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Abstract: In a regression setting, a model estimation procedure constructs a model

from training data for given a set of hyperparameters. The optimal hyperparam-

eters that minimize the generalization error of the model are usually unknown.

Thus, in practice, they are often estimated using split-sample validation. How-

ever, how the generalization error of the selected model grows with the number of

hyperparameters to be estimated remains an open question. To address this, we es-

tablish finite-sample oracle inequalities for selection based on a single training/test

split and cross-validation. We show that if the model estimation procedures are

smoothly parameterized by the hyperparameters, the error incurred from tuning

the hyperparameters shrinks at a near-parametric rate. Hence for semiparametric

and nonparametric model estimation procedures with a fixed number of hyper-

parameters, this additional error is negligible. For parametric model estimation

procedures, adding a hyperparameter is roughly equivalent to adding a parameter

to the model itself. In addition, we specialize these ideas for penalized regression

problems with multiple penalty parameters. We establish that the fitted models are

Lipschitz in the penalty parameters and, thus, our oracle inequalities apply. This

result encourages the development of regularization methods with many penalty

parameters.
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1. Introduction

Per the usual regression framework, suppose we observe response y ∈ R and

predictors x ∈ Rp. Suppose y is generated by a true model g∗ plus random error

ε with mean zero, i.e. y = g∗(x) + ε. Our goal is to estimate g∗. Many model

estimation procedures can be formulated as selecting a model from some function

class G, given training data T and J-dimensional hyperparameter vector λ. For

example, in penalized regression problems, the fitted model can be expressed as

the minimizer of the penalized training criterion

https://doi.org/10.5705/ss.202017.0310
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ĝ(λ|T ) = arg min
g∈G

∑
(xi,yi)∈T

(yi − g(xi))
2 +

J∑
j=1

λjPj(g), (1.1)

where Pj are penalty functions and λj are penalty parameters that serve as

hyperparameters of the model estimation procedure.

If Λ is a set of possible hyperparameters, the goal is to find a penalty param-

eter λ ∈ Λ that minimizes the expected generalization error E[(y − ĝ(λ|T )(x))2].

Typically one uses a sample-splitting procedure where models are trained on a

random partition of the observed data and evaluated on the remaining data. One

then chooses the hyperparameter λ̂ that minimize the error on this validation

set. For a more complete review of cross-validation, refer to Arlot and Celisse

(2010).

The performance of split-sample validation procedures is typically character-

ized by an oracle inequality that bounds the generalization error of the expected

model selected from the validation set procedure. For Λ that are finite, oracle

inequalities have been established for a single training/validation split (Györfi

et al. (2002, Chap. 7)) and a general cross-validation framework (van der Laan

and Dudoit (2003); van der Laan, Dudoit and Keles (2004)). To handle Λ over

a continuous range, one can use entropy-based approaches (Lecué and Mitchell

(2012)).

The goal of this paper is to characterize the performance of models when

the hyperparameters are tuned by some split-sample validation procedure. We

are particularly interested in an open question raised in Bengio (2000): what is

the “amount of overfitting. . . when too many hyperparameters are optimized”?

In addition, how many hyperparameters is “too many”? Here, we show that a

large number of hyperparameters can be tuned without overfitting. In fact, if an

oracle estimator converges at rate R(n), then the number of hyper parameters J

can grow at a rate of approximately J = Op(nR(n)), up to log terms, without

affecting the convergence rate. In practice, for penalized regression, this means

that we can propose and tune over much more complex models than are currently

often used.

To show these results, we prove that finite-sample oracle inequalities of the

form

E
[(
y − ĝ(λ̂|T )(x)

)2
]
≤ (1 + a) inf

λ∈Λ
E
[
(y − ĝ(λ|T )(x))2

]
︸ ︷︷ ︸

Oracle risk

+δ (J, n) (1.2)

are satisfied with high probability for some constant a ≥ 0 and remainder δ(J, n),
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which depends on the number of tuned hyperparameters J and the number of

samples n. Under the assumption that the model -estimation procedure is Lips-

chitz in the hyperparameters, we find that δ scales linearly in J . For parametric

model estimation procedures, the additional error incurred from tuning hyper-

parameters is roughly Op(J/n), which is similar to the typical parametric model

estimation rate Op(p/n) where the model parameters are not regularized. For

semiparametric and nonparametric model estimation procedures, this error is

generally dominated by the oracle risk. Therefore, we can increase the number

of hyperparameters without affecting the asymptotic convergence rate.

In addition, we specialize our results to penalized regression models of the

form given in (1.1). The models in our examples are Lipschitz; thus, our oracle

inequalities apply. This suggests that multiple penalty parameters may improve

the model estimation and that recent proposals for penalty functions (e.g., elastic

net and sparse group lasso (Zou and Hastie (2003); Simon et al. (2013))) may

have artificially restricted themselves to two-way combinations.

During our literature search, we found few theoretical results relating the

number of hyperparameters to the generalization error of the selected model.

Much of the existing work considers tuning a one-dimensional hyperparame-

ter over a finite Λ, proving asymptotic optimality (van der Laan, Dudoit and

Keles (2004)) and finite-sample oracle inequalities (van der Laan and Dudoit

(2003); Györfi et al. (2002)). Others have addressed split-sample validation for

specific penalized regression problems with a single penalty parameter, such as

linear model selection (Li (1987); Shao (1997); Golub, Heath and Wahba (1979);

Chetverikov, Liao and Chernozhukov (2016); Chatterjee and Jafarov (2015)).

Only the results in Lecué and Mitchell (2012) are relevant to answering our ques-

tion of interest. A potential reason for this dearth of literature is that, historically,

tuning multiple hyperparameters was computationally difficult. However, many

recent proposals have addressed this computational hurdle (Bengio (2000); Foo,

Do and Ng (2008); Snoek, Larochelle and Adams (2012)).

Section 2 presents oracle inequalities for sample-splitting procedures to un-

derstand how the number of hyperparameters affects the model error. Section 3

applies these results to penalized regression models. Section 4 provides a sim-

ulation study to support our theoretical results. Oracle inequalities for general

model estimation procedures and proofs are given in the online Supplementary

Material.
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2. Oracle Inequalities

Here, we establish oracle inequalities for models in which the hyperparam-

eters are tuned using a single training/validation split and cross-validation. We

examine model estimation procedures that vary smoothly in their hyperparam-

eters, because such procedures tend to be easier to use and, therefore, are more

popular.

Let D(n) denote a data set with n samples. Given data set training data

D(m), let ĝ(m)(λ|D(m)) be some model estimation procedure that maps hyperpa-

rameter λ to a function in G. We assume the following Lipschitz-like assumption

on the model estimation procedure. In particular, we suppose that for any x,

the predicted value ĝ(m)(λ|D(m))(x) is Lipschitz in λ.

Assumption 1. Suppose there is a set X (L) ⊆ X such that for any nT ∈ N and

data set D(nT ), there is a function CΛ(x|D(nT )) : X (L) 7→ R+ such that for any

x ∈ X (L), we have for all λ(1),λ(2) ∈ Λ∣∣∣ĝ(nT )(λ(1)|D(nT ))(x)− ĝ(nT )(λ(1)|D(nT ))(x)
∣∣∣ ≤ CΛ(x|D(nT ))‖λ(1) − λ(2)‖2.

(2.1)

In Section 3, we provide examples of penalized regression models that satisfy this

assumption.

2.1. A single training/validation split

In the training/validation split procedure, the data set D(n) is randomly

partitioned into a training set T = (XT , YT ) and validation set V = (XV , YV )

with nT and nV observations, respectively. The selected hyperparameter λ̂ is a

minimizer of the validation loss

λ̂ ∈ arg min
λ∈Λ

1

2

∥∥∥y − ĝ(nT )(λ|T )
∥∥∥2

V
, (2.2)

where ‖h‖2V := (1/nV )
∑

(xi,yi)∈V h
2(xi, yi) for function h.

We now present a finite-sample oracle inequality for the single training/

validation split, assuming Assumption 1 holds. Our oracle inequality is sharp,

that is, a = 0 in (1.2), unlike in most other works (Györfi et al. (2002); Lecué and

Mitchell (2012); van der Laan and Dudoit (2003)). Note that the result below is

a special case of Theorem 3 in the Supplementary Material S1.1, which applies

to general model estimation procedures.

Theorem 1. Let Λ = [λmin, λmax]J , where ∆λ = λmax − λmin ≥ 0. Suppose

random variables εi from the validation set V are independent with expectation
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zero and are uniformly sub-Gaussian with parameters b and B:

max
i:(xi,yi)∈V

B2
(
Ee|εi|2/B2 − 1

)
≤ b2.

Let the oracle risk be denoted as

R̃(XV |T ) = arg min
λ∈Λ

∥∥∥g∗ − ĝ(nT )(λ|T )
∥∥∥2

V
. (2.3)

Suppose Assumption 1 is satisfied over the set XV . Then, there is a constant

c > 0 depending only on b and B such that for all δ satisfying

δ2 ≥ c

J log(‖CΛ(·|T )‖V ∆Λn+ 1)

nV
∨

√
J log(‖CΛ(·|T )‖V ∆Λn+ 1)

nV
R̃(XV |T )

 ,

(2.4)

we have

Pr

(∥∥∥g∗ − ĝ(nT )(λ̂|T )
∥∥∥2

V
− R̃(XV |T ) ≥ δ2

∣∣∣∣T,XV

)
≤ c exp

(
− nV δ

4

c2R̃(XV |T )

)
+ c exp

(
−nV δ

2

c2

)
. (2.5)

Theorem 1 states that, with high probability, the excess risk (e.g., the error

incurred during the hyperparameter selection process) is no more than δ2. As

seen in (2.4), δ2 is the maximum of two terms: a near-parametric term, and the

geometric mean of the near-parametric term and the oracle risk. To see this more

clearly, we express Theorem 1 using asymptotic notation.

Corollary 1. Under the assumptions given in Theorem 1, we have∥∥∥g∗ − ĝ(nT )(λ̂|T )
∥∥∥2

V

≤ min
λ∈Λ

∥∥∥g∗ − ĝ(nT )(λ|T )
∥∥∥2

V
(2.6)

+Op

(
J log(n‖CΛ‖V ∆Λ)

nV

)
(2.7)

+Op

√J log(n‖CΛ‖V ∆Λ)

nV
min
λ∈Λ

∥∥g∗ − ĝ(nT )(λ|T )
∥∥2

V

 . (2.8)

Corollary 1 shows that the risk of the selected model is bounded by the ora-

cle risk, the near-parameteric term (2.7), and the geometric mean of the two

values (2.8). We refer to (2.7) as near-parametric because the error term in (un-

regularized) parametric regression models is typically Op(J/n), where J is the

parameter dimension and n is the number of training samples. Analogously, (2.7)
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is Op(J/nV ) modulo a logn term in the numerator. The geometric mean (2.8)

can be thought of as a consequence of tuning hyperparameters over

G(T ) =
{
ĝ(nT )(λ|T ) : λ ∈ Λ

}
. (2.9)

Because G(T ) does not (or is very unlikely to) contain the true model g∗, tun-

ing the hyperparameters using a training/validation split is analogous to tuning

over a misspecified model class. The geometric mean takes into account this

misspecification error.

In the semiparametric and nonparametric regression settings, the oracle error

usually shrinks at a rate of Op(n
−ω
T ), where ω ∈ (0, 1). If the number of hyperpa-

rameters is fixed and n is large, the oracle risk will tend to dominate the upper

bound. Hence, for such problems, we can actually let the number of hyperparam-

eters grow, and the asymptotic convergence rate of the upper bound will remain

unchanged as long as J grows no faster than Op
(
(nV n

−ω
T )/(log(n‖CΛ‖V ∆Λ))

)
.

2.2. Cross-validation

Now, we give an oracle inequality for K-fold cross-validation. Previously,

the oracle inequality was with respect to the L2-norm over the validation covari-

ates. We give our result with respect to the functional L2-norm. We suppose our

data set is composed of independent and identically distributed (i.i.d.) observa-

tions (X, y), where X is independent of ε. The functional L2-norm is defined as

‖h‖2L2
=
∫
|h(x)|2 dµ(x).

For K-fold cross-validation, we randomly partition the data set D(n) into K

sets, which we assume to be of equal size for simplicity. Partition k is denoted

as D
(nV )
k and its complement is denoted as D

(nT )
−k = D(n) \ D(nV )

k . We train

our model using D
(nT )
−k , for k = 1, . . . ,K, and select the hyperparameter that

minimizes the average validation loss

λ̂ = arg min
λ∈Λ

1

K

K∑
k=1

∥∥∥y − ĝ(nT )(λ|D(nT )
−k )

∥∥∥2

D
(nV )

k

. (2.10)

In traditional cross-validation, the final model is retrained on all data with

λ̂. However, bounding the generalization error of the retrained model requires

additional regularity assumptions (Lecué and Mitchell (2012)). We consider the

“averaged version of K-fold cross-validation” instead,

ḡ
(
D(n)

)
=

1

K

K∑
k=1

ĝ(nT )
(
λ̂
∣∣∣D(nT )
−k

)
. (2.11)
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To bound the generalization error of (2.11), we require the assumption in Lecué

and Mitchell (2012) that controls the tail behavior of the fitted models. A clas-

sical approach to bounding the tail behavior of a random variable X is to bound

its Orlicz norm ‖X‖Lψ1
= inf{C > 0 : E exp(|X|/C)−1 ≤ 1} (Vaart and Wellner

(1996, Chap. 2)).

Assumption 2. There exist constants K0,K1 ≥ 0 and κ ≥ 1 such that, for any

nT ∈ N, data set D(nT ), and λ ∈ Λ, we have∥∥∥∥(y − ĝ(nT )(λ|D(nT ))
)2
− (y − g∗)2

∥∥∥∥
Lψ1

≤ K0, (2.12)∥∥∥∥(y − ĝ(nT )(λ|D(nT ))
)2
− (y − g∗)2

∥∥∥∥
L2

≤ K1

∥∥∥g∗ − ĝ(λ|D(nT ))
∥∥∥1/κ

L2

. (2.13)

Given the above assumption, the following oracle inequality bounds the risk

of the averaged version of K-fold cross-validation. Note that this is a special

case of Theorem 4 in the Supplementary Material, which extends Theorem 3.5

in Lecué and Mitchell (2012). The notation ED(m) indicates the expectation over

random m-sample data sets D(m) drawn from the probability distribution µ.

Theorem 2. Let Λ = [λmin, λmax]J , where ∆Λ = (λmax − λmin) ∨ 1. Suppose

random variables εi are independent with expectation zero, satisfy ‖ε‖Lψ2
= b <

∞, and are independent of X. Suppose Assumption 1 holds over the set X and

Assumption 2 holds. Suppose there exists a function h̃ and some σ0 > 0 such

that

h̃(nT ) ≥ 1 +

∞∑
k=1

kPr
(
‖CΛ(·|D(nT ))‖Lψ2

≥ 2kσ0

)
. (2.14)

Then, there exists an absolute constant c1 > 0 and a constant cK0,b > 0 such that

for any a > 0,

ED(n)

(
‖ḡ(D(n))− g∗‖2L2

)
≤ (1 + a) inf

λ∈Λ

[
ED(nT )

(
‖ĝ(λ|D(nT ))− g∗‖2L2

)]
+ c1

(
1 + a

a

)2 J log nV
nV

K0 [log (∆ΛcK0,bnσ0 + 1) + 1] h̃(nT ).

(2.15)

As in Theorem 1, the remainder term in Theorem 2 includes a near-parametric

term Op(J/nV ). Thus, as before, adding hyperparameters to parametric model

estimation incurs a similar cost to that of adding parameters to the paramet-

ric model itself. Adding hyperparameters to semiparametric and nonparametric

regression settings is relatively “cheap” and negligible, asymptotically.
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The differences between Theorems 1 and 2 highlight the trade-offs made

to establish an oracle inequality involving the functional L2-error. The biggest

tradeoff is that Theorem 2 adds Assumption 2. Although we can relax Assump-

tion 2 to hold over data sets D in some high-probability set, the difficulty lies

in controlling the tail behavior of the fitted models over all Λ. For some model

estimation procedures, K0 may grow with n if λmin shrinks too quickly with n.

In this case, the remainder term may no longer shrink at a near-parametric rate.

Unfortunately, requiring λmin to shrink at an appropriate rate seems to defeat

the purpose of cross-validation. Therefore, even though Theorem 2 helps us to

better understand cross-validation, it is limited by this assumption. In addition,

the Lipschitz assumption must hold over all X in Theorem 2, rather than just

the observed covariates. Finally, the oracle inequality in Theorem 2 is no longer

sharp, because the oracle risk is scaled by 1 + a, for a > 0.

3. Penalized Regression Models

Here, we apply our results to analyze penalized regression procedures of the

form given in (1.1). Penalty functions encourage particular characteristics in the

fitted models (e.g., smoothness or sparsity). Furthermore, combining multiple

penalty functions results in models that exhibit a combination of the desired

characteristics. Although the latter practice has garnered much interest, few

methods incorporate more than two penalties owing to (a) a concern that models

may overfit the data when many penalty parameters needs to be tuned; and (b)

computational issues in optimizing multiple penalty parameters. In this section,

we evaluate the validity of concern (a) using the results of Section 2. We see

that, contrary to popular wisdom, using split-sample validation to select multiple

penalty parameters should not result in a drastic increase in the generalization

error of the selected model.

In this section, we consider penalty parameter spaces of the form Λ =

[n−tmin , ntmax ]J , for tmin, tmax ≥ 0. This regime works well for two reasons: (a)

our rates depend only quite weakly on tmin and tmax; and (b) oracle λ-values

are generally Op(n
−α) for some α ∈ (0, 1) (van de Geer (2000); van de Geer and

Muro (2015); Bühlmann and van de Geer (2011)). As long as tmin > α, Λ will

contain the optimal penalty parameter. We do not consider settings where λmin

shrinks faster than a polynomial rate because the fitted models in this case can

be ill-behaved.

In the following sections, we conduct an in-depth study of additive models
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of the form

g(x(1), . . . ,x(J)) =

J∑
j=1

gj(x
(j)). (3.1)

We first consider parametric additive models (with potentially growing numbers

of parameters) fitted with smooth and nonsmooth penalties, followed by non-

parametric additive models. We find that the Lipschitz function CΛ(x|T ) scales

with nOp(tmin). Applying Theorems 1 and 2, we find that the near-parametric

term in the remainder grows only linearly in tmin. We apply these results to vari-

ous additive model estimation methods. For instance, in the generalized additive

model (GAM) example, we show that under minimal assumptions, the error in-

curred from tuning penalty parameters is negligible with that from solving the

penalized regression problem with oracle penalty parameters.

3.1. Parametric additive models

Parametric additive models with model parameters θ =
(
θ(1), . . . ,θ(J)

)
have

the form

g(θ)(x) =

J∑
j=1

gj(θ
(j))(x(j)). (3.2)

We denote the training criterion for training data T as

LT (θ,λ) :=
1

2
‖y − g(θ)‖2T +

J∑
j=1

λjPj(θ
(j)). (3.3)

Suppose θ∗ is the unique minimizer of the expected loss ‖y − g(θ)‖2L2
.

3.1.1. Parametric regression with smooth penalties

We begin with the simple case in which the penalty functions are smooth.

The following lemma states that the fitted models are Lipschitz in the penalty

parameter vector. Given matrices A and B, A � B means that A−B is a positive

semi-definite matrix.

Lemma 1. Let Λ := [λmin, λmax]J , where λmax ≥ λmin > 0. For a fixed training

data set T ≡ D(nT ), suppose for all λ ∈ Λ, LT (θ,λ) has a unique minimizer{
θ̂(j) (λ|T )

}J
j=1

= arg min
θ∈Rp

LT (θ,λ) . (3.4)

Suppose for all j = 1, . . . , J , the parametric class gj is `j-Lipschitz in its param-

eters
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∣∣∣ ≤ `j(x(j))‖θ(1) − θ(2)‖2 ∀x(j) ∈ X (j). (3.5)

Further, suppose for all j = 1, . . . , J , Pj(θ
(j)) and gj(θ

(j))(x) are twice-differentiable

with respect to θ(j) for any fixed x. Suppose there exists an m(T ) > 0 such that

the Hessian of the penalized training criterion at the minimizer satisfies

∇2
θLT (θ,λ)

∣∣
θ=θ̂(λ|T )

� m(T )I ∀λ ∈ Λ, (3.6)

where I is a p × p identity matrix. Then, for any λ(1),λ(2) ∈ Λ, Assumption 1

is satisfied over the set X (1) × · · · × X (J) with function

CΛ(x|T ) =
1

m(T )λmin

√√√√√(‖ε‖2T + 2C∗Λ

) J∑
j=1

‖`j‖2T `2j (x(j))

, (3.7)

where C∗Λ = λmax
∑J

j=1 Pj(θ
(j),∗).

Note that Lemma 1 requires that the training criterion be strongly convex at

its minimizer. This is satisfied in the following example involving multiple ridge

penalties. If (3.6) is not satisfied by a penalized regression problem, we can

consider a variant of the problem, in which the penalty functions Pj(θ
(j)) are

replaced with penalty functions Pj(θ
(j)) + (w/2)‖θ(j)‖22 for a fixed w > 0.

Example 1 (Multiple ridge penalties). Let us consider fitting a linear model

using ridge regression. If we can group covariates based on the similarity of their

effects on the response, i.e. x = (x(1), . . . ,x(J)) where x(j) is a vector of length pj ,

we can incorporate this prior information by penalizing each group of covariates

differently:

LT (θ,λ) :=
1

2

∥∥∥∥∥∥y −
J∑
j=1

x(j)θ(j)

∥∥∥∥∥∥
2

T

+

J∑
j=1

λj
2
‖θ(j)‖22. (3.8)

We tune the penalty parameters λ over the set Λ using a training/validation split

with training and validation sets T and V , respectively. For all examples in this

manuscript, let Λ =
[
n−tmin , 1

]J
.

Via some algebra, we can derive (3.7) in Lemma 1; the details are deferred

to the Supplementary Material. Substituting this result into Corollary 1, we find

that the parametric term (2.7) in the remainder is on the order of

Jtmin

nV
log

C∗Tn J∑
j=1

 1

nT

∑
(xi,yi)∈T

‖x(j)
i ‖

2
2

 1

nV

∑
(xi,yi)∈V

‖x(j)
i ‖

2
2

 , (3.9)

where C∗T = ‖ε‖2T +
∑J

j=1 ‖θ∗,(j)‖22. Thus, we have shown that if the lower bound
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of Λ shrinks at the polynomial rate n−tmin , then the near-parametric term in the

remainder of the oracle inequality grows only linearly in its power tmin.

In the next example, we consider GAMs (Hastie and Tibshirani (1990)).

Although GAMs are nonparametric models, it is well-known that they are equiva-

lent to solving a finite-dimensional problem (Green and Silverman (1993),

O’sullivan, Yandell and Raynor Jr (1986), Buja, Hastie and Tibshirani (1989)).

By reformulating GAMs as parametric models, we can establish oracle inequal-

ities for tuning the penalty parameters using a training/validation split. Here,

we present an outline of the procedure; the details can be found in the Supple-

mentary Material.

Example 2 (Multiple Sobolev penalties). To fit a GAM over the domain

X J , where X ⊆ R, a typical setup is to solve

arg min
α0∈R,gj

1

2

∑
i∈D(nT )

yi − α0 −
J∑
j=1

gj(xij)

2

+

J∑
j=1

λj

∫
X

(
g′′j (xj)

)2
dxj , (3.10)

where the penalty function is the 2nd-order Sobolev norm. Let X = [0, 1] for this

example. Using properties of the Sobolev penalty, (3.10) can be re-expressed as

a finite-dimensional problem with matrices Kj ,

arg min
α0,α1,θ

1

2

∥∥∥∥∥∥y − α01− xα1 −
j∑
j=1

Kjθ
(j)

∥∥∥∥∥∥
2

T

+
1

2

J∑
j=1

λjθ
(j)>Kjθ

(j). (3.11)

Let XT ∈ RnT×J be the covariates x in the training data stacked together. If

X>T XT is invertible, we can derive the closed-form solution for (3.11). Then, we

can directly calculate (3.7) in Lemma 1. Substituting this result into Corollary

1, we find that the parametric term in the remainder is on the order of

Jtmin

nV
log

nJ‖y‖T
J ∥∥∥∥(X>T XT

)−1
X>T

∥∥∥∥
2

+

J∑
j=1

h−2
j (T )

 , (3.12)

where ‖ · ‖2 is the spectral norm and hj(T ) is the smallest distance between

observations of the jth covariates in the training data T .

In particular, for J = o(n1/2), the smoothing spline estimate (3.10) is shown

to attain the minimax optimal rate of Op(Jn
−4/5) if the penalty parameters

shrink at the rate of ∼ n−4/5 (Sadhanala and Tibshirani (2017); Horowitz,

Klemelä and Mammen (2006)). From Corollary 1, we see that the oracle error

(2.6) asymptotically dominates the additional error terms incurred from tuning

the penalty parameters. Moreover, as long as we choose λmin ∼ n−α for any
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α > 4/5, the model selected via training/validation split will also attain the

minimax rate.

3.1.2. Parametric regression with nonsmooth penalties

If the penalty functions are nonsmooth, similar results do not necessarily

hold. Nonetheless, we find that for many popular nonsmooth penalty functions,

such as the lasso (Tibshirani (1996)) and group lasso (Yuan and Lin (2006)), the

fitted functions are still smoothly parameterized by λ almost everywhere. To

characterize such problems, we begin with the following definitions from Feng

and Simon (2018):

Definition 1. The differentiable space of function f : Rp 7→ R at θ is

Ωf (θ) =

{
β

∣∣∣∣limε→0

f(θ + εβ)− f(θ)

ε
exists

}
. (3.13)

Definition 2. Let f(·, ·) : Rp × RJ 7→ R be a function with a unique minimizer.

S ⊆ Rp is a local optimality space of f over W ⊆ RJ if

arg min
θ∈Rp

f(θ,λ) = arg min
θ∈S

f(θ,λ) ∀λ ∈W. (3.14)

Using the above definitions, we can characterize the penalty parameters Λsmooth ⊆
Λ, where the fitted functions are well-behaved.

Condition 1. For every λ ∈ Λsmooth, there exists a ball B(λ) with nonzero

radius centered at λ, such that

• For all λ′ ∈ B(λ), the training criterion LT (·,λ′) is twice differentiable with

respect to θ at θ̂(λ′|T ) along directions in the product space

ΩLT (·,λ)
(
θ̂ (λ|T )

)
=ΩP1(·)

(
θ̂(1)(λ|T )

)
× · · · × ΩPJ(·)

(
θ̂(J)(λ|T )

)
. (3.15)

• ΩLT (·,λ)
(
θ̂ (λ|T )

)
is a local optimality space for LT (·,λ) over B(λ).

In addition, we need nearly all penalty parameters to be in Λsmooth.

Condition 2. Λ \ Λsmooth has Lebesgue measure zero, i.e. µ(Λcsmooth) = 0.

For instance, in the lasso, Λsmooth is the sections of the lasso path between the

knots. As the knots in the lasso-path are countable, the set outside Λsmooth has

measure zero.

Assuming the above conditions hold, the fitted models for nonsmooth penalty

functions satisfy the same Lipschitz relation as that in Lemma 1.

Lemma 2. Let Λ := [λmin, λmax]J , where λmax ≥ λmin > 0. Suppose that for all

j = 1, . . . , J , gj satisfies (3.5) over X (j). Suppose for training data T ≡ D(nT ),
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the penalized loss function LT (θ,λ) has a unique minimizer θ̂(λ|T ) for every

λ ∈ Λ. Let Uλ be an orthonormal matrix with columns forming a basis for the

differentiable space of LT (·,λ) at θ̂(λ|T ). Suppose there exists a constant m(T ) >

0 such that the Hessian of the penalized training criterion at the minimizer taken

with respect to the directions in Uλ satisfies

Uλ∇2
θLT (θ,λ)

∣∣
θ=θ̂(λ)

� m(T )I ∀λ ∈ Λ, (3.16)

where I is the identity matrix. Suppose Conditions 1 and 2 are satisfied. Then,

any λ(1),λ(2) ∈ Λ satisfies Assumption 1 over X (1)× · · · ×X (J), with CΛ defined

in (3.7).

As an example, we consider multiple elastic net penalties, where the penalty

parameters are tuned using training/validation split and cross-validation.

Example 3 (Multiple elastic nets, training/validation split). Suppose we

want to fit a linear model using the elastic net. If the covariates are grouped a

priori, we can penalize each group differently using the following objective:

θ̂(λ) = arg min
θ(j)∈Rpj ,j=1,...,J

1

2

∥∥∥∥∥∥y −
J∑
j=1

X(j)θ(j)

∥∥∥∥∥∥
2

T

+

J∑
j=1

λj

(
‖θ(j)‖1 +

w

2
‖θ(j)‖22

)
,

(3.17)

where w > 0 is a fixed constant. Here, we briefly sketch the process for de-

riving the oracle inequality when tuning the penalty parameters using a train-

ing/validation split over Λ = [n−tmin , 1]J . Details are given in the Supplementary

Material.

First, we check that all the conditions are satisfied. For this problem, the

differentiable space is the subspace spanned by the nonzero elements in θ̂(λ). Be-

cause the elastic net solution paths are piecewise linear (Zou and Hastie (2003)),

the differentiable space is also a local optimality space. Then, using a similar

procedure to that described in Example 1, we find that the parametric term in

the remainder of Corollary 1 is on the order of

Jtmin

nV
log

C∗Tn
w

J∑
j=1

 1

nT

∑
(xi,yi)∈T

‖x(j)
i ‖

2
2

 1

nV

∑
(xi,yi)∈V

‖x(j)
i ‖

2
2

 , (3.18)

where C∗T = ‖ε‖2T +
∑J

j=1 2‖θ∗,(j)‖1 + w‖θ∗,(j)‖22.

We can compare this additional error term to the risk of using an oracle

penalty parameter. For the case of a single penalty parameter (J = 1), the

convergence rate of using an oracle penalty parameter for the elastic net is on

the order of Op(log(p)/n) (Bunea (2008); Hebiri and van de Geer (2011)). If
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we split the covariates into groups and tune the penalty parameters using a

training/validation split, the incurred error (3.18) is on a similar order.

Example 4 (Multiple elastic nets, cross-validation). Now, we establish

an oracle inequality for the averaged version of K-fold cross-validation using

a similar setup to that in Lecué and Mitchell (2012). Suppose the noise ε is

sub-Gaussian. For simplicity, suppose X is drawn uniformly from [−1, 1]p. In

order to satisfy the assumptions in Theorem 2, our fitting procedure for θ̂(λ)

entails a thresholding operation similar to that in Lecué and Mitchell (2012). In

particular, let the fitted parameters be denoted θ̂thres(λ), where the ith element

is

θ̂thres,i(λ) = sign(θ̂i(λ))(|θ̂i(λ)| ∧K ′0) i = 1, . . . , p, (3.19)

where θ̂(λ) is the solution to (3.17) and K ′0 > 0 is some fixed constant. We then

find the Lipschitz factor in Lemma 3 and upper-bound its Orlicz norm using

exponential concentration inequalities. Let θ̄(D(n)) be the fitted parameters

using the averaged version of K-fold cross-validation. By Theorem 2, there is

some constant c̃ > 0, such that for any a > 0,

PD(n)

∥∥∥X (θ̄(D(n))− θ∗
)∥∥∥2

L2

≤ (1 + a) inf
λ∈Λ

[
PD(nT )

∥∥∥X (θ̄(D(nT ))− θ∗
)∥∥∥2

L2

]
+ c̃

(
1 + a

a

)2 J log nV
nV

tmin log

(
1 + a

aw
Jpn

)
.

(3.20)

The above example is similar to the lasso example in Lecué and Mitchell (2012);

the major difference is that we consider the case where the penalty parameters are

tuned over a continuous range. We are able to do this because Lemma 2 specifies

a Lipschitz relation between the fitted functions and the penalty parameters.

This result is relevant when J is large and λ must be tuned using a continuous

optimization procedure.

3.2. Nonparametric additive models

We now consider nonparametric additive models of the form

{ĝj(λ)}Jj=1 = arg min
gj∈Gj :j=1,...,J

LT

(
{gj}Jj=1 ,λ

)
:=

1

2

∥∥∥∥∥∥y −
J∑
j=1

gj(xj)

∥∥∥∥∥∥
2

T

+

J∑
j=1

λjPj(gj),

(3.21)



ANALYSIS OF THE COST OF HYPER-PARAMETER SELECTION 525

where {Pj} are penalty functionals, and {Gj} are linear spaces of univariate

functions. Let {g∗j }Jj=1 be the minimizer of the generalization error

{
g∗j
}J
j=1

= arg min
gj∈Gj :j=1,...,J

E

∥∥∥∥∥∥y −
J∑
j=1

g∗j

∥∥∥∥∥∥
2

L2

. (3.22)

We obtain a similar Lipschitz relation in the nonparametric setting to those of

previous settings.

Lemma 3. Let λmax > λmin > 0 and Λ := [λmin, λmax]J . Suppose the penalty

functions Pj are twice Gateaux differentiable and convex over Gj. Suppose there

is an m(T ) > 0 such that the second Gateaux derivative of the training criterion

at {ĝ(nT )
j (λ|T )}, for all λ ∈ Λ, satisfies〈
D2
{gj}LT

(
{gj}Jj=1 ,λ

)∣∣∣
gj=ĝj(λ|T )

◦ hj , hj
〉
≥ m(T ) ∀hj ∈ Gj , ‖hj‖D(n) = 1,

(3.23)

where D2
{gj} is the second Gateaux derivative taken in directions {gj}. Let C∗Λ =

λmax
∑J

j=1 Pj(g
∗
j ). For any λ(1),λ(2) ∈ Λ, we have∥∥∥∥∥∥

J∑
j=1

ĝj

(
λ(1)|T

)
− ĝj

(
λ(2)|T

)∥∥∥∥∥∥
D(n)

≤ m(T )

λmin

√(
‖ε‖2T + 2C∗Λ

) nD
nT

∥∥∥λ(1) − λ(2)
∥∥∥

2
.

(3.24)

A simple example that satisfies (3.23) is a penalized regression model in which we

fit values at each of the observed covariates and penalize this fitted value using a

ridge penalty. Note that this procedure is allowed because the response y in the

validation set is not used by the training procedure.

Note that because Lemma 3 verifies that Assumption 1 is satisfied over the

observed covariates, it is suitable to be used in Theorem 1. However (3.24) is not

a sufficiently strong statement to be used for Theorem 2.

4. Simulations

We now present a simulation study of the generalized additive model in

Example 2 to show how the performance changes as the number of penalty pa-

rameters J increases. Corollary 1 suggests that there are two opposing forces

that affect the error of the fitted model. On the one hand, (2.7) is linear in J ;

thus, increasing J can increase the error. On the other hand, (2.6) decreases for

larger model spacesl; thus, increasing J may decrease the error. We isolate these
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two behaviors using two simulation setups.

The data are generated as the sum of univariate functions. That is, let

response Y =
∑J

j=1 g
∗
j (Xj) + σε, where ε are i.i.d. standard Gaussian random

variables, and σ > 0 is chosen such that the signal-to-noise ratio is two. Here,

X is drawn from a uniform distribution over X = [−2, 2]J . We fit models by

minimizing (3.10). To vary the number of free penalty parameters, we constrain

certain λj to be equal, while allowing others to be vary freely. (For instance,

for a single penalty parameter, we constrain λj for j = 1, . . . , J to be the same

value.) The penalty parameters are tuned using a training/validation split.

Simulation 1. The true function is the sum of identical sinusoids g∗j (xj) =

sin(xj) for j = 1, . . . , J . Because the univariate functions are the same, the

oracle risk should be roughly constant as we increase the number of free penalty

parameters. The validation loss difference∥∥∥∥∥∥
J∑
j=1

ĝ
(nT )
j (λ̂|T )− g∗j

∥∥∥∥∥∥
2

V

−min
λ∈Λ

∥∥∥∥∥∥
J∑
j=1

ĝ
(nT )
j (λ|T )− g∗j

∥∥∥∥∥∥
2

V

(4.1)

should grow linearly in J for this simulation setup.

Simulation 2. The true function is the sum of sinusoids with increasing fre-

quency g∗j (xj) = sin(xj ∗ 1.2j−4) for j = 1, . . . , J . Because the Sobolev norms of

g∗j increase with j, we expect the penalty parameters that attain the oracle risk

to be monotonically decreasing, i.e. λ1 > · · · > λJ . As the number of penalty pa-

rameters increases, we expect the oracle risk to shrink. If the oracle risk shrinks

sufficiently quickly, the performance of the selected model should improve.

For both simulations, we use J = 8. Each simulation was replicated 40 times

with 200 training and 200 validation samples. We consider k = 1, 2, 4, 8 free

penalty parameters by structuring the penalty parameters in a nested fashion:

for each k, we constrained {λ8`/k+j}j=1,...,8/k to be equal for ` = 0, . . . , k −
1. The penalty parameters were tuned using nlm in R, with initializations at

{~1, 0.1×~1, 0.01×~1}. We did not use a grid-search, because it is computationally

intractable for large numbers of penalty parameters. Multiple initializations were

required, because the validation loss is not convex in the penalty parameters.

As expected, the validation loss difference increases with the number of

penalty parameters in Simulation 1 (Figure 1(a)). To determine whether our

oracle inequalities match the empirical results, we regressed the logarithm of

the validation loss difference against the logarithm of the number of penalty pa-

rameters. We fit the model for the simulation results with at least two penalty
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−

−

(a) Simulation 1: the univariate additive components are the same

(b) Simulation 2: the univariate additive components have differing
levels of smoothness

Figure 1. Performance of generalized additive models as the number of free penalty
parameters grows.

parameters, because the data are highly skewed for the single penalty parameter

case. We estimated a slope of 1.00 (standard error 0.15), which suggests that the

validation loss difference grows linearly in the number of penalty parameters. In-

terestingly, including the single parameter case gives us a slope of 1.45 (standard

error 0.14). This suggests that our oracle inequality might not be tight for the

single penalty parameter case.
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For Simulation 2, the validation loss of the selected model decreases as the

number of penalty parameters increases. As suggested in Figure 1(b), the vali-

dation loss of the selected model decreases because the oracle risk is decreasing

at a faster rate than the rate at which the additional error (2.7) grows.

These simulation results suggest that adding more hyperparameters can im-

prove model estimates. Having a separate penalty parameter allows GAMs to

fit components with differing smoothness. However, if we know a priori that the

components have the same smoothness, then it is best to use a single penalty

parameter.

5. Discussion

We have characterized the generalization error of split-sample procedures

that tune multiple hyperparameters. If the estimated models are Lipschitz in the

hyperparameters, the generalization error of the selected model is upper bounded

by a combination of the oracle risk and a near-parametric term in the number of

hyperparameters. These results show that adding hyperparameters can decrease

the generalization error of the selected model if the oracle risk decreases by a

sufficient amount. In the semiparametric or nonparametric setting, the error

incurred from tuning hyperparameters is dominated by the oracle risk asymptot-

ically; adding hyperparameters has a negligible effect on the generalization error

of the selected model. In the parametric setting, the error incurred from tuning

the hyperparameters is on the same order as the oracle error. Nonetheless, one

should still be careful when adding hyperparameters, even though they are not

more “costly” than model parameters.

We also showed that many penalized regression examples satisfy the Lipschitz

condition, which means our theoretical results apply. This implies that fitting

models with multiple penalties and penalty parameters can be desirable, rather

than the usual case with one or two penalty parameters.

One drawback of our theoretical results is that we have assumed that the

selected hyperparameter is a global minimizer of the validation loss. Unfortu-

nately, this is not achievable in practice since the validation loss is not convex

with respect to the hyperparameters. This problem is exacerbated when there

are many hyperparameters because it is computationally infeasible to perform

an exhaustive grid-search. We hope to address this question in future research.
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