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In the following, some technical results for our proposed methods are pro-
vided which include the proofs of Theorem 1, Theorem 2, Proposition 1 and

Proposition 2.

Recall that Y = (Y1, -+, ¥,)Tand Y = (A Y /G(V1), -+, A Y, /G(Y,)T.
Replacing G by G in Y, we define ¥ = (A1Y1/G(Y1), -+, AY,/G(Y)T.

Then, we can decompose the estimator 3 in (2.3) as

B = X'(XX")'V +XT(XX")H(Y - Y)
- o [ AY " T o1 [ A | GY)) '
= XEX) (G(Yo)ifx ) <G<Yi> o) )




~(1
We can further decompose ,6’( as

B(l) _ XT(XXT)_IX,B* + XT(XXT)—I ([i _ 1] X;FB*)n + XT(XXT)_l ( Ai&' )n

~(1,1) ~(1,2) ~(1,3)

= B8 +8 +8

~(2
and decompose ,8( as

~(2)
o G(Y)

o),
()

= XT(XX")* ( Cf
G

~(2,1) ~(2,2)

- B+ B

~(1,1
A.1 Property of ,8(1 )

Consider the singular value decomposition of Z as Z = VDU, where V ¢
O(n), U eV,,, and D is an n x n diagonal matrix. Here O(n) is the set of
all n x n orthogonal matrices and V,,,, = {U € RP»*" : UTU = 1,}. This

gives X = VDUTEY2. Hence the projection matrix can be written as
XXX 'X = HHT,

where H = SY2U(UTSU)™Y? satistying H'H = I,,. Therefore, @(1’1) =

HH'B. Let e; = (0,---,0,1,0,---,0)7 denote the i*" natural base in the

P, dimension space. Following the proofs of Lemmas 4 and 5 in Wang and

Leng (2016) respectively, we derive the following two lemmas.

Lemma 1. Under Assumptions A1-A3, for any M' > 0 and for any fixed

vector v with |v| = 1, there exist constants m} and mb with 0 <m} <1 <
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ml, such that
P(w"HH v <m\n'""/p, or v'HH v >m4n'*"/p,) < dexp(—M'n).

In particular for v = 3,, whose norm is not 1 though, a similar inequality
holds for one side with mb > 1 (same as previous mb; if not, the maximum

of the two is used in both inequalities) as

P(BIHHTB, > myn' ™" /p,) < 2exp(—M'n).

Lemma 2. Under Assumptions A1-A3, for any M’ > 0, there exist some

positive constants my and m/; such that for any i € M.,

1-7—k —M' 1-57—2k—v
Plle/HH3, <mgn < O{exp o ,
Dn 2logn

and for any i ¢ M.,

I 1-7—k _M/n1—57'—2/§—1/
P(leTHHTB, > 4 1 <0 .
(|ez Bul Viegn py P 2logn

Applying Lemma [1| and Lemma [2] to all i € M,, we have

l1-7—k 1oy 1-57—2Kk—v
.1 A((1,1) , _ —M'n
P(len}\l/lri 18; 7| <m3—p ) O{snexp ( )} (A.1)

n 2logn
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~(1,2)
A.2 Property of 3

Let & = (g 1) and W = ding(XT8, - XTB}. Then 5" =

~(1,2)

e]B " =e] XT(XXT)"'We. If we define

a=e X" (XX 'W/|le] XT(XXT) W,

then B = |e] XT(XXT)"1W|, - aTe.
First we investigate the bound of squared norm |le] XT(XXT)"11/|3,

which equals e] XT(XXT)~/2[(XXT)~1/2W2(XXT)~1/2](XXT)~/2Xe;. Thus,
le] XT(XXT) W2 < Apax {(XXT)TV2WHXXT) Y2} . el HH e;. (A.2)

Note that Apax{(XXT)72W2(XXT) "2} < Apax (W) [Auin ((ZXZT)] 1. S-
ince the trace of ¥ is pp, Amax(X) = 1. By Assumption A3,

>\min 2 1

max (Z) m4nT '

Then, by Assumption A1, we have P(Apin(p;tZZT) < 1/my) < exp(—M;n).

By Assumption 5, for any ¢ € (0,1/2 — 27 — k),
P(|B]X| > n®) < 2exp(—Mayn®). (A.3)

In addition, because Apax(W?) = max;<j<,(X; 8,)% and by (A.3)) , we have
P(Amax(W?) > n*) < 2nexp(—Myn®). Therefore,

myimagn

P (/\max{(XXT)‘1/2W2(XXT)‘1/2} >
D

T+2¢
) < exp(—Min)+2n exp(—Msn®).
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Combine this result and Lemma [I we have

mymyman

2
n

14+27+2¢
P (|erT(XXT)1W||§ > ) < 3exp(—Mn)+2n exp(—Man®).

Next we consider a'€. Note that condition on X = x, [&] < 1+ 1/6;,
which is independent of x. By the General Hoeffding’s inequality, there

exists Ms, which is independent of x, such that, for any ¢ > 0,
P(la¢ >t |X =x) < 2exp {—M;t*/(1 + 1/61)} .

Therefore, taking expectation on X and taking ¢t = v/ M'n'/?=27=%=< /\/log n

for some constant M’ > 0, we have

T /M/n1/2727'71{7§ _MIM3n1747'72572<
Plla € > < 2exp .
Vlogn (14 1/61)logn

Combining the above two final results, taking the union bound, we have

N M Mgt
P<|51'(172)| > T QJC) <26Xp{ 31

3 — M-
Viogn Pn (1+1/61)logn }+ exp(=Min),

where 0, = {w : maxi<;<, | X B] < n°} with P(Q,) > 1 — 2nexp(—Mans).

~(1,3)
A.3 Property of 3

Let € = (GA(}f))n . Then 3@(113) — eTB(Lg) =e] XT(XXT) te. If we define
)/ i=1

. 3
K3

b=e/XT(XXT) /| XT(XXT) ",

then we have @1’3) = [le] XT(XXT)"|, - b"e.
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First we investigate the bound of squared norm |e]XT(XXT)™!|3,

which equals ] XT(XXT)~1/2(XXT)"}(XXT)""/2Xe;. Thus,
le] XT(XXT) ' |2 < A (XX Y - el HHe;. (A.4)

Using the same arguments as those in Section A.2 (replacing W by I,,),

m1m4nT

P (Amax{(XXT)l} > ) < exp(—Min).

n

Combine this result and Lemma [I we have

mymyman

2
n

14271
P (||erT(XXT)—1§ > > < 3exp(—Mn).

Next we consider b'e. By Assumption A2, we have

SN /227K /A1 1/2—27—K
vlogn vlogn

Combining the above two final results, taking the union bound, we have

p (a0 > YMmmima T o [y g (YA
i \/@ D )N oz \/@ ,

where Q, = {w : Auin(p, ' ZZ7) = 1/mu N {BIHH B, < myn'*"/p,} with

P(Q,) > 1—3exp(—Mn).

. ~(2,1) ~(2,2)
A.4 Properties of 3 and 3

Lemma 3. (Bitouze 1999; Theorem 1) Let {T;}I~, and {C;}I-, be indepen-

dent sequences of independently identically distributed nonnegative random
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variables with distribution functions Fy and Fy, respectively. Let ﬁl be the
Kaplan-Meier estimator of the distribution function Fy. There exists a pos-

itiwe constant, D, such that for any positive constant A,

P <n1/2||(1 — ]?2)(]31 — F))|eo > )\) < 2.5exp(—2\% + DA).

Using Lemma [3] and following the proof of Lemma A3 in Song et al.

(2014), we derive the following lemma.

Lemma 4. Let D be the constant in Lemma [3 For any A > 0, when
n'2 > DA™Y(1 — 6,)71 /81, we have

G(Vi)

1
G(Vi)

P (112% > )\) < 25exp (—n(l — 62)? /65 \%)

where V; = Y; Alog(C;) and 61 and d9 are defined in Assumption A4.

Let 6 = 0.25 + (s + 27 + x)/2 and consider A = n~? in Lemma |4 Let

AiX;r . | GYi " (2,1 ~(2,1) B
¢ (S [g-1]) e B - erB®Y - erxrxxTy

Using b defined in Section A.3, we have 3" = el XT(XXT)"1[5-b"¢.
We have investigated the bound of squared norm |e]XT(XXT)™|32 in

GVi) _
G(Vi) 1‘ S /\}'

Section A.3. Now we consider b'¢. Let Q, = {w S MaX|<i<n
By Lemma [4 P(€y) > 1 — 2.5exp (—n(1 — 62)%/61A?). That is, P(y) >
1 —2.5exp {—(1 — 62)%/0%n'/2=27="=<}. On Q, N Q,, by Cauchy-Schwartz
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inequality, we have

G(V) " )
b'¢| < max |[—2 — 1 XT8.)2/(1 = 6)2 < nll?0,
¢l < e 1= 1 ‘ ;( 18)%/(1—0)2 <n

By the definition of 8, we can verify that 1/2 +¢—60 < 1/2—27 — k. Thus,
on Q, N Q,, [b'¢| < VM'm?7?77%//logn. Using the bound on the norm

of b in Section A.3, we have, on €2, N Q,; N €,

|B.(2’1)| - A/ M’m1m§m4 nl-Tr
’ Viogn D

)

. . ~(2,2 G(Vi)
Finally, we consider 8 ~. On g, max;<;<n

Vi) _
ao 1‘ <n

paring 3(2’2) with 3(1,3)’ we see that for any i, Bi(z,z) = 5?1’3)O(n*9) on )

~

In other words, ﬁ( ? is dominated by 3(1,3) on §,. Therefore,

N /Mlmlml my nl—7-k mnlﬂf%'fn
P 22) 5 2 Q.nQ, | < l—q| ———— ).
<|5z | \/@ pn Y M g eXp q \/@

A.5 Proof of Theorem 1
~(1L1) ~(1,2)  ~(13)  ~(21)  ~(2,2) .
Proof. Let § =08 " andm=p "+8 "+B8 "+ . Using the final

result obtained in Section A.1, for any i € M,, we have

1—-17—k _MI 1-57—2k—v
P { min |§] < mgn =01 s, exp n :
ieM, P 2logn
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Combining the final results obtained in Sections A.2 - A 4,

A/ M'mymhmgn!t 7%
P | max |n;| >
1EM

vlogn Pn

7(1,2) 7(1,3) 2(2,1) 7(2,2)
< P(%fz%'@ sl mgac |57 or maac |57 >

A/ M'mymbhmy nt—7"
Vlogn Pn

/M’ 1/2—-27—k 1—47—2Kk—2¢
< 2s,exps1l—gq vaent + 25, exp —MIMsn—
vlogn logn

+spexp {1 — (1 — 89)2/0:n*?72 775} + 35, exp(—Min) + 2n exp(—Man®).

Noting that ¢ defined in (A.3) is any constant in (0,1/2 — 27 — k), we take
¢ =1/4—7—k/2,leading to 1/2—27—k—¢ = ¢. In addition, by Assumption

A3, s, = mzn” with v < 1. Therefore, we have

P il > A/ M'mymhmgnt=—7"F
max (1;
€M, " vlogn Dn

mnlﬂ—%’—n Y
< 2$nexp{1—q(W)}+O{eXp(—Mn )},

for some constant M.

Moreover, again because s, = mgn”, if M large enough, we have

1-7—k M 1-57—2k—v
P(min & <mﬁln ) zO{eXp( n )}
ieM, Pn logn

Therefore, if we choose 7, such that

Prnn
nl-17-k

nnl
and DranVIOBT

nl-—17—x

— 0,

?



then we have

(smip 11 <) =P (e +nd <)

l1-7—k A/ M'm+imim 1-7—kK
< P( in|£i|<mgn )—i—P max |n;| > Sl
eM, €M, vl1ogn Dn

v n

M 1-57—2k—v
= O{exp( niogn )} + w(n).

This completes the proof of Theorem 1. []

A.6 Proof of Theorem 2

Proof. Following Lemma [2, for any ¢ # M, and any M’ > 0, there exists a

m}, such that

! 1-7—kK _Mln1—57—2n—y
PlleTHHTB| > a1 <0 .
(|e’ 8l Vdiogn  p, P 2logn

With Bonferroni’s inequality, we have

m' nl—T—H _Mlnl—ST—Qn—V
P min |§] > —— <O04p, .
<£1/\1/1n & Vdiegn  p, ) {p P < 2logn )}

Also with Bonferroni’s inequality, we have

P | > A/ M'mymlymy nt 7" _ (n)
max |n; oo (n).
el Viogn Pn P

Now if p,, satisfies

nl—2r-57—v 14 1 /Mn1/2727—fn
1 n — 1 TR T ) - o )
ogp 0 (mln { Tog n q ( oo ) })
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we have

m/ nlfon _Mn1757—72/471/
P I % . ) ’
(> o5 ) <o ()

4/ M'mymhmgnt=—7"F < w(n)
n).
Vlogn Dn w

Now if =, is chosen as the same as in Theorem 1, we have

N —Mnl=57—2k—v
P<f£/\%t)f|ﬁl| >'yn) <O{exp( nlogn > +w(n)}.

Together with Theorem 1 and the fact that s, < p,, we have

~ ~ _Mn1757'72n711
P(gl/\a/tx|ﬁz| >7n>%l/@[>f|ﬁi|> = 1—O{€Xp( ) —i—w(n)}.

P (max |n;| >

logn

Furthermore, if we choose a submodel with size d,,, we have

_ 1-57—2k—v
P(M*ch)zl—O{exp( Mn )—I—w(n)}
logn

This completes the proof of Theorem 2. []

A.7 Proof of Propositions 1 and 2

Proof of Proposition 1. Note that P(M. = Mq) = P (N, {M. = M{})
and P (U iM. € MPY) < 537, P (1Mo € MPY). By definition,
m(n) =1 - P(M, € MP). Then P(M, = My) > 1 — Bx(n). O]

Proof of Proposition 2. Note that P(M, & My|D) < Y.\, P(j € Ma|D)

and that for j ¢ M,, P(j € MyD) = [[},P(j € MY|D) < (—4-)B.

Pn—S8n

Then P(M. G My|D) < (p, — sn)(-—2=)%. O




