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Abstract: This study examines regression analyses of length-biased and right-

censored failure time data arising from the short-term and long-term hazard ra-

tio model. Compared with some commonly used models, such as the proportional

hazards models, the short-term and long-term hazard ratio model has the advan-

tage of allowing crossing hazard functions and, thus, is more flexible. We propose

two methods for estimating the regression parameters, the conditional likelihood

approach, and the composite conditional likelihood approach. We establish the

asymptotic and finite-sample properties of the proposed estimators, and the numer-

ical results suggest that the methods work well in practical situations. In addition,

the approaches are applied to a set of real data arising from a dementia study.
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1. Introduction

In observational studies, two sampling designs are commonly used, namely,

the traditional incident cohort sampling design and prevalent sampling design.

In the former case, subjects are drawn without considering certain conditions or

the disease of interest. In the latter case, subjects are drawn from the group

of people exhibiting certain conditions or the disease of interest at the time of

enrollment. It is easy to see that the latter is more efficient and practical, in

general, and thus tend to be preferred. This is especially true when the disease

is rare, because a traditional incident cohort sampling design would take much

longer to accumulate sufficient events. On the other hand, analyzing the data

arising from a prevalent sampling design is more difficult because we need to

deal with the selection bias. This bias is the result of the design including only

those subjects who have already experienced an initiating event and survived to

the examination time. In other words, with this design, the observed survival
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time within the prevalent cohort tends to be longer than that of the target

population because the probability of being selected from the target population

is proportional to the survival time from disease onset to failure (Vardi (1989)).

It is easy to see that the latter design is a special case of left truncation, and the

resulting data are usually referred to as length-biased data if the disease onset

follows a stationary Poisson distribution. In the following, we focus on regression

analyses of such data rather than of regular left-truncated data.

Fields that often produce length-biased data include cancer screening trials

(Zelen and Feinleib (1969); Zelen (2004)), economics studies (De Una Alvarez,

Otero-Giraldez and Alvarez-Llorente (2003)), epidemiological studies (Keiding

(1991); Sansgiry and Akman (2000)), and renewal processes (Cox and Miller

(1977); Vardi (1982, 1989)). As a result, many authors have discussed analyses

of length-biased failure time data. For example, among others, Huang and Qin

(2011), Vardi (1989), and Wang (1991) considered nonparametric estimations of

an underlying survival function. In particular, Wang (1991) proposed a product-

limit estimator, which we will discuss in greater detail below. For regression

analyses, Wang (1996), Ghosh (2008), Qin and Shen (2010), and Huang and Qin

(2012) investigated fitting a proportional hazards model to length-biased data,

and Shen, Ning and Qin (2009) considered the problem under semiparametric

transformation and accelerated failure time models.

A well-known drawback of the aforementioned regression models is that they

cannot accommodate the situation in which hazard functions cross, which can

occur. To address this, we consider the short-term and long-term hazard ratio

model. Prior studies have developed parameter estimation methods for situations

without a length bias (Tong, Zhu and Sun (2007); Yang and Prentice (2005);

Yang (2011); Yang and Zhao (2012); Yang and Prentice (2015)). In addition,

to allow for crossing hazard functions, this class of models is includes many

commonly used models, such as the proportional hazards model, as special cases.

For the model, we propose two estimation procedures, namely the conditional

likelihood approach and the composite conditional likelihood approach. The

former is relatively simple and applies to both general left-truncated and length-

biased data. The latter takes into account the unique characteristics of length-

biased data, and is expected to be more efficient.

The remainder of this paper is organized as follows. Section 2 introduces

some notation and describes the length-biased data and the class of two-group

short-term and long-term models. In Section 3, we present the two proposed

estimation methods and establish the asymptotic properties of the resulting es-
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timators. Section 4 provides the results obtained from a simulation study con-

ducted to evaluate the finite-sample performance of the two proposed estimation

procedures. These results suggest that the methods work well for practical situ-

ations. In Section 5, the methods are applied to a set of real data arising from a

dementia study. Section 6 concludes the paper.

2. Length-biased Data and the Short-term and Long-term Models

2.1. Notation and length-biased data

Consider a failure time study that involves two events, an initiating event

such as the onset of a disease, and a failure event such as death from the disease,

and uses a prevalent sampling design. Let Ã denote the time from the initiating

event to the examination for the disease or the enrollment time in the study, and

let T̃ be the time from the initiating event to the failure event, the failure time

variable of interest. Then, by the assumption, the study consists only of those

subjects with T̃ ≥ Ã > 0. In the following, we assume that the examination

time is noninformative and that the incidence of the initiating event occurs over

calendar time at a constant rate; thus, Ã follows a uniform distribution.

Let T and V be defined in the same way as T̃ and Ã, respectively, but for

the subjects in the study or prevalent sample. In addition, let V denote the

time from the examination to the failure event, and suppose there exists a vector

of covariates denoted by Z̃ in general, or Z for the study subjects. Note that

we drop the ∼ to emphasize that in the prevalent sample, the failure time T =

A + V must exceed A and, thus, is left-truncated. The joint distribution of the

triplet (T,A,Z) has the same joint distribution as (T̃ , Ã, Z̃)|T̃ ≥ Ã. Furthermore,

note that, in practice, observations on T are usually subject to right censoring

owing to the loss of follow-up or the end of the study. In other words, we

only observe the censored failure time Y = min(T,A + C) and the censoring

indicator δ = I(V ≤ C), where C denotes the censoring time measured from

the examination. Thus, the observed data from n independent subjects have the

form {(Yi, Ai, δi, Zi), for i = 1, . . . , n}. In the following, as usual, we assume that

(A, V ) is independent of C, given Z. However, note that the failure time T is

subject to informative censoring because it shares the same truncation time A

with the total censoring time A+ C.

Let f(t|z), F (t|z), and S(t|z) denote the density, cumulative distribution,

and survival functions of T̃ , respectively, given the covariate Z̃ in the target

population, and let H(t) be the distribution function of the truncation time
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Ã. Correspondingly, let g(t|z) and G(t|z) denote the density and cumulative

distribution functions of T , respectively, given Z or the conditional density and

cumulative distribution functions of T̃ , respectively, given T̃ > Ã and Z̃. Then,

it can be easily shown that the joint distribution function, say K(a, t|z), of the

observed (A, T ) can be expressed as

dK(a, t|z) =
dF (t|z)dH(a)I(t ≥ a)

ξ(z)
, (2.1)

where ξ = Pr(T̃ ≥ Ã|Z) =
∫
S(t|z)dH(t). It thus follows from the assumption

H(t) = t that the joint density function of the observed (A, T ) has the form

fA,T (a, t|z) =
f(t|z)I(t ≥ a)

µ(z)
, (2.2)

with µ(z) =
∫∞

0 sf(s|z)ds. In addition, we have the following relationship be-

tween G(t|z) and F (t|z) :

dG(t|z) =
tdF (t|z)
µ(z)

. (2.3)

2.2. Short-term and long-term hazard ratio model

To describe the two-group short-term and long-term hazard ratio model, sup-

pose that the study subjects come from two treatment groups, namely a control

and a treatment group, and that Zi = 0 if subject i is from the control group,

and one otherwise. For convenience, suppose that the first n1 subjects are from

the control group, and the remaining n2 subjects are from the treatment group,

where n1 +n2 = n. Assume that the failure time T̃ is absolutely continuous, and

let λP̄ (t) and λT̄ (t) denote the hazard functions of T̃ for the subjects with Z = 0

and 1, respectively. Then, the two-group short-term and long-term hazard ratio

model postulates that

λT̄ (t) =
θ1θ2

θ1 + (θ2 − θ1)SP̄ (t)
λP̄ (t) , t < τ0 (2.4)

(Yang and Prentice (2005)), where SP̄ (t) = exp(−
∫ t

0 λP̄ (s)ds), θ1 and θ2 are two

unknown positive parameters, and τ0 = sup{t : SP̄ (t) > 0}. It is apparent that

the above model can be rewritten as
λT̄ (t)

λP̄ (t)
=

θ1θ2

θ1 + (θ2 − θ1)SP̄ (t)
.

That is, under the model, the ratio of the two hazard functions depends on θ1, θ2,

and SP̄ (t), and is not constant, as it is in the proportional hazards model. More

specifically, if θ1 < θ2, the ratio is monotonically decreasing and monotonically
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increasing with θ1 > θ2. In addition, it is easy to show that

θ1 = lim
t→0

λT̄ (t)

λP̄ (t)
, θ2 = lim

t→τ0

λT̄ (t)

λP̄ (t)
.

Thus, we can interpret θ1 and θ2 as the short-term and long-term hazard ratios,

respectively.

As mentioned before, model (2.4) includes some commonly used models as

special cases. For example, by taking θ1 = θ2, the model reduces to the propor-

tional hazards model. We can also obtain the proportional odds model by setting

θ2 = 1. Define

R(t) =
1− SP̄ (t)

SP̄ (t)
, t < τ0 ,

as the odds function of the control group, and βT = (β1, β2) = (log(θ1), log(θ2)).

Then, the hazard and survival functions of T̃i, given Zi, can be expressed as

λi(t;β) =
1

γ1i(β) + γ2i(β)R(t)

dR(t)

dt
,

and

Si(t;β) =
(

1 +
γ2i(β)

γ1i(β)
R(t)

)−1/γ2i(β)
,

respectively, where γji(β) = exp(−βjZi), for j = 1, 2, i = 1, . . . , n. In the

following, we refer to β = (β1, β2)T as the regression parameters.

For convenience, in the following, we use τ to denote the longest follow-up

time on T̃ , with τ < τ0.

3. Estimation of the Regression Parameters

In this section, we estimate the regression parameters β and present two

methods. The first is the conditional likelihood approach, which can be applied

in more general situations, but may be less efficient. The second is the composite

conditional likelihood approach, which may can be more efficient.

3.1. Conditional likelihood estimation

In this subsection, we first present a conditional maximum likelihood esti-

mation procedure. Note that, given the observed data, the likelihood function

conditional on T̃ ≥ Ã is proportional to

LC =

n∏
i=1

f(Yi|Zi)δi S(Yi|Zi)1−δi

Si(Ai|Zi)
.
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It thus follows that the log conditional likelihood function under model (2.4) has

the form

logLC(β,R(t)) ∝ − 1

n

n∑
i=1

{−δi log{λi(Yi;β)} − log{Si(Yi;β)}+ log{Si(Ai;β)} }

under model (2.4). For the estimations of β and R(t), it would be natural to

directly maximize logLC(β,R(t)). On the other hand, it is clear that this would

be difficult and computationally intensive. To deal with this, by following Yang

and Zhao (2012), we propose estimating R(t) first.

To estimate R(t), note that R(t) = 1/SP̄ (t) − 1 and, as mentioned above,

several nonparametric estimation methods have been proposed based on length-

biased and right-censored data. In the following, we employ the product-limit

estimator

Ŝ
(PL)

P̄
(t) =

∏
u∈[0,t]

{1− dΛ̂(u)} (3.1)

given in Wang (1991), and define the estimator β̂ as the value of β that maximizes

the estimated log likelihood function logLC(β, R̂(t)). Here,

Λ̂(t) =

∫ t

0

1

K1(u)
dN1(u) (3.2)

and R̂(t) = 1/Ŝ
(PL)

P̄
(t) − 1, where N1(t) =:

∑
i≤n1

N1i(t) =
∑

i≤n1
δiI(Yi ≤ t)

and K1(t) =:
∑

i≤n1
K1i(t) =

∑
i≤n1

I(Ai ≤ t ≤ Yi). Note that by treating

R(t) = R̂(t) as known, the log conditional likelihood function can be simplified

to

logLC(β,R(t)) ∝ − 1

n

∑
i>n1

{
δi log

(
γ1i(β) + γ2i(β)R(Yi)

)
+

1

γ2i(β)

[
log

(
1+

γ2i(β)

γ1i(β)
R(Yi)

)
−log

(
1+

γ2i(β)

γ1i(β)
R(Ai)

)]}
,

because the subjects from the control group do not contribute to the estimation

of β.

To establish the asymptotic properties of β̂, let β0 denote the true value of

β, and define a⊗2 = aaT for a vector a,

N2(t) =
∑
i>n1

δiI(Yi ≤ t) , K2(t) =
∑
i>n1

I(Yi ≥ t) , K3(t) =
∑
i>n1

I(Ai ≥ t) .

Then, the negtive estimated log likelihood function − logLC(β, R̂(t)) can be writ-

ten equivalently as
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Ln(β, R̂(t)) =:
1

n

∑
i>n1

li(β, R̂(t))

=
1

n

{∫ τ

0
log
(
γ1(β) + γ2(β)R̂(t)

)
dN2(t)

+

∫ τ

0

K2(t)dR̂(t)

γ1(β) + γ2(β)R̂(t)
−
∫ τ

0

K3(t)dR̂(t)

γ1(β) + γ2(β)R̂(t)

}
,

where γj(β) = exp(−βj), for j = 1, 2, and τ denotes the length of the follow-up

time, with τ < τ0. Define

hi(β̂, R̂) =
1√
n

∑
i>n1

∂li(β, R̂(t))

∂β

∣∣∣∣
β=β̂

+
1√
n

n∑
i=1

W1(β̂, R̂(Yi))

Ŝ
(PL)

P̄
(t)

∫ Yi

0

Ŝ
(PL)

P̄
(s−)

Ŝ
(PL)

P̄
(s)

I(K1(u) > 0)

K1(u)
dM̂i(s)

+
1√
n

n∑
i=1

W2(β̂, R̂(Ai))

Ŝ
(PL)

P̄
(t)

∫ Ai

0

Ŝ
(PL)

P̄
(s−)

Ŝ
(PL)

P̄
(s)

I(K1(u) > 0)

K1(u)
dM̂i(s),

and M̂i(t) = N1i(t)−
∫ t

0 K1i(u)dΛ̂(u), where W1(β,R(t)),W2(β,R(t)) is provided

in the proof of the following theorem.

The theorem below gives the asymptotic properties of β̂. The proof is out-

lined in the Appendix.

Theorem 1. Assume that conditions (C1)-(C6) given in the Appendix hold.

Then, as n→∞, we have

1. β̂
P−→ β0;

2.
√
n(β̂ − β0) converges weakly to a zero mean normal distribution, the co-

variance matrix of which can be estimated consistently as H(β̂)−1Σ̂H(β̂)−1,

where H(β̂) denotes the Hessian matrix of Ln(β) at β̂ and Σ̂ = n−1∑n
i=1[hi(β̂, R̂)]⊗2.

3.2. Composite conditional likelihood estimation

Note that the estimator β̂ defined above applies to any left-truncated data,

not just length-biased data. On the other hand, the estimator may not be efficient

because it does not use the length-biased assumption that the truncation time

Ã follows a uniform distribution. In this subsection, we develop a composite

conditional likelihood estimation procedure that does makes this assumption,

and thus may be more efficient.
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To develop the composite conditional likelihood estimation procedure, we

follow Huang and Qin (2012), who discussed regression analyses of length-biased

and right-censored data under the proportional hazards model. More specifically,

define V 0 = min(T − A,C), and not that if the survival time is uncensored, the

conditional density function of A given V 0 is identical to the condition density

of V 0 given A in the prevalent cohort, in the sense that

fA=a|V 0=v,δ=1,Z =
f(a+ v)

S(a|Z)
= fV 0=v|A=a,δ=1,Z , a ≥ 0, v ≥ 0 .

The first equality follows directly from the definition. To see the second equality,

by following the arguments of Huang and Qin (2012), we can easily show that

fA,V 0|δ=1,Z =
f(a+ v|Z)

µ(Z)

P (C > V |Z)

P (δ = 1|Z)
, a ≥ 0, v ≥ 0 .

Therefore, we have

fA|δ=1,Z =
S(a|Z)

µ(Z)

P (C > V |Z)

P (δ = 1|Z)
, a ≥ 0,

and the second equality. This suggests that we should consider the composite

conditional likelihood function

LCOM =

n∏
i=1

[
f(Yi|Zi)
S(Ai|Zi)

× f(Yi|Zi)
S(V 0

i |Zi)

]δi [ S(Yi|Zi)
S(Ai|Zi)

](1−δi)

=

n∏
i=1

f(Yi|Zi)δiS(Yi|Zi)1−δi

S(Ai|Zi)
×
[
f(Yi|Zi)
S(V 0

i |Zi)

]δi
, (3.3)

which can be rewritten as

LCOM = LC ×
n∏
i=1

[
f(Yi|Zi)
S(V 0

i |Zi)

]δi
.

The latter is the product of the conditional likelihood given A, based on all

subjects, and that given V , based on the subjects with uncensored survival times.

In other words, the composite conditional likelihood function is equivalent to

the conditional likelihood function based on the pooled data {(Ai, Yi, δi, Zi); i =

1, . . . , n} and {(Vi, Yi, Zi); δi = 1}.
To estimate β, we employ the log composite conditional likelihood function

given above under model (2.4), which has the form

logLCOM (β,R(t)) ∝ − 1

n

∑
i>n1

{
2δi log

(
γ1i(β) + γ2i(β)R(Yi)

)
+

1

γ2i(β)

[
(1 + δi) log

{
1 +

γ2i(β)

γ1i(β)
R(Yi)

}
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− log

{
1 +

γ2i(β)

γ1i(β)
R(Ai)

}
− δi log

{
1 +

γ2i(β)

γ1i(β)
R(V 0

i )

}]}
when treating R(t) as known. Of course, in practice, we do not know R(t). Thus,

as in the previous subsection, we propose estimating it using the product-limit

estimator based on the pooled data {(Ai, Yi, δi, Zi); i = 1, . . . , n} and {(Vi, Yi, Zi);
δi = 1}. More specifically, define K̃1(t) =: 2−1

∑
i≤n1

K̃1i(t) = 2−1
∑

i≤n1
{ I(Ai

≤ t ≤ Yi) + δiI(Vi ≤ t ≤ Yi) }. Then, the product-limit estimator of SP̄ has the

form

S̃P̄ (t) =
∏
u∈[0,t]

{ 1− dΛ̃(u) } , (3.4)

where

Λ̃(t) =

∫ t

0

1

K̃1(u)
dN1(u) .

This yields R̃(t) = 1/S̃P̄ (t)− 1.

Define the estimator β̃ as the value of β that maximizes the estimated log

composite conditional likelihood function logLCOM (β, R̃(t)). To establish the

asymptotic properties of β̃, define K4(t) =
∑

i>n1
δiI(Yi ≥ t) and K5(t) =∑

i>n1
δiI(V 0

i ≥ t). Then, the negtive estimated log composite conditional like-

lihood function − logLCOM (β, R̃(t)) can be written as

L∗n(β, R̃(t)) =:
1

n

∑
i>n1

l∗i (β, R̃(t))

=
1

n

{
2

∫ τ

0
log
(
γ1(β) + γ2(β)R̃(t)

)
dN2(t)

+

∫ τ

0

[K2(t) +K5(t)]dR̃(t)

γ1(β) + γ2(β)R̃(t)
−
∫ τ

0

K3(t)dR̃(t)

γ1(β) + γ2(β)R̃(t)

−
∫ τ

0

K5(t)dR̃(t)

γ1(β) + γ2(β)R̃(t)

}
.

Define

h∗i (β̃, R̃(t)) =
1√
n

∑
i>n1

∂l∗i (β,R(t))

∂β

∣∣∣∣
β=β̃

+
1√
n

n∑
i=1

W ∗1 (β̃, R̃(Yi))

S̃P̄ (t)

∫ Yi

0

S̃P̄ (s−)

S̃P̄ (s)

I(K̃1(u) > 0)

K̃1(u)
dM̃∗i(s)

+
1√
n

n∑
i=1

W ∗2 (β̃, R̃(Ai))

S̃P̄ (t)

∫ Ai

0

S̃P̄ (s−)

S̃P̄ (s)

I(K̃1(u) > 0)

K̃1(u)
dM̃∗i(s)
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+
1√
n

n∑
i=1

W ∗3 (β̃, R̃(V 0
i ))

S̃P̄ (t)

∫ V 0
i

0

S̃P̄ (s−)

S̃P̄ (s)

I(K̃1(u) > 0)

K̃1(u)
dM̃∗i(s),

and M̃∗i (t) = N1i(t) −
∫ t

0 K̃1i(u)dΛ̃(u), where W ∗1 (β,R(t)),W ∗2 (β,R(t)), and

W ∗3 (β,R(t)) are defined in the proof of the following theorem. The theorem

below gives the asymptotic properties of β̃. The proof is outlined in the Ap-

pendix.

Theorem 2. Assume that the conditions (C1)-(C5) and (C6∗) given in the Ap-

pendix hold. Then, as n→∞, we have

1. β̃
P−→ β0;

2.
√
n(β̃−β0) converges weakly to a zero mean normal distribution, the covari-

ance matrix of which can be estimated consistently by H∗(β̃)−1 Σ̂∗H∗(β̃)−1,

where H∗(β̃) denotes the Hessian matrix of L∗n(β) at β̃ and Σ̂∗ = n−1∑
i>n1

[h∗i (β̃, R̃(t))]⊗2.

4. A Simulation Study

In this section, we present the results obtained from a simulation study

conducted to evaluate the finite-sample performance of the two estimators pro-

posed above. In the study, we generated the failure times from model (2.4)

using SP̄ (t) = λ exp(−λt), which gives R(t) = λ−1 exp(λt) − 1. To generate the

prevalent cohort or length-biased sample, the left truncation time Ãi was gener-

ated independently from a uniform distribution over (0, ω), with ω being larger

than the upper bound of T̃i to ensure the stationary assumption. Only the pairs

(Ai, Ti) = (Ãi, T̃i), with Ãi ≤ T̃i, were kept until the required sample sizes were

achieved for both the control and the treatment group. The censoring time Ci,

was generated from a uniform distribution over (0, a), where a was chosen to give

the required percentage of right-censored samples. The results given below are

based on 1,000 replications, with n1 = n2 = 100 or 200.

Tables 1-3 present the results of estimating β, with β0 taking several dif-

ferent values, and the percentage of right-censored samples being 0%, 15%, or

30%. In particular, we considered βT0 = (0.5, 0.5), which gives the proportional

hazards model, βT0 = (0.5, 0) or (−0.5, 0), which correspond to the propor-

tional odds model with an initially negative or positive effect, respectively, and

βT0 = (−0.5, 0.5), under which the group effect is initially positive, but gradually

becomes negative. Furthermore, in the latter case, the two survival functions

cross each other. The results in the tables include the estimated bias (Bias),
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Table 1. Summary of simulation studies: Part I.

Sample Censor
Conditional Composite

Bias SSE ESE CP Bias SSE ESE CP RE
β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

β1 = β2 = 0

100
0% 0.13 -0.07 0.57 0.26 0.59 0.21 0.95 0.84 0.08 -0.07 0.50 0.24 0.54 0.21 0.97 0.92 1.14 1.11

15% 0.14 -0.08 0.62 0.32 0.67 0.24 0.95 0.83 0.09 -0.07 0.54 0.27 0.57 0.24 0.97 0.92 1.16 1.17
30% 0.15 -0.08 0.66 0.40 0.67 0.31 0.94 0.83 0.13 -0.10 0.59 0.34 0.61 0.29 0.96 0.91 1.12 1.18

200
0% 0.04 -0.04 0.38 0.17 0.40 0.15 0.96 0.90 0.04 -0.05 0.35 0.16 0.38 0.15 0.98 0.95 1.08 1.05

15% 0.06 -0.05 0.39 0.18 0.42 0.17 0.97 0.91 0.05 -0.05 0.37 0.18 0.39 0.17 0.98 0.94 1.07 1.03
30% 0.07 -0.06 0.42 0.23 0.44 0.19 0.96 0.88 0.06 -0.06 0.39 0.21 0.41 0.20 0.97 0.95 1.07 1.06

β1 = β2 = 0.5

100
0% 0.05 0.01 0.54 0.34 0.56 0.31 0.95 0.93 0.02 0.00 0.51 0.31 0.48 0.29 0.95 0.96 1.06 1.10

15% 0.06 0.01 0.58 0.40 0.61 0.36 0.95 0.94 0.03 -0.02 0.54 0.33 0.53 0.34 0.93 0.96 1.07 1.23
30% 0.08 0.01 0.60 0.47 0.65 0.45 0.95 0.94 0.04 -0.01 0.59 0.39 0.55 0.41 0.93 0.96 1.02 1.18

200
0% 0.00 0.00 0.36 0.21 0.39 0.20 0.96 0.94 -0.01 0.01 0.34 0.20 0.32 0.19 0.96 0.97 1.06 1.05

15% 0.01 0.00 0.38 0.23 0.41 0.23 0.95 0.94 -0.01 0.01 0.36 0.22 0.34 0.22 0.96 0.97 1.05 1.03
30% 0.01 0.01 0.41 0.29 0.43 0.28 0.95 0.94 0.01 0.00 0.38 0.26 0.37 0.27 0.95 0.97 1.07 1.09

Table 2. Summary of simulation studies: Part II.

Sample Censor
Conditional Composite

Bias SSE ESE CP Bias SSE ESE CP RE
β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

β1 = 0.5, β2 = 0

100
0% 0.08 -0.06 0.60 0.25 0.69 0.21 0.96 0.88 0.10 -0.07 0.56 0.21 0.61 0.21 0.97 0.94 1.07 1.18

15% 0.08 -0.05 0.64 0.29 0.71 0.24 0.95 0.89 0.08 -0.06 0.60 0.25 0.65 0.24 0.97 0.95 1.05 1.16
30% 0.09 -0.06 0.67 0.34 0.78 0.29 0.94 0.88 0.07 -0.07 0.62 0.31 0.67 0.28 0.97 0.94 1.09 1.11

200
0% 0.06 -0.04 0.42 0.16 0.49 0.14 0.97 0.90 0.04 -0.03 0.37 0.15 0.43 0.14 0.98 0.97 1.14 1.08

15% 0.07 -0.04 0.44 0.18 0.52 0.16 0.97 0.92 0.04 -0.04 0.40 0.15 0.44 0.16 0.97 0.97 1.09 1.16
30% 0.08 -0.05 0.46 0.21 0.54 0.19 0.97 0.92 0.05 -0.05 0.44 0.20 0.47 0.19 0.97 0.96 1.04 1.02

β1 = −0.5, β2 = 0

100
0% 0.13 -0.10 0.54 0.29 0.50 0.22 0.94 0.80 0.11 -0.10 0.53 0.26 0.49 0.22 0.96 0.89 1.03 1.12

15% 0.15 -0.11 0.58 0.33 0.53 0.24 0.94 0.80 0.08 -0.09 0.53 0.31 0.50 0.25 0.97 0.88 1.11 1.06
30% 0.16 -0.13 0.63 0.42 0.56 0.30 0.92 0.77 0.15 -0.13 0.57 0.41 0.54 0.30 0.96 0.89 1.11 1.00

200
0% 0.07 -0.05 0.36 0.18 0.35 0.16 0.95 0.88 0.07 -0.05 0.34 0.17 0.34 0.16 0.97 0.92 1.07 1.06

15% 0.08 -0.06 0.40 0.21 0.36 0.17 0.94 0.87 0.08 -0.07 0.35 0.20 0.35 0.18 0.97 0.93 1.13 1.09
30% 0.10 -0.07 0.43 0.27 0.39 0.21 0.94 0.84 0.10 -0.08 0.38 0.23 0.37 0.21 0.97 0.92 1.14 1.17

Table 3. Summary of simulation studies: Part III.

Sample Censor
Conditional Composite

Bias SSE ESE CP Bias SSE ESE CP RE
β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

β1 = −0.5, β2 = 0.5

100
0% 0.01 0.00 0.47 0.38 0.40 0.32 0.91 0.91 0.03 0.00 0.45 0.34 0.38 0.31 0.94 0.94 1.04 1.09

15% 0.06 -0.01 0.49 0.42 0.42 0.36 0.90 0.89 0.04 0.00 0.45 0.40 0.40 0.37 0.95 0.94 1.08 1.05
30% 0.06 -0.03 0.51 0.51 0.45 0.46 0.92 0.85 0.07 -0.04 0.49 0.48 0.43 0.43 0.95 0.93 1.04 1.05

200
0% 0.01 0.00 0.31 0.23 0.27 0.21 0.93 0.94 0.01 0.01 0.29 0.21 0.26 0.21 0.94 0.95 1.05 1.06

15% 0.01 0.00 0.34 0.27 0.29 0.24 0.91 0.93 0.02 -0.02 0.31 0.24 0.28 0.24 0.95 0.97 1.10 1.11
30% 0.03 -0.01 0.35 0.32 0.31 0.28 0.92 0.90 0.04 -0.03 0.33 0.30 0.30 0.28 0.96 0.96 1.05 1.09

β1 = 0.5, β2 = 1

100
0% 0.02 0.08 0.51 0.53 0.48 0.54 0.93 0.95 0.01 0.05 0.51 0.52 0.40 0.50 0.91 0.96 1.00 1.02

15% 0.02 0.08 0.53 0.60 0.51 0.65 0.92 0.95 0.04 0.05 0.49 0.48 0.42 0.59 0.94 0.97 1.09 1.23
30% 0.06 0.05 0.55 0.67 0.55 0.79 0.94 0.95 0.07 0.05 0.57 0.62 0.48 0.73 0.93 0.96 0.98 1.08

200
0% 0.00 0.03 0.34 0.32 0.34 0.32 0.95 0.97 0.00 0.03 0.35 0.31 0.27 0.29 0.91 0.96 0.98 1.03

15% 0.01 0.04 0.36 0.38 0.35 0.37 0.94 0.97 0.02 0.03 0.35 0.34 0.29 0.33 0.92 0.96 1.02 1.12
30% 0.02 0.04 0.38 0.45 0.38 0.45 0.94 0.96 0.02 0.04 0.38 0.43 0.32 0.41 0.92 0.96 1.01 1.04
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Figure 1. Quantile plots of the standardized maximum composite conditional likelihood
estimator for n1 = n2 = 200 and a censoring rate of 15%.

the sample standard error (SSE) of the estimates, the average of the estimated

standard errors (ESE), and the 95% empirical coverage probability (CP). The

results in the tables show that both of the proposed estimators seem to be unbi-

ased and that the variance estimation seems to be appropriate. When the sample

size increases or the right-censoring percentage decreases, both the bias and the

estimated standard error become smaller, as expected. In addition, the tables

show that the normal approximation to the distributions of the two proposed

estimators appears to be reasonable, in general, when the sample size is large. In

addition, as discussed above and expected, the composite conditional likelihood

estimator is more efficient than the conditional likelihood estimator. However,

there exist some low CP, especially on the conditional likelihood estimates of β2

with n1 = n2 = 100, reinforcing the notion that we should employ the composite

conditional likelihood estimator, in general.

To further assess the normal approximation to the distributions of the two
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proposed estimators, we compared the quantile plots of the standardized esti-

mates with those of the standard normal distribution. Figure 1 presents four

such plots, corresponding to the results given in Table 1 with β1 = β2 = 0, and

those shown in Table 2 with β1 = 0.5 and β2 = 0. In all cases, n1 = n2 = 200

and we use a 15% censoring rate. The results again indicate that the normal

approximation seems to be reasonable for the situations investigated. We also

considered other setups for generating length-biased data, and obtained similar

results.

Note that in all situations here,we assume that the truncation time Ã follows

a uniform distribution (i.e., we have length-biased data). Following the advice

of a reviewer, we also considered situations where Ã follows some other distribu-

tion, or where we have regular left-truncated data only. Table 4 shows some of

the results given by the two proposed methods with the truncation time Ã. It

also shows the results for the uniform distribution generated from an exponential

distribution with a rate of 0.5, gamma distribution Γ(1, 1), chi square distribu-

tion X 2(1), and beta distribution B(1, 3). Here, the other setups were the same

as those in Table 1-3, and the table includes the estimated bias, sample stan-

dard error of the estimates, and mean square error (MSE). The results suggest

that, when the stationary assumption is satisfied, the composite conditional like-

lihood method will usually outperform the conditional likelihood method. On

the other hand, if the stationary assumption is violated or if we have regular

length-biased data, the former may yield significantly biased estimates, making

the latter preferable for parameter estimation.

5. An Application

Now, we apply the estimation procedures proposed in the previous sections

to length-biased and right-censored data arising from the Canadian Study of

Health and Aging on patients diagnosed with dementia (Wolfson et al. (2001);

Addona and Wolfson (2006); Shen, Ning and Qin (2009)). The study is a large

prevalent cohort study that began with the random selection of more than 14,000

subjects aged 65 or older from throughout Canada to take part in a health survey.

Of these, 10,263 subjects agreed to participate. All patients were screened for

dementia in 1991, with 1,132 participants identified as having the disease. It

is easy to see that some patients with a serious prognosis of dementia may die

before the screening test, and thus will not be included in the study, implying

the existence of left truncation. For most patients, the dates of disease onset
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Table 4. Comparison of two methods with n1 = n2 = 200.

(β1, β2) Censor
Conditional Composite

Bias SSE MSE Bias SSE MSE
β1 β2 β1 β2 β1 β2 β1 β2 β1 β2 β1 β2

A ∼ Uniform distribution
0% 0.01 -0.06 0.39 0.13 0.15 0.02 0.01 -0.04 0.36 0.11 0.13 0.01

15% 0.02 -0.05 0.41 0.17 0.17 0.03 0.05 -0.05 0.38 0.13 0.15 0.02
30% -0.01 -0.06 0.44 0.22 0.19 0.05 -0.03 -0.03 0.39 0.16 0.15 0.03

A ∼ Exponential distribution
0% 0.06 -0.04 0.47 0.14 0.22 0.02 0.21 0.22 0.38 0.12 0.19 0.06

15% 0.06 -0.04 0.49 0.17 0.24 0.03 0.21 0.22 0.40 0.14 0.21 0.07
30% 0.06 -0.03 0.51 0.20 0.26 0.04 0.18 0.24 0.42 0.22 0.15 0.08

A ∼ Gamma distribution
0% 0.05 -0.04 0.44 0.16 0.20 0.03 0.31 0.33 0.38 0.14 0.24 0.13

(0.5, -0.5) 15% 0.05 -0.03 0.47 0.18 0.22 0.04 0.30 0.34 0.41 0.16 0.26 0.14
30% 0.05 -0.02 0.50 0.20 0.25 0.04 0.28 0.36 0.44 0.17 0.27 0.16

A ∼ Chi square distribution
0% 0.06 -0.06 0.51 0.16 0.26 0.03 0.57 0.37 0.46 0.15 0.54 0.16

15% 0.05 -0.05 0.53 0.19 0.28 0.04 0.60 0.37 0.47 0.16 0.57 0.16
30% 0.02 -0.04 0.53 0.23 0.27 0.05 0.57 0.37 0.49 0.20 0.57 0.18

A ∼ Beta distribution
0% 0.05 -0.04 0.46 0.18 0.21 0.03 0.47 0.52 0.39 0.16 0.37 0.30

15% 0.05 -0.05 0.46 0.20 0.22 0.04 0.50 0.53 0.39 0.17 0.37 0.31
30% 0.03 -0.02 0.49 0.25 0.24 0.06 0.44 0.56 0.43 0.23 0.38 0.36

A ∼ Uniform distribution
0% 0.02 0.01 0.34 0.30 0.12 0.09 0.03 0.01 0.30 0.27 0.09 0.07

15% 0.02 0.02 0.36 0.35 0.13 0.12 0.03 0.02 0.32 0.32 0.10 0.10
30% 0.03 0.02 0.38 0.42 0.15 0.18 0.03 0.02 0.34 0.37 0.12 0.14

A ∼ Exponential distribution
0% 0.03 0.01 0.33 0.34 0.11 0.11 0.15 0.08 0.31 0.30 0.12 0.10

15% 0.04 0.02 0.35 0.39 0.13 0.15 0.15 0.09 0.32 0.34 0.13 0.12
30% 0.05 0.02 0.39 0.52 0.15 0.27 0.16 0.11 0.35 0.47 0.15 0.23

A ∼ Gamma distribution
0% 0.03 0.05 0.39 0.40 0.15 0.16 0.22 0.18 0.35 0.35 0.17 0.15

(0.5, 1) 15% 0.04 0.05 0.42 0.46 0.17 0.22 0.23 0.19 0.38 0.44 0.19 0.22
30% 0.05 0.08 0.45 0.59 0.21 0.36 0.24 0.21 0.41 0.53 0.22 0.33

A ∼ Chi square distribution
0% 0.02 0.02 0.44 0.47 0.20 0.22 0.51 0.16 0.45 0.41 0.46 0.20

15% 0.04 0.03 0.48 0.58 0.23 0.34 0.53 0.12 0.50 0.49 0.54 0.26
30% 0.07 0.01 0.51 0.72 0.26 0.52 0.56 0.07 0.53 0.60 0.59 0.37

A ∼ Beta distribution
0% 0.01 0.03 0.40 0.47 0.16 0.22 0.40 0.38 0.37 0.43 0.29 0.34

15% 0.02 0.08 0.43 0.69 0.19 0.48 0.40 0.43 0.40 0.60 0.33 0.54
30% 0.07 -0.00 0.47 0.73 0.23 0.53 0.44 0.43 0.45 0.75 0.40 0.75
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Table 5. Estimated hazard ratios for the CSHA study.

β1 (short-term) β2 (long-term)
Method Estimate ESE 95%CI Estimate ESE 95%CI

Probable Alzheimer vs. Possible Alzheimer (baseline)
Ia -0.275 0.269 (-0.803, 0.252) 0.096 0.165 (-0.227, 0.419)
IIb -0.129 0.252 (-0.623, 0.366) 0.166 0.179 (-0.185, 0.518)

Probable Alzheimer vs. Vascular (baseline)
I 0.473 0.495 (-0.497, 1.442) -0.215 0.159 (-0.527, 0.097)
II 0.708 0.426 (-0.126, 1.543) -0.319 0.142 (-0.598, -0.040)

Possible Alzheimer vs. Vascular (baseline)
I 0.053 0.396 (-0.723, 0.829) 0.076 0.217 (-0.350, 0.503)
II 0.488 0.411 (-0.318, 1.294) 0.066 0.196 (-0.450, 0.318)

aI: conditional likelihood estimates
bII: composite conditional likelihood estimates

can be obtained from their medical records. Another variable of interest is the

overall survival time from disease onset to death. Here, we have right-censored

observations because the subjects were only followed until the end of the study

in 1996.

In the analyses below, following other authors, we focus on the 818 patients

for whom disease onset dates and the classification of three dementia subtypes

are known. Of those, 393 subjects had probable Alzheimer’s disease, 252 had

possible Alzheimer’s disease, and 173 had vascular dementia. By the end of this

study, 638 patients had died as a result of the disease and the others were right

censored. For the data, Addona and Wolfson (2006) validated the stationarity

assumption that the incidence of dementia does not change over time, using the

method proposed by Wang (1991). In other words, it seems reasonable to treat

the observed prevalent cohort data from the study as length-biased data.

For our analysis, we conduct a pairwise comparison of the effects of the

dementia subtypes on mortality. The results after applying the two proposed

estimation procedures are presented in Table 5. In most cases, the results from

the two methods are quite similar, suggesting that there are no significant dif-

ferences between the short-term and long-term hazard ratios of patients with

different dementia subtypes. On the other hand, the composite conditional like-

lihood estimation procedure indicates that there is a some significant difference

between the short-term hazards of patients with probable Alzheimer’s disease

and those with vascular dementia. To further investigate this, we obtained the

nonparametric estimators S̃P̄ (t) given in (3.1) corresponding to the three sub-

types (see Figure 2). It seems that the three survival functions cross each other,
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Figure 2. Estimated survival curves for different subtypes of dementia.

and that the main difference between probable Alzheimer’s disease and vascular

dementia occurred in the early stage.

6. Conclusion

This paper discussed regression analyses of length-biased and right-censored

failure time data arising from the short-term and long-term hazard ratio model.

Two estimation procedures were proposed. As discussed above and shown in

the simulation study, the conditional likelihood approach applies to general left-

truncated data, but may be less efficient, whereas the composite conditional

likelihood approach is more efficient than the first method, in general, but only

applies to length-biased data. In other words, we need to be careful when using

the second method, and should check the stationarity assumption before applying

it, as in Section 5. For both methods, we established the asymptotic properties of

the estimators of the regression parameters. The results of the simulation study

suggest that the eatimators work well for practical situations.

There exist several directions for future research. First, model (2.4) applies

to the two treatment-group situation only. In some situations, there may exist

more than two groups or other covariates. In other words, it would be useful

to generalize model (2.4) to a recession setting. For further details, see Yang

and Prentice (2005). As noted in Yang (2011), in the case of heavy censoring,

θ̂2 cannot be interpreted as the estimated long-term hazard ratio, because this

interpretation requires that lim t→ τ0, and there are no data near τ0, owning to

the heavy right censoring. As such, it is currently more complicated and difficult
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to obtain an accurate assessment of the treatment effect. Therefore, this is left to

future research. we have focused here on right-censored data. However, instead

of right censoring, the observed data may suffer from interval censoring, which is

a more general form of censoring that includes right censoring as a special case

and occurs commonly in medical follow-up studies, among others (Sun (2006)).

Thus, another direction for future research is to develop estimation procedures

for model (2.2) based on length-biased and interval-censored data.
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Appendix: Proofs of Asymptotic Properties

In this appendix, we will sketch the proofs of the asymptotic results given

above. For this, we will first describe the conditions needed, which are similar to

those used in Yang and Prentice (2005) and Yang and Zhao (2012).

(C1) The true parameter β0 lies in a compact set B.

(C2) Assume that limn1/n = ρ ∈ (0, 1).

(C3) The data range of interest is [0, τ ], where τ < τ0 and τ0 is the upper bound-

ary of the support of the control distribution.

(C4) Assume that W (t) the marginal survival function of the residual censoring

time C. W (t) is absolutely continuous for t ∈ [0, τ ] and W (τ) > 0.

(C5) The survival functions SP̄ (t) and ST (t) of the two comparison groups are

absolutely continuous and SP̄ (τ)ST (τ) > 0.

(C6) The matrix ∂2li(β,R(t))/∂β∂β is continuous and nonsingular in B,

E[(∂li(β)/β)⊗2] is finite at β0.

(C6∗) The matrix ∂2l∗i (β,R(t))/∂β∂β is continuous and nonsingular in B,

E[(∂l∗i (β)/β)⊗2] is finite at β0.

For the proof, define L(β) = E[Ln(β)]. In the following, we will focus on

the proof of the results given in Theorem 1 and the proof for Theorem 2 will be

similar and most of it thus omitted.
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Proof of Theorem 1.

Proof of Consistency. To prove the consistency, by Theorem 5.7 in Van der

Vaart (1998), it is enough to verify that

(i) supβ∈B ‖Ln(β, R̂(t))− L(β,R(t))‖ = op(1).

(ii) infβ:d(β,β0)>ε L(β,R(t)) > L(β0, R(t)).

Let’s prove condition (i) hold firstly. Note that R̂(t)−R(t) = op(1),

sup
β∈B
‖Ln(β, R̂(t))− L(β,R(t))‖

≤ sup
β∈B
‖Ln(β, R̂(t))− Ln(β,R(t))‖+ sup

β∈B
‖Ln(β,R(t))− L(β,R(t))‖,

=: I1 + I2,

and

I1 = sup
β∈B

∥∥∥∥ 1

n

∑
i>n1

{
δi log

(
1− γ2(β)[R̂(Yi)−R(Yi)]

γ1(β) + γ2(β)R(Yi)

)

+
1

γ2(β)

[
log

(
1− γ2(β)[R̂(Yi)−R(Yi)]

γ1(β) + γ2(β)R(Yi)

)
− log

(
1− γ2(β)[R̂(Ai)−R(Ai)]

γ1(β) + γ2(β)R(Ai)

)]}∥∥∥∥
≤ sup

β∈B

∥∥∥∥ 1

n

∑
i>n1

{
δi

(
γ2(β)[R̂(Yi)−R(Yi)]

γ1(β) + γ2(β)R(Yi)
+ o

(
γ2(β)[R̂(Yi)−R(Yi)]

γ1(β) + γ2(β)R(Yi)

))

+
1

γ2(β)

[(
γ2(β)[R̂(Yi)−R(Yi)]

γ1(β) + γ2(β)R(Yi)
+ o

(
γ2(β)[R̂(Yi)−R(Yi)]

γ1(β) + γ2(β)R(Yi)

))
−
(
γ2(β)[R̂(Ai)−R(Ai)]

γ1(β) + γ2(β)R(Ai)
+ o

(
γ2(β)[R̂(Ai)−R(Ai)]

γ1(β) + γ2(β)R(Ai)

))]}∥∥∥∥ = op(1),

it is sufficient to prove that E = {li(β,R(t)) : β ∈ B} is G-C(Glivenko-Cantelli)

class. The classes {R(t), t ∈ [0, τ0]} is G-C classes because it is monotone

increasing function. The classes {K2(t), t ∈ [0, τ0]} and {K3(t), t ∈ [0, τ0]}
are G-C classes because they are bounded variation functions. The classes

{γ1(β) : β ∈ B} and {γ2(β) : β ∈ B} are G-C classes because the exponen-

tial function exp(βj), j = 1, 2 is monotone function. And it is easy to see that,

there exist positive constants c1 and c2 such that c1 < γj(β) < c2 since B is

compact. By Kosorok (2008, Thm. 9.2.6), we have E = {li(β,R(t)) : β ∈ B} is

G-C class because li(β,R(t)) is continuous function of γ1(β) and γ2(β). Thus

condition (i) holds.
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For condition (ii), note that it is equivalent to that the ∇βL(β,R(t)) = 0

has unique solution. We just need to verify that

inf
β:d(β,β0)>ε

∥∥∥∥∂L(β,R(t))

∂β

∥∥∥∥ > 0.

Note by condition (C6), (∂L(β,R(t))/∂β)|β=β0
= 0 and mean value theorem,

we have

inf
β:d(β,β0)>ε

∥∥∥∥∂L(β,R(t))

∂β

∥∥∥∥ = inf
β:d(β,β0)>ε

∥∥∥∥∂L(β,R(t))

∂β
− ∂L(β,R(t))

∂β

∣∣∣∣
β=β0

∥∥∥∥
= inf

β:d(β,β0)>ε

∥∥∥∥∂2L(β,R(t))

∂β∂β

∣∣∣∣
β=β∗

(β − β0)

∥∥∥∥
= inf

β:d(β,β0)>ε

∥∥∥∥E∂2li(β,R(t))

∂β∂β

∣∣∣∣
β=β∗

(β − β0)

∥∥∥∥ > 0,

where β∗ lies between β and β0. Therefore, the proof of consistency is completed.

Proof of asymptotic normality. By consistency, we have β̂ − β0 = op(1). By

Taylor expansion, we have

0 =
∂Ln(β, R̂(t))

∂β

∣∣∣∣
β=β̂

=
1

n

∑
i>n1

∂li(β, R̂(t))

∂β

∣∣∣∣
β=β̂

=
1

n

∑
i>n1

∂li(β, R̂(t))

∂β

∣∣∣∣
β=β0

+
1

n

∑
i>n1

∂2li(β, R̂(t))

∂β∂β

∣∣∣∣
β=β0

(β̂ − β0) + op(n
−1/2).

Hence,

√
n(β̂− β0) = −

(
1

n

∑
i>n1

∂2li(β, R̂(t))

∂β∂β

∣∣∣∣
β=β0

)−1 1√
n

∑
i>n1

∂li(β, R̂(t))

∂β

∣∣∣∣
β=β0

+ op(1).

Note that, by the similar method of Flemming and Harrington (1991, pp. 97-98),

we have

R̂(t)−R(t) =
1

Ŝ
(PL)

P̄
(t)

∫ t

0

Ŝ
(PL)

P̄
(s−)

SP̄ (s)

I(K1(u) > 0)

K1(u)
dM(s),

where M(t) = N1(t) −
∫ t

0 K1(u)dΛ(u) =
∑n

i=1Mi(t) =
∑n

i=1N1i(t) −
∫ t

0 K1i(u)

dΛ(u). By above equation and Taylor expansion, after some calculation, we have

1√
n

∑
i>n1

∂li(β, R̂(t))

∂β

∣∣∣∣
β=β0
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=
1√
n

∑
i>n1

∂li(β,R(t))

∂β

∣∣∣∣
β=β0

+
1√
n

n∑
i=1

W1(β0, R(Yi))

Ŝ
(PL)

P̄
(t)

∫ Yi

0

Ŝ
(PL)

P̄
(s−)

SP̄ (s)

I(K1(u) > 0)

K1(u)
dMi(s)

+
1√
n

n∑
i=1

W2(β0, R(Ai))

Ŝ
(PL)

P̄
(t)

∫ Ai

0

Ŝ
(PL)

P̄
(s−)

SP̄ (s)

I(K1(u) > 0)

K1(u)
dMi(s) + op(1)

=:
1

n

n∑
i=1

hi(β0, R(t)) + op(1)
D−→ N(0,Σ),

where Σ = E[hi(β0, R̂(t))]⊗2 and W1(β,R(t)) = (W11(β,R(t)),W12(β,R(t)))T ,

W2(β,R(t)) = (W21(β,R(t)),W22(β,R(t)))T , in which

W11(β,R(t)) =
1

n

∑
i>n1

δiγ1(β)γ2(β) + γ1(β)

(γ1(β) + γ2(β)R(t))2
,

W12(β,R(t)) =
1

n

∑
i>n1

−δiγ1(β)γ2(β) + 2γ1(β) + γ2(β)R(t)

(γ1(β) + γ2(β)R(t))2
,

W21(β,R(t)) =
1

n

∑
i>n1

−γ1(β)

(γ1(β) + γ2(β)R(t))2
,

W22(β,R(t)) =
1

n

∑
i>n1

−γ2(β)R(t)

(γ1(β) + γ2(β)R(t))2
.

Note that
1

n

∑
i>n1

∂2li(β, R̂(t))

∂β∂β

∣∣
β=β0

P−→ H(β0),

thus we have √
n(β̂ − β0)

D−→ N(0, H(β0)−1ΣH(β0)−1).

This complete the proof of Theorem 1.

Proof of Theorem 2. The proofs of consistency of β̃ are similar to these of

β̂, and we omit them here.

Proof of asymptotic normality. Note that, by similar derivation of the results

on P97-98 of Flemming and Harrington (1991), we have

R̃(t)−R(t) =
1

S̃P̄ (t)

∫ t

0

S̃P̄ (s−)

SP̄ (s)

I(K̃1(u) > 0)

K̃1(u)
dM̃(s),

where M∗(t) = N1(t)−
∫ t

0 K̃1(u)dΛ(u) =
∑n

i=1M
∗
i (t) =

∑n
i=1N1i(t)−

∫ t
0 K̃1i(u)
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dΛ(u). By above equation and Taylor expansion, after some calculation, we have

1√
n

∑
i>n1

∂l∗i (β, R̂(t))

∂β

∣∣
β=β0

=
1√
n

∑
i>n1

∂l∗i (β,R(t))

∂β

∣∣
β=β0

+
1√
n

n∑
i=1

W ∗1 (β0, R(Yi))

S̃P̄ (t)

∫ Yi

0

S̃P̄ (s−)

SP̄ (s)

I(K̃1(u) > 0)

K̃1(u)
dM∗i (s)

+
1√
n

n∑
i=1

W ∗2 (β0, R(Ai))

S̃P̄ (t)

∫ Ai

0

S̃P̄ (s−)

SP̄ (s)

I(K̃1(u) > 0)

K̃1(u)
dM∗i (s)

+
1√
n

n∑
i=1

W ∗3 (β0, R(V 0
i ))

S̃P̄ (t)

∫ V 0
i

0

S̃P̄ (s−)

SP̄ (s)

I(K̃1(u) > 0)

K̃1(u)
dM∗i (s) + op(1)

=:
1

n

n∑
i=1

h∗i (β0, R(t)) + op(1)
D−→ N(0,Σ∗),

where Σ∗ = E[h∗i (β0, R̂(t))]⊗2 and W ∗1 (β,R(t)) = (W ∗11(β,R(t)), W ∗12(β,R(t)))T ,

W ∗2 (β,R(t)) = (W ∗21(β,R(t)), W ∗22(β,R(t)))T and W ∗3 (β,R(t)) = (W ∗31(β,R(t)),

W ∗32(β,R(t)))T , in which

W ∗11(β,R(t)) =
1

n

∑
i>n1

2δiγ1(β)γ2(β) + (1 + δi)γ1(β)

(γ1(β) + γ2(β)R(t))2
,

W ∗12(β,R(t)) =
1

n

∑
i>n1

−2δiγ1(β)γ2(β) + 2(1 + δi)γ1(β) + (1 + δi)γ2(β)R(t)

(γ1(β) + γ2(β)R(t))2
,

W ∗21(β,R(t)) =
1

n

∑
i>n1

−γ1

(γ1(β) + γ2(β)R(t))2
,

W ∗22(β,R(t)) =
1

n

∑
i>n1

−γ2(β)R(t)

(γ1(β) + γ2(β)R(t))2
,

W ∗31(β,R(t)) =
1

n

∑
i>n1

−δiγ1(β)

(γ1(β) + γ2(β)R(t))2
,

W ∗32(β,R(t)) =
1

n

∑
i>n1

−δiγ2(β)R(t)

(γ1(β) + γ2(β)R(t))2
.

Then we can obtain conclusion by similar derivation steps of proof of last theorem.
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