

√
‖ε‖2

T + 2C∗Λ

∣∣∣p(i)
j − p

(i+1)
j

∣∣∣ . (S1.79)

We can sum these inequalities by the triangle inequality:∥∥∥θ̂(j)
(λ(1)|T )− θ̂

(j)
(λ(2)|T )

∥∥∥
2
≤

∞∑
i=1

∥∥∥θ̂(j)
(p(i)|T )− θ̂(j)

(p(i+1)|T )
∥∥∥

2

≤ 1

m(T )

‖`j‖T
λmin

√
‖ε‖2

T + 2C∗Λ

∞∑
i=1

∣∣∣p(i)
j − p

(i+1)
j

∣∣∣
=

1

m(T )

‖`j‖T
λmin

√
‖ε‖2

T + 2C∗Λ

∣∣∣λ(1)
j − λ

(2)
j

∣∣∣ .
Finally, using the fact that gj is `j-Lipschitz, we have by the triangle inequality and

Cauchy Schwarz that

CΛ(x|T ) =

√
‖ε‖2

T + 2C∗Λ
m(T )λmin

√√√√ J∑
j=1

‖`j‖2
T `

2
j(xj). (S1.80)

In order to extend the result in Lemma 13 to all of Λ, we need to show that Λext

is a set with measure zero.

Lemma 14. Suppose Condition 2. Then µ2J(Λext) = 0 where µ2J is the Lebesgue

measure in R2J and Λext was defined in (S1.76).

Proof. Suppose for contradiction that µ2J(Λext) > 0. If this is the case, then there

exists a ball Br

((
λ(1),λ(2)

))
contained in Λext with nonzero radius r > 0 centered
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at
(
λ(1),λ(2)

)
where λ(1) 6= λ(2) and

µ1

(
L
(
λ
′
,λ
′′
)
∩ Λc

smooth

)
> 0 ∀

(
λ
′
,λ
′′
)
∈ Br

((
λ(1),λ(2)

))
. (S1.81)

Suppose that µ1

(
L
(
λ(1),λ(2)

)
∩ Λc

smooth

)
= δ > 0. We claim that for a sufficiently

small radius r′, we also have

µ1

(
L
(
λ
′
,λ
′′
)
∩ Λc

smooth

)
> δ/2 > 0 ∀

(
λ
′
,λ
′′
)
∈ Br′

((
λ(1),λ(2)

))
. (S1.82)

To see why this claim is true, let us define a monotonically decreasing sequence {ri}

where ri > 0 for all i ∈ N and limi→∞ ri = 0. By the monotone convergence theorem,

lim
i→∞

inf
(λ′ ,λ′′)∈Bri((λ(1),λ(2)))

µ1

(
L
(
λ
′
,λ
′′
)
∩ Λc

smooth

)
= µ1

(
L
(
λ(1),λ(2)

)
∩ Λc

smooth

)
= δ > 0.

(S1.83)

By the definition of limits, there is some sufficiently large i′ such that for r′ := ri′ > 0,

we have

inf
(λ′ ,λ′′)∈Br′((λ(1),λ(2)))

µ1

(
L
(
λ
′
,λ
′′
)
∩ Λc

smooth

)
> δ/2. (S1.84)

Given our ball is non-empty, there exist points
(
λ(3),λ(4)

)
,
(
λ(5),λ(6)

)
∈ Br′

((
λ(1),λ(2)

))
where

λ
(3)
j > λ

(5)
j , λ

(4)
j > λ

(6)
j ∀j = 1, .., J. (S1.85)

For any α ∈ (0, 1), the line

Lα = L
(
αλ(3) + (1− α)λ(5), αλ(4) + (1− α)λ(6)

)
(S1.86)
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has

µ1 (Lα ∩ Λc
smooth) > δ/2. (S1.87)

As the lines Lα do not intersect for α ∈ (0, 1), then

µ
(
∪α∈[0,1] (Lα ∩ Λc

smooth)
)

=

∫ 1

0

µ1 (Lα ∩ Λc
smooth) dα > δ/2 (S1.88)

Thus

µ (Λc
smooth) ≥ µ

(
∪α∈[0,1] (Lα ∩ Λc

smooth)
)
> δ/2. (S1.89)

However this is a contradiction of our assumption that µ (Λc
smooth) = 0.

Finally, combining Lemmas 13 and 14, we can show that the Lipschitz condition

is satisfied over all of Λ.

Proof for Lemma 2. Since we already showed Lemma 13, it suffices to show that

the Lipschitz condition is satisfied for any λ(1),λ(2) ∈ Λext. Lemma 14 states that

µ2J(Λext) = 0, which means that there exists a sequence
{(
λ(1,i),λ(2,i)

)}∞
i=1
⊆ Λc

ext

such that limi→∞

(
λ(1,i),λ(2,i)

)
=
(
λ(1),λ(2)

)
. As LT is continuous and we have

assumed that there exists a unique minimizer of θ̂(λ) for all λ ∈ Λ, then θ̂(λ)

is continuous in λ over all Λ. As g(θ)(x) is also continuous in θ, then for any
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λ(1),λ(2) ∈ Λ, we have

∣∣∣g(θ̂(λ(1)|T )(x)− g(θ̂(λ(2)|T )(x)
∣∣∣ = lim

i→∞

∣∣∣g(θ̂(λ(1,i)|T ))(x)− g(θ̂(λ(2,i)|T ))(x)
∣∣∣

(S1.90)

≤ lim
i→∞

CΛ(x|T )‖λ(1,i) − λ(2,i)‖2 (S1.91)

= CΛ(x|T )‖λ(1) − λ(2)‖2 (S1.92)

where CΛ(x|T ) is defined in (S1.80).

Proof for Lemma 3

Proof. Let H0 =
{
j :
∥∥∥ĝj(λ(2)|T )− ĝj(λ(1)|T )

∥∥∥
D(n)
6= 0 ∀j = 1, ..., J

}
. For all j ∈

H0, let

hj =
ĝj(λ

(2)|T )− ĝj(λ(1)|T )∥∥∥ĝj(λ(2)|T )− ĝj(λ(1)|T )
∥∥∥
D(n)

.

For notational convenience, let ĝ1,j = ĝj(λ
(1)|T ). Consider the optimization problem

m̂(λ) = {m̂j(λ)}j∈H0
= arg min

mj∈R:j∈H0

1

2

∥∥∥∥∥y −
J∑
j=1

(ĝ1,j +mjhj)

∥∥∥∥∥
2

T

+
J∑
j=1

λjPj (ĝ1,j +mjhj) .

(S1.93)

By the gradient optimality conditions, we have

∇m

[
1

2
‖y −

J∑
j=1

(ĝ1,j +mjhj) ‖2
T +

J∑
j=1

λjPj(ĝ1,j +mjhj)

]∣∣∣∣∣
m=m̂(λ)

= 0. (S1.94)

Implicit differentiation with respect to λ gives us

∇λ∇m

[
1

2
‖y −

J∑
j=1

(ĝ1,j +mjhj) ‖2
T +

J∑
j=1

λjPj(ĝ1,j +mjhj)

]∣∣∣∣∣
m=m̂(λ)

= 0. (S1.95)
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From the product rule and chain rule, we can write the system of equations from

(S1.95) as

∇λm̂(λ) = −
(
∇2
mLT (m,λ)

)−1
diag

{
∂

∂mj

Pj(ĝ1,j +mjhj)

∣∣∣∣
m=m̂(λ)

}J

j=1

(S1.96)

where LT (m,λ) is the loss in (S1.94).

We now bound the second term in (S1.96). From (S1.94) and Cauchy Schwarz,

we have for all k = 1, ..., J∣∣∣∣ ∂

∂mk

Pk(ĝ1,k +mkhk)

∣∣∣∣
m=m̂(λ)

≤ 1

λmin

∥∥∥∥∥y −
J∑
j=1

(ĝ1,j + m̂j(λ)hj)

∥∥∥∥∥
T

‖hk‖T . (S1.97)

From the definition of hk, we know that ‖hk‖T ≤
√

nD
nT

. By definition of m̂(λ) and

ĝ1, we also have

1

2

∥∥∥∥∥y −
J∑
j=1

(ĝ1,j + m̂j(λ)hj)

∥∥∥∥∥
2

T

≤ 1

2

∥∥∥∥∥y −
J∑
j=1

ĝ1,j

∥∥∥∥∥
2

T

+
J∑
j=1

λjPj(ĝ1,j) ≤
1

2
‖ε‖2

T + C∗Λ.

Hence ∣∣∣∣ ∂

∂mk

Pk(ĝ1,k +mkhk)

∣∣∣∣
m=m̂(λ)

≤ 1

λmin

√
(‖ε‖2

T + 2C∗Λ)
nD
nT

. (S1.98)

By (4.40), we know ∇2
mLT (m,λ) � m(T )I. So for all k,

‖∇λm̂k(λ)‖2 ≤
m(T )

λmin

√
(‖ε‖2

T + 2C∗Λ)
nD
nT

(S1.99)

By the mean value inequality and Cauchy Schwarz, we have

∣∣∣m̂k(λ
(2))− m̂k(λ

(1))
∣∣∣ ≤ m(T )

λmin

√
(‖ε‖2

T + 2C∗Λ)
nD
nT

. (S1.100)

By construction,
∣∣∣m̂k(λ

(2))− m̂k(λ
(1))
∣∣∣ =

∥∥∥ĝk(λ(2)|T )− ĝk(λ(1)|T )
∥∥∥
D(n)

. So we ob-

tain our desired result in (4.41).
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S1.4 Examples: detailed derivations

Example 1 (Multiple ridge penalties) Here we present the details for deriving (4.24)

for Example 1. The additive components gj(θ
(j))(x(j)) are linear functions that are `j-

Lipschitz where `j(x
(j)) = ‖x(j)‖2. Then by Lemma 1, the fitted function g(θ̂(λ))(x)

satisfy Assumption 1 over Rp with

CΛ (x|T ) = n2tmin

√√√√√C∗T

 J∑
j=1

‖x(j)‖2
2

 1

nT

∑
(xi,yi)∈T

‖x(j)
i ‖2

2

 (S1.101)

where C∗T is defined in Example 1 of the main manuscript.

Example 2 (Multiple sobolev penalties) here we present the details for deriving

(4.24) for Example 2 Since the solution to (4.27) must be the sum of natural cubic

splines [Buja et al., 1989], we can parameterize the space using a Reproducing Kernel

Hilbert Space with inner product

〈f, g〉 =

∫ 1

0

f
′′
(x)g

′′
(x)dx (S1.102)

and the reproducing kernel

R(s, t) = st(s ∧ t) +
s+ t

2
(s ∧ t)2 +

1

3
(s ∧ t)3 (S1.103)

[Heckman et al., 2012]. Then one can instead solve for (4.27) over the functions g of

the form

g(x1, ..., xJ) = α0 +
J∑
j=1

gj(xj) (S1.104)

where the functions gj are split into a linear component and an orthogonal non-linear
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component

gj(xj) = α1jxj +

nT∑
i=1

θijR(xij, xj). (S1.105)

For notational simplicity, we will also denote ~R(x|D)ij = R(xij, xj). We will also

write

gj,⊥(xj) =

nT∑
i=1

θijR(xij, xj). (S1.106)

Using this finite-dimensional representation, we find that

∫ 1

0

(
g
′′

j (x)
)2

dx =

nT∑
u=1

nT∑
v=1

θujθvjR(xuj, xvj) = θ>j Kjθj (S1.107)

where the matrix Kj has elements Kj,(u,v) = R(xuj, xvj). Since any gj with non-zero

θj will have a positive Sobolev penalty, then the matrix Kj must be positive definite.

Using the formulation above, we re-express (4.27) as the finite-dimensional problem

α̂0(λ), α̂1(λ), θ̂(λ) = arg min
α0,α1,θ

1

2
‖yT − α01−XTα1 −Kθ‖2

2 +
1

2
θ> diag ({λjKj})θ.

(S1.108)

where K = (K1...KJ). In order to make the fitted functions ĝj identifiable, we add

the usual constraint that
∑nT

i=1 gj(xij) = 0 for all j. We also assume that X>T XT is

nonsingular to ensure that there is a unique α̂1.
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The KKT conditions then gives us

α̂0 =
1

nT

∑
(xi,yi)∈T

yi (S1.109)

α̂1(λ) = (X>T XT )−1X>T (yT − α̂01−Kθ̂(λ)) (S1.110)

θ̂(λ) = diag(K
−1/2
j )

(
K(1/2)>P>XTK

(1/2) + diag(λjI)
)−1

K(1/2)>P>XT (I − 1

n
11>)yT

(S1.111)

where K(1/2) = (K
1/2
1 ...K

1/2
J ), I is the nT × nT identity matrix, and P>XT = I −

XT (X>T XT )−1X>T .

To apply Theorem 1, we need to characterize how ĝ(λ)(·) varies with λ. Since we

have the closed form solution to (S1.111), we use it to directly bound the Lipschitz

factor CΛ(x|D(nT )). From Green and Silverman [1993], we know that the value of the

cubic ĝj on the interval [tL, tR] can be defined using its values and second derivatives

at the ends of the interval. Let h = tR − tL. Then the value of the cubic

ĝj,⊥(xj) = α̂1jxj +
(xj − tL)ĝj,⊥(tR) + (tR − t)ĝj,⊥(tL)

h

− 1

6
(xj − tL)(tR − xj)

{(
1 +

xj − tL
h

)
ĝ′′j,⊥(t+R)

(
1 +

tR − xj
h

)
ĝ′′j,⊥(t+L)

}
.

(S1.112)

Let γ̂j be the vector of second derivatives of ĝ′′j,⊥ for observations in the training data.

Since the fitted functions ĝj,⊥ must be natural cubic splines, γ̂j and θ̂j have a linear

relationship:

γ̂j = R−1
j Q>j Kjθ̂j (S1.113)
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where the matrix Rj is a banded diagonally dominant matrix and Qj is a banded

negative-semi-definite matrix that depend on the covariates xj in the training data.

For the definitions of Rj and Qj, refer to Green and Silverman [1993]. Let hj(D
(nT ))

be the smallest distance between observations of the jth covariates in the training

data T . Then using the Gershgorin circle theorem [Gershgorin, 1931], one can show

that all the eigenvalues of Rj are larger than 1
3
hj(D

(nT )) and all the eigenvalues of

Qj have magnitudes no greater than 4/hj(D
(nT )). Thus using (S1.112) and (S1.113),

we have that

‖∇λĝj,⊥(λ)(xj)‖2 ≤
c

hj(D(nT ))2

∥∥∥∇λKjθ̂j(λ)
∥∥∥

2
(S1.114)

for some absolute constant c > 0. To bound the second term on the right hand side,

we know from (S1.111) that

∇λ`Kjθ̂j(λ) (S1.115)

=

[
0 .. 0 K

1/2
j 0 .. 0

] (
K(1/2),>P>XTK

(1/2) + diag{λjI}j=1:J

)−2
K(1/2),>P>XT (I − 1

n
11>)yT

(S1.116)

if ` = j. Otherwise ∇λ`Kjθ̂j(λ) = 0. Thus

∥∥∥∇λ`Kjθ̂j(λ)
∥∥∥

2
≤ λ−2

min‖yT‖2

√√√√‖Kj‖2

J∑
j′=1

‖Kj′‖2
2 (S1.117)

The eigenvalues of Kj are bounded above by the largest row sum, which is no more

than 2nT (assuming all training covariates are between 0 and 1). Putting the results
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above together, we have

‖∇λĝj,⊥(λ)(xj)‖2 ≤
c
√
JnT

hj(D(nT ))2λ2
min

‖yT‖2. (S1.118)

Also, we have from (S1.110) that

‖∇λα̂1(λ)‖2 =
∥∥∥(X>T XT

)−1
X>T ∇λjKθ̂(λ)

∥∥∥
2

(S1.119)

=
∥∥∥(X>T XT

)−1
X>T ∇λjKjθ̂j(λ)

∥∥∥
2

(S1.120)

≤
∥∥∥(X>T XT

)−1
X>T

∥∥∥
2
λ−2

min‖yT‖2nT
√
J (S1.121)

Finally we can conclude that∥∥∥ĝj(λ(1))(xj)− ĝj(λ(2))(xj)
∥∥∥

2
≤
(
|xj|

∥∥∥(X>T XT

)−1
X>T

∥∥∥
2

+
c

hj(D(nT ))2

)
×
√
JnTλ

−2
min‖yT‖2‖λ(1) − λ(2)‖2

(S1.122)

By triangle inequality, we get the Lipschitz factor for the fitted model ĝ by summing

up (S1.122) for j = 1, .., J . We find that the Lipschitz factor in (4.24) is

CΛ(x|T ) =

(
J
∥∥∥(X>T XT

)−1
X>T

∥∥∥
2

+
J∑
j=1

c

hj(T )2

)
√
Jn2tmin+1‖y‖T . (S1.123)

Example 3 (Multiple elastic nets, training-validation split) Here we check that all

the conditions for Lemma 2 are satisfied.

First we check Condition 1. Since the absolute value function | · | is twice-

continuously differentiable everywhere except at zero, the directional derivatives of

||θ(j)||1 at θ̂(λ) only exist along directions spanned by the columns of II(j)(λ). Thus

the penalized training loss LT (·,λ) is twice differentiable with respect to the directions
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in

ΩLT (·,λ)(θ̂(λ|T )) = span(II(1)(λ))× ...× span(II(J)(λ)). (S1.124)

Moreover, the elastic net solution paths are piecewise linear [Zou and Hastie,

2003]. This implies that the nonzero indices of the elastic net estimates stay locally

constant for almost every λ; so (S1.124) is also a local optimality space for LT (·,λ).

In addition, this implies that Condition 2 is satisfied.

We also check that the Hessian of the penalized training loss has a minimum eigen-

value bounded away from zero. Consider the following orthogonal basis of (S1.124)

at θ̂(λ): U(λ) = {U (j)(λ)}Jj=1 where

U (j) =


0

II(j)(λ)

0

 ∀j = 1, ..., J. (S1.125)

The Hessian matrix of LT (·,λ) with respect to directions U(λ) is

U (λ)>X>TXTU(λ) + λ1wI (S1.126)

where XT = (X(1)...X(J)) and I is the identity matrix with length equal to the

number of nonzero elements in θ̂(λ). Since the first summand is positive semi-definite

and λ1 > λmin, (S1.126) has a minimum eigenvalue of λminw.

Example 4 (Multiple elastic nets, cross-validation) Here we present details for es-

tablishing an oracle inequality when multiple elastic net penalties are tuned via

the averaged version of K-fold cross-validation. First we check the conditions in
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Theorem 2 are satisfied. In the problem setup, X is a log-concave vector and

sup‖a‖∞=1

∥∥X>a∥∥
Lψ2

< cR < ∞ for some constant cR. Using a similar procedure

as Lecué and Mitchell [2012], we can then show that (3.14) and (3.15) in Assump-

tion 2 are satisfied with K0 := (‖θ∗‖∞ +K ′0)cR.

Next we find the Lipschitz factor. We can upper bound the Lipschitz factor of

the thresholded model with the Lipschitz factor of the un-thresholded model. So

Assumption 1 is satisfied over Rp with

CΛ(x|D(nT )) =
n2tmin

w
R2

√√√√Jp

(
‖ε‖2

D(nT ) +
J∑
j=1

2‖θ∗,(j)‖1 + w‖θ∗,(j)‖2
2

)
. (S1.127)

Finally, to apply Theorem 2, we must find a bound for (3.16). Let σ0 = Op(n
4tminR4Jp/w2).

Using the fact that
∥∥CΛ(·|D(nT ))

∥∥2

Lψ2
is a linear function of ‖ε‖2

D(nT ) , which is a sub-

exponential random variable, we have that

∞∑
k=1

k Pr
(
‖CΛ(·|D(nT ))‖Lψ2 ≥ 2kσ0

)
≤

∞∑
k=1

k Pr
(
‖ε‖2

D(nT ) ≥ 22k
)
≤ c1 exp

(
− c0nT
‖ε‖2

Lψ2

)

(S1.128)

for constants c0, c1 > 0. Plugging in this bound to Theorem 2 gives us our desired

result.
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