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Abstract: Variable screening has become increasingly popular as a method for an-

alyzing high-dimensional survival data. Most existing variable screening methods

for such data assess the importance of their variables using marginal models that

relate the time-to-event outcome to each variable separately. This implies that the

relevance of one variable is examined while other variables are excluded. There-

fore, these methods exclude variables that only manifest their influence jointly, and

may retain irrelevant variables that are correlated with relevant ones. To circum-

vent these difficulties, we propose a new approach to evaluate the joint variable

importance in censored accelerated failure time models. We establish the sure

screening properties of the proposed approach and demonstrate its effectiveness

through simulation studies and a real-data application. Furthermore, we propose

a novel procedure using stability selection for tuning.

Key words and phrases: Inverse probability weighting, stability selection, survival

data, ultrahigh dimensional covariates, variable importance.

1. Introduction

In many biomedical studies, such as high-throughput microarray or RNA-

sequencing (RNA-seq) gene expression analyses, it is of practical interest to link

gene expression profiles to censored survival phenotypes, such as the time to

cancer recurrence or time to death. Because the number of genes greatly exceeds

the sample size and the expression levels of some genes are often highly correlated,

it is challenging to build a model that predicts the survival outcomes of future

patients. In addition, the nuances of survival data such as right censoring and

semiparametric modeling, make the task more challenging still. Therefore, it is

important that we reduce the number of covariates when modeling survival data

with ultrahigh-dimensional covariates.

Let T denote the survival time, X “ pX1, . . . , Xpnq
T be a covariate vector,

and C be the censoring time. Define ∆ “ IpT ď Cq, where Ip¨q is the indicator

function. The observed data are independent and identically distributed (i.i.d.)

copies of pT ^ C,∆,Xq, denoted by pTi ^ Ci,∆i,Xiq, for i “ 1, . . . , n. A semi-
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parametric regression model relating the survival time T to the covariates X can

be formulated as

T “ gpβT
‹X, εq, (1.1)

where ε is the mean-zero residual and β‹ “ pβ‹1, . . . , β‹pnq
T is a vector of the

regression coefficients.

For specific choices of g or distributions of ε, model (1.1) leads to many useful

survival models, such as the Cox’s proportional hazards (PH) model (Cox (1972))

and the accelerated failure time (AFT) model (Jin et al. (2003), Kalbfleisch and

Prentice (2002, pp.218–219)). When pn is much larger than n, we assume that

only a few of the covariates are truly relevant. Thus, we identify the following

set of the active covariates:

M‹ “ tj : β‹j ‰ 0, 1 ď j ď pnu . (1.2)

To identify M‹, existing methods include the penalization methods for sur-

vival models, such as Cox’s PH model or the AFT model (Tibshirani (1997);

Huang, Ma and Xie (2006); Zhang and Lu (2007)). Under a general design con-

dition, lasso-type penalization methods are not selection-consistent (Zhao and Yu

(2006)). Although adaptive lasso methods (Zou (2006); Zhang and Lu (2007)) are

selection-consistent, they require that the sample size be larger than the number

of covariates. Therefore, under a ultrahigh-dimensional setting, where the num-

ber of covariates grows exponentially with the sample size, screening methods

(Fan and Lv (2008)) are more appropriate and have emerged as an important

tool.

There is a rich body of literature on screening methods for survival data

with ultrahigh-dimensional covariates. However, most existing methods evaluate

the importance of their variables using separate marginal regression models. The

partial likelihood ratio (PL) screening method, proposed by Fan, Feng and Wu

(2010), is based on a marginal Cox PH model. The feature aberration at sur-

vival times (FAST) screening method, proposed by Gorst-Rasmussen and Scheike

(2013), is based on a marginal additive hazards model (Lin and Ying (1994)).

The censored rank independence (CR) screening method, proposed by Song et

al. (2014), is based on a marginal transformation model (Cheng, Wei and Ying

(1995)). These marginal screening methods examine the relevance of one variable,

while excluding other variables. Thus, these methods fail to identify covariates

that only manifest their influence jointly, and could retain irrelevant covariates

that are correlated with relevant ones.
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To overcome the drawbacks of existing marginal screening methods, Hong,

Kang and Li (2018) recently proposed a conditional screening approach for sur-

vival data with ultrahigh-dimensional covariates. However, their approach re-

quires pre-selectioning a set of covariates. Furthermore, the computational bur-

den of the approach is heavy because it requires fitting a multivariate survival

model for each covariate that is not pre-selected. Therefore, we propose a joint

screening approach for the AFT model that overcomes the drawbacks of current

marginal screening approaches by modeling all covariates jointly. In addition, it

overcomes the drawbacks of the conditional screening approach by conducting

only one model fitting.

Here, we consider the variable screening problem for the following AFT

model:

logpTiq “X
T
i β‹ ` εi. (1.3)

Let Yi “ logpTiq. Assume that pYi,Xi, εiq, for i “ 1, . . . , n, are i.i.d. copies of

pY,X, εq. By relating the logarithm of the failure time linearly to the covariates,

the AFT model provides an attractive alternative to the popular Cox’s PH, owing

to its direct physical interpretation and fast computation (Wei (1992); Jin, Lin

and Ying (2006)).

The rest of the paper is organized as follows. In Section 2, we describe the

proposed joint screening approach. In Section 3, we establish the sure screening

properties of the approach under certain regularity conditions. In Section 4, we

develop a novel stability selection-based bootstrap procedure for tuning the size

of the estimated active set. We evaluate the proposed approach using simulation

studies in Section 5 and by applying it to data on adult acute myeloid leukemia in

Section 6. We conclude the paper in Section 7. All technical proofs are relegated

to the online Supplementary Material.

2. The Joint Screening Method

The censoring time Ci is assumed to be independent of Ti, given the covari-

ates Xi. For ease of exposition, we assume that the censoring distribution is the

same for all covariates; however, this assumption can be relaxed, as discussed in

He, Wang and Hong (2013, p.349).

We consider the AFT model given in (1.3). Because the values of Yi associ-

ated with ∆i “ 0 are unknown, we use the inverse probability of censoring (IPC)

weighting procedure (Ying, Jung and Wei (1995); Peng and Fine (2009); Song et

al. (2014)) to impute Yi; that is, pYi “ ∆iYi{ pGpYiq, where Gptq “ P plogpCq ě tq
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and pGptq denotes the Kaplan–Meier estimator of Gptq. Then, the resulting least

squares estimator of β‹ is obtained by minimizing

n´1
n
ÿ

i“1

´

pYi ´ β
TXi

¯2
. (2.1)

Let X “ pXT
1 , . . . ,X

T
nq

T denote the design matrix and pY “ ppY1, . . . , pYnq
T. When

the pn ˆ pn matrix XTX is invertible, the minimizer of (2.1) is

qβ “ pXTXq´1XT
pY . (2.2)

However, this is not applicable for screening problems in which pn is much larger

than n.

Motivated by the recent development of the high-dimensional ordinary least

squares projection (HOLP) approach by Wang and Leng (2016), we propose the

following IPC-weighted projection estimator:

pβ “ XTpXXTq´1 pY . (2.3)

Note that the middle matrix in (2.3), XXT, is an invertible n ˆ n matrix that

can be computed easily for pn " n. Letting pβ “ ppβ1, . . . , pβpnq
T, we define the

following two sets of variable indices:

Mγn “ tj : |pβj | ě γn, 1 ď j ď pnu, (2.4)

where γn is the hard threshold to be determined, and

Mdn “ tj : |pβj | is among the largest dn of all pβju, (2.5)

where dn is the size of the selected subset to be determined.

In the next section, we show that the magnitudes of minjPM‹
|pβj | and

maxjRM‹
|pβj | can be separated. Thus, if the tuning parameter γn or dn is se-

lected appropriately, it is reasonable to use Mγn or Mdn , respectively, to esti-

mate M‹. The proposed joint screening approach has computational complexity

of Opn2pnq, whereas that of the independence screening approach (Fan, Feng

and Wu (2010)) is Opnpnq. For the screening problem where pn " n, the pro-

posed joint screening approach is numerically fast, with only a slightly larger

computational complexity than that of the independence screening approach.

The innovation of the proposed approach is threefold. First, it enables vari-

able screening for survival data with ultrahigh-dimensional covariates based on

the AFT model. There are existing screening approaches based on Cox’s PH

model, the additive hazard model, and the transformation model, but no screen-

ing approach has been proposed previously based on the AFT model. Second, it

is the first joint screening approach for survival data with ultrahigh-dimensional
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covariates. There are existing marginal screening approaches and a conditional

approach for survival data, but there are no existing joint screening approaches

for survival data. Third, rather than being a simple application of the HOLP

approach to a special case, the proposed projection estimator (2.3) is a smart

application of the IPC procedure that makes it possible to utilize the HOLP

concept. Note that including the IPC procedure makes the theoretical work of

the sure consistency more challenging.

3. The Sure Screening Properties

Although the proposed IPC-weighted joint screening approach is numerically

appealing, it must be able to separate relevant from irrelevant variables with

probability tending to one, as the sample size increases. Therefore, in this section,

we establish the screening properties of the proposed method.

Without loss of generality, assume that Xj , for j “ 1, . . . , pn, have mean

zero and variance one. Let CovpXq “ Σ. Define Z and Z as Z “ XΣ´1{2 and

Z “ Σ´1{2X, respectively. Note that X and Z are pn ˆ pn matrices, and that

X and Z are pn-dim vectors. The tail behavior of the random error ε has a

significant impact on the screening performance. We present the following tail

condition to characterize the tail behavior of different distribution families, as in

Vershynin (2010).

Definition 1. A zero-mean distribution F is said to have a q-exponential tail if

any K ě 1 independent random variables εi „ F satisfy that, for any m constants

ai, with
řK
i“1 a

2
i “ 1, the following inequality holds:

P

˜ˇ

ˇ

ˇ

ˇ

ˇ

K
ÿ

i“1

aiεi

ˇ

ˇ

ˇ

ˇ

ˇ

ą t

¸

ď expp1´ qptqq,

for any t ą 0 and some function qp¨q.

This characterization of the tail behavior is very general. As shown in Ver-

shynin (2010), qptq “ Opt2{M2q for some constant M depending on F if F is

sub-Gaussian, including Gaussian, Bernoulli, and any bound random variables.

In addition, we have qptq “ Opmintt{M, t2{M2uq if F is sub-exponential, includ-

ing the exponential, Poisson, and χ2 distributions. Moreover, as shown in Zhao

and Yu (2006), qptq “ 2m log t`Op1q if F has bounded 2mth moments, for some

positive integer m.

Throughout this paper, λmaxp¨q and λminp¨q denote the largest and smallest

eigenvalues, respectively, of a matrix and m, M , mi, and Mi denote absolute

constants independent of n and pn. We make the following five theoretical as-
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sumptions.

A1. The transformed Z has a spherically symmetric distribution, and there exist

some M1 ą 0 and m1 ą 1, such that

P

ˆ

λmax

ˆ

ZZT

pn

˙

ą m1 or λmin

ˆ

ZZT

pn

˙

ă
1

m1

˙

ď expp´M1nq.

Assume pn ą m0n, for some m0 ą 1.

A2. Let ε “ ∆ε{GpY q, which has mean zero and standard deviation σ. Given

X “ x, the standardized error ε{σ has a q-exponential tail, with qptq inde-

pendent of x, as defined in Definition 1.

A3. For some κ ě 0, ν ě 0, τ ě 0, m2 ą 0, m3 ą 0, and m4 ą 0,

min
jPM‹

|β‹j | ě
m2

nκ
, sn “ |M‹| ď m3n

ν , and
λmaxpΣq

λminpΣq
ď m4n

τ .

A4. There exists Cmax ą 0, such that δ1 “ P pC “ Cmaxq ą 0 and P pC ą

Cmaxq “ 0. Assume that 0 ă δ2 “ P pT ă Cmaxq ă 1.

A5. Assume VarpYiq “ Op1q. Let M2 be the sub-exponential norm of βT
‹X, and

assume that M2 ă 8.

Remark 1. Assumptions A1–A3 are similar to A1–A3 in Wang and Leng (2016).

A4 is a technical condition adopted from Peng and Fine (2009) and Song et al.

(2014) to simplify the asymptotic arguments, ensuring that the IPC-weights,

∆i{GpYiq, are bounded by 1{δ1. This is because 0 ď ∆i{GpYiq ď 1{GpYi^Ciq ď

1{GpCmaxq “ 1{δ1. A5 controls the tail behavior of the linear predictor. An

example in which all assumptions are satisfied is X „ Np0, σ2xIpnq, ε „ Np0, σ2eq,

C is exponentially distributed, but truncated by a constant Cmax, and sn “ s.

Remark 2. Assumption A1 is similar to, but weaker than the concentration

property in Fan and Lv (2008) and Fan, Feng and Wu (2010). The latter require

that all submatrices of Z consisting of more than Opnq rows satisfy the eigenvalue

concentration inequality, whereas A1 requires only that Z itself holds. As implied

by the results in Section 5.4 of Vershynin (2010), the concentration inequality in

A1 holds if X is sub-Gaussian.

Remark 3. The existence of the conditional q-exponential tail function qptq that

is independent of X “ x in A2 is also ensured because ∆i{GpYiq is bounded. For

example, if ε is sub-Gaussian with norm }ε}ψ2
“M , then, conditional on X “ x,

the sub-Gaussian norm of ε is }∆ε{GpY q}ψ2
ďM{δ1. Therefore, we can consider
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qptq “ Opδ1t
2{M2q that is independent of x. Similarly, if ε is sub-exponential

with norm }ε}ψ1
“ M , then we consider qptq “ Opmintδ1t{M, δ21t

2{M2uq that is

independent of x.

Remark 4. The assumption on minjPM‹
|βj | in A3 is the key difference be-

tween the proposed joint screening approach and existing marginal screening

approaches. All existing approaches require some marginal correlation condi-

tion, which states that the covariates are active if and only if they are marginally

relevant to the outcome; for example, see Condition 2 in Song et al. (2014). As

pointed out by Fan and Lv (2008), this can be violated easily if the covariates

are correlated.

We first show that, asymptotically, the screening based on the projection

estimator retains all active covariates with probability tending to one.

Theorem 1. Under Assumptions A1–A5, if γn is chosen such that pnγn{n
1´τ´κ

Ñ 0 and pnγn
?

log n{n1´τ´κ Ñ8, then

P pM‹ ĂMγnq “ 1´O

"

exp

ˆ

´Mn1´5τ´2κ´ν

log n

˙

`$pnq

*

,

where

$pnq “ 2sn exp

#

1´ q

˜?
Mn1{2´2τ´κ
?

log n

¸+

`O
!

exp
´

´Mn1{4´τ´κ{2
¯)

.

In Theorem 1, we do not make any assumption on pn, as long as pn ą

m0n. With further mild conditions on pn that still allow for the ultrahigh-

dimensionality of pn, we derive the following screening consistency property.

Theorem 2. Under Assumptions A1–A5, if pn satisfies

log pn “ o

˜

min

#

n1´5τ´2κ´ν

log n
, n1{4´τ´κ{2, q

˜?
Mn1{2´2τ´κ
?

log n

¸+¸

,

then, for the same γn as in Theorem 1, we have

P

ˆ

min
jPM‹

|pβj | ą γn ą max
jRM‹

|pβj |

˙

“ 1´O

"

exp

ˆ

´
Mn1´5τ´2κ´ν

log n

˙

`$pnq

*

,

where $pnq is defined as in Theorem 1. Alternatively, we can choose a submodel

Mdn with dn — nι, for some ι P pν, 1s, such that

P pM‹ ĂMdnq “ 1´O

"

exp

ˆ

´
Mn1´5τ´2κ´ν

log n

˙

`$pnq

*

.
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4. The Stability Selection Procedure for Tuning

The first part of Theorem 2 in Section 3 shows that, asymptotically, the mag-

nitudes of the projection estimators for the important and unimportant covariates

are separable with probability tending to one. This ensures the screening con-

sistency. We can visualize such separability using the bootstrap method. First,

we generate B bootstrap samples, Dpbq, for b “ 1, . . . , B. From bootstrap sample

Dpbq, we obtain estimate pβ
pbq

using (2.3). At each threshold γn “ γ, we calcu-

late the proportion of instances in which covariate j is selected as an important

covariate from among B bootstrap samples,

pΠjpγq “
1

B

B
ÿ

b“1

I
!

|pβ
pbq
j | ą γ

)

. (4.1)

We can display these curves, pΠjpγq, for j “ 1, . . . , pn, against γ on the same graph

and identify the outstanding curves. We demonstrate this using a randomly

selected simulated data set in the next section (see Figure 1).

The second part of Theorem 2 states that as long as we choose a submodel

with a dimension larger than that of the true model, we are guaranteed to retain

all active covariates with probability tending to one. If we choose dn “ sn, then

the proposed screening selects the true model with an overwhelming probabil-

ity. In practice, it is important to determine dn. As suggested by Fan and Lv

(2008), with the high dimension reduced accurately to below the sample size, say

dn “ tn{ log nu, where txu denotes the integer part of x, variable selection can

be accomplished using a refined lower-dimensional method, such as the SCAD

(Fan and Li (2001)), Dantzig selector (Candes and Tao (2007)), lasso Tibshirani

(1996), or adaptive lasso Zou (2006). However, this is a two-stage strategy, with

the first stage being the screening, and the second stage being the variable selec-

tion. Given the large volume of literature on variable selection and our focus on

screening, we do not explore the performance of such two-stage approaches.

Instead, motivated by the stability selection of Bach (2008), who proposed

the bootstrap-boosted lasso method, we propose a novel bootstrap procedure for

tuning the size of the estimated active set. To this end, as suggested by Fan and

Lv (2008), we also consider a submodel Mdn of size dn “ tn{ log nu. Specifically,

based on the bth bootstrap sample, we obtain estimate pβ
pbq

using (2.3). Then

we obtain the bth bootstrap submodel Mpbq
d with the same size dn “ d. Finally,

we consider the intersection of these bootstrap submodels; that is,
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Md “

B
č

b“1

Mpbq
d . (4.2)

Based on Theorem 2, we have πpnq “ 1´ P pM‹ ĂMdnq Ñ 0, if sn ă dn. The

following propositions show that, as long as B Ñ 8 and Bπpnq Ñ 0, we have

P pMdn “M‹q Ñ 1.

Proposition 1. Under the assumptions of Theorem 2, if sn ă d, then

P pM‹ ĂMdq ą 1´Bπpnq,

where πpnq “ 1´ P pM‹ ĂMpbq
d q.

Proposition 2. Denote the observed data set as D. If P pj P Mpbq
d |Dq “

P ph PMpbq
d |Dq, for any j, h RM‹, then

P pM‹ ŘMdq ă ppn ´ snq

ˆ

d

pn ´ sn

˙B

.

We see that B is a hyperparameter and the choice of B is crucial. By

Proposition 1, if B is too big, the procedure may miss relevant covariates in

M‹. By Proposition 2, if B is too small, the procedure may include irrelevant

covariates not in M‹. In our numerical studies, we use B “ 100. In practice, we

can use an outer-loop cross-validation to determine an appropriate value for B.

5. Simulation Studies

We conduct simulations to investigate the performance of the proposed in-

verse probability of the censoring-weighted projection screening procedure (JS).

For comparison, we consider three alternative methods: FAST screening Gorst-

Rasmussen and Scheike (2013), partial likelihood ratio screening (PL) Fan, Feng

and Wu (2010) based on marginal Cox PH models, and CR independence screen-

ing Song et al. (2014).

We consider three scenarios that accommodate a variety of correlation struc-

tures among the covariates and model parameters. We generate data from model

(1.3), with ε „ Np0, σ2q. In all simulations, the censoring times are generated

from a uniform distribution to yield a censoring proportion of 20% or 40%. For

simplicity, denote pn as p.

Scenario 1: X1, . . . , Xp are multivariate normal, where Xj „ Np0, 1q and

covpXj , Xhq “ ρ, for any j and h. Set M‹ “ t1, 2, 3, 4, 5u, with βM‹
“

p5, 5, 5, 5,´20ρqT. Set ρ “ 0.5, n “ 200 or 400, p “ 2,000, and σ “ 1.

Scenario 2: X1, . . . , Xp are multivariate normal, where Xj „ Np0, 1q and
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covpXj , Xhq “ 0.1, for any j and h. Set M‹ “ t1 : 15u, with βM‹
“ p1

T

14,´1.4qT.

Scenario 3: X1, . . . , Xp are multivariate normal, where Xj „ Np0, 1q and

covpXj , Xhq “ 0.9|j´h|, for any j and h. Set M‹ “ t1, 2, 3, 4, 5u, with βM‹
“

p1
T

4,´3.09qT.

In Scenario 1, a small number of nonzero regression coefficients have large

effect sizes. In Scenarios 2, there are far more nonzero covariates, each with a

relatively small effect size. In Scenarios 1 and 2, an equal-correlation structure for

the covariates is adopted; in Scenario 3, a first-order autoregressive correlation

structure is adopted.

To assess the performance of the screening procedures, we first examine the

minimum model size, which is the smallest number of covariates such that all

covariates in M‹ are included. We present the median and interquartile range of

the minimum model size over 100 replications. The smaller the minimum model

size, the better the procedure performs, because it results in a more parsimonious

model. Second, we calculate the proportion of the 100 replications in which all

covariates in M‹ are selected by submodel Mdn of size dn “ tn{ log nu. We de-

note this proportion by PAll. A screening procedure yielding PAll closer to one is

considered more effective. In Table 1, we summarize the simulation results for

different sample sizes (n) and censoring proportions (CP). Reported are the me-

dian and interquartile range (IQR) of the minimum model size needed to include

all active covariates, along with the proportion PAll that all active predictors are

selected by a submodel of size tn{ log nu.

In all three scenarios, the covariates are correlated with one another. Thus,

some jointly irrelevant covariates may become marginally relevant to the out-

come. Consequently, marginal screening methods tend to yield erroneous results.

Based on the results shown in Table 1, all three methods choose a substantial

number of irrelevant covariates. In contrast, the proposed joint screening method

tends to select much fewer irrelevant covariates. Moveover, for a given submodel

size, the joint screening method has a much larger probability of selecting all

truly relevant covariates. Therefore, the joint screening method outperforms the

marginal screening methods.

To assess the robustness of the proposed approach toward a model misspecifi-

cation, we generate data from the following semiparametric linear transformation

model:

HpTiq “X
T
i β‹ ` εi, (5.1)

where Hptq “ logt0.5pe2t ´ 1qu, and εi follows the standard extreme value dis-
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Table 1. Simulation results for the AFT model.

Scenario CP (%) Method Median IQR PAll Median IQR PAll

n “ 200 n “ 400
S1 20 JS 13.0 35.75 0.73 5.0 0.00 0.99

CR 2,000.0 39.00 0.02 2,000.0 0.25 0.00
FAST 2,000.0 0.00 0.00 2,000.0 0.00 0.00
PL 2,000.0 0.00 0.00 2,000.0 0.00 0.00

40 JS 17.5 48.50 0.65 5.0 0.00 0.99
CR 1,193.5 1,877.25 0.17 946.5 1,821.25 0.22
FAST 2,000.0 0.00 0.00 2,000.0 0.00 0.00
PL 2,000.0 0.00 0.00 2,000.0 0.00 0.00

S2 20 JS 264 511.25 0.03 29.5 45.25 0.76
CR 1,981.5 52 0 2,000.0 1 0
FAST 1,974.5 85.5 0 2,000.0 1.25 0
PL 1,970 81.25 0 2,000.0 2 0

40 JS 450 698.25 0 53 84.5 0.62
CR 763 874.5 0 317 610.25 0.12
FAST 1,982.5 63 0 2,000.0 2 0
PL 1,982 61.75 0 2,000.0 2 0

S3 20 JS 313.5 456.5 0.07 9 39.25 0.77
CR 1,134 1,012 0 1,180.5 1,035.25 0.04
FAST 998 1,032.25 0.01 909 977 0.01
PL 1,034 1,022.75 0.01 945 985.75 0.01

40 JS 392.5 681 0 8 20.5 0.88
CR 1,707 521.75 0 1,785 461.25 0
FAST 1,051.5 876 0 943.5 849.75 0.06
PL 1,041.5 867.5 0.02 920.5 870 0.06

tribution or the standard logistic distribution, corresponding to the proportional

hazards model or the proportional odds model, respectively. The simulation set-

tings for Xi and Ci are as before. The simulation results are summarized in

Tables 2 and 3 for the proportional hazards model and proportional odds model,

respectively. In both misspecified cases, the joint screening method performs

very well in terms of both the screening consistency and the minimum model

size. In contrast, the marginal screening methods are essentially unable to iden-

tify jointly relevant covariates. Therefore, the good performance of the joint

screening method is quite robust toward model misspecifications.

Next, we illustrate the bootstrap-based tuning procedure proposed in Section

3.1. To do so, we use a randomly selected simulated data set from Scenario

1, with n “ 400 and p “ 2,000. For the bth bootstrap sample and a given

threshold γn “ γ, let Mpbq
λ denote the indices of the covariates selected by the
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Table 2. Simulation results for the proportional hazards model.

Scenario CP (%) Method Median IQR PAll Median IQR PAll

n “ 200 n “ 400
S1 20 JS 53 127.75 0.4 5 2.25 0.98

CR 2,000 0 0 2,000 0 0
FAST 2,000 0 0 2,000 0 0
PL 2,000 0 0 2,000 0 0

40 JS 86.5 239 0.27 8 8 0.96
CR 48 693.25 0.47 19 881 0.55
FAST 2,000 0 0 2,000 0 0
PL 2,000 0 0 2,000 0 0

S2 20 JS 521 530 0 77 130.5 0.45
CR 1,990.5 31 0 2,000 2 0
FAST 1,983 77 0 2,000 2 0
PL 1,983 69 0 2,000 2 0

40 JS 565 649.25 0 94.5 137.75 0.36
CR 1,965.5 112.75 0 1998 14 0
FAST 1,988 37 0 2,000 2.25 0
PL 1,988.5 39.25 0 2,000 2.25 0

S3 20 JS 187 329.75 0.09 21.5 108.75 0.7
CR 925.5 848.25 0 989.5 1,097.25 0.02
FAST 1,034.5 985.75 0 814.5 911.5 0.01
PL 1,051 984 0 778 878.25 0.02

40 JS 372 737 0.05 13 20.75 0.87
CR 1,078.5 703.5 0 1,112.5 835.5 0
FAST 1,103 890 0.02 1,052 1,070.25 0.03
PL 1,124.5 877 0.01 1,048 1,027.5 0.02

joint screening method. Figure 1 displays the proportion of each covariate being

selected in 100 bootstrap samples against a fine grid of γ. The red curves refer to

the five truly relevant covariates, and the blue curves refer to the remaining truly

irrelevant covariates. We see that the red and blue curves are well separated

from each other over a wide range of values of the threshold γ. Therefore, given

a large proportion among 100 bootstrap samples, the joint screening method is

able to identify all and only the truly relevant covariates for a wide range of γ.

For example, when γ “ 0.32, the joint screening method selects Mpbq
λ “M‹ 87

out of 100 times.

To further examine the bootstrap-based tuning procedure, we repeat the

above process by 100 times. In each repetition, 100 bootstrap samples are gener-

ated. The joint screening method is applied to each bootstrap sample, resulting

in Mpbq
d , where d “ tn{ log nu, for b “ 1, . . . , 100. Then, for the repetitions, we
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Table 3. Simulation results for the proportional odds model.

Scenario CP (%) Method Median IQR PAll Median IQR PAll

n “ 200 n “ 400
S1 20 JS 32 72.75 0.56 5 2 0.96

CR 2,000 0 0 2,000 0 0
FAST 2,000 0 0 2,000 0 0
PL 2,000 0 0 2,000 0 0

40 JS 71.5 180 0.33 6 7.25 0.93
CR 1,076 1,777.75 0.15 1,008.5 1,842 0.24
FAST 2,000 0 0 2,000 0 0
PL 2,000 0 0 2,000 0 0

S2 20 JS 459 632.5 0 65 84 0.51
CR 1,987 68.25 0 2,000 1 0
FAST 1,984.5 66.5 0 2,000 2 0
PL 1,986 68.75 0 2,000 1 0

40 JS 716 673.25 0 98.5 150 0.35
CR 958 736.75 0 301.5 855.75 0.12
FAST 1,977.5 56.75 0 2,000 1 0
PL 1,979 57.5 0 2,000 1 0

S3 20 JS 177 550.75 0.09 15.5 62 0.72
CR 897.5 984.5 0.01 987 787.25 0.02
FAST 879 1,053.75 0.03 1,087 988.5 0.02
PL 842 1,087.5 0.02 1,104.5 965.75 0.02

40 JS 506.5 841 0.01 10 38 0.88
CR 1,391.5 806 0 1,200.5 889.25 0
FAST 1,053 995.25 0.02 1,029 891.25 0.05
PL 1,011 996.5 0.02 1,025 952.5 0.06

calculate the intersection of the submodels; that is, Md “
Ş100
b“1M

pbq
d . Based on

the sure screening properties in Theorem 2, we expect that, with large probability,

the intersection Md is exactly M‹ “ t1, 2, 3, 4, 5u. Our simulation supports our

expectation: of the 100 repetitions, 82 times Md “ M‹, 10 times Md consists

of only four variables in M‹, and eight times Md misses two or more variables

in M‹ or includes one irrelevant variable.

From this simulation study, we see that the bootstrap-based tuning proce-

dure performs very well. However, it seems crucial to determine the number of

bootstrap samples; here, we subjectively use B “ 100 samples. In practice, we

should investigate different choices of B, with the help of proportion curves, such

as those in Figure 1. If B is too large, we may miss some relevant covariates.

However, if B is too small, we may include some irrelevant covariates.
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Figure 1. The selection result based on 100 bootstrap samples using a randomly selected
simulated data set from Scenario 3, with n “ 400 and p “ 2,000. The red curves
correspond to the five truly relevant covaraites, and the blue curves correspond to the
remaining irrelevant covariates.

6. Real-Data Application

We apply the proposed joint screening method and the three marginal screen-

ing methods to the adult acute myeloid leukemia (AML) data of Bullinger et al.

(2004). Complementary-DNA microarrays were used to determine the levels of

gene expression in peripheral-blood samples or bone marrow samples from 116

adults with AML (including 45 with a normal karyotype). The primary goal of

the study was to identify relevant genes and devise a predictive model for the

survival outcome of a patient using the genetic profile of a tumor. The data set

contains data on 6,283 genes and 116 patients. The median survival time was

1.09 years. During follow-up, 67 patients died of leukemia. The remaining 49

patients were censored, yielding a censoring rate of 42.2%.

The top 10 selected genes are reported in Table 4, showing that the joint

approach yields quite different results to those of the marginal screening methods.
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Table 4. Top 10 genes selected by applying different screening methods to acute myeloid
leukemia data.

Order JS CR FAST PL
1 117315 103875 112298 103875
2 112578 109607 111553 112298
3 101791 103308 119834 319580
4 112353 221677 330857 119821
5 247136 119133 109477 112283
6 112298 115614 117339 101364
7 117570 102345 119821 109607
8 103875 116402 313178 103308
9 223434 117549 221,973 109541

10 225314 112298 117386 112105

For the joint screening method, we visualize the effect paths of the top ten genes

in Figure 2, showing the selection proportion curve for each gene against a fine

grid of γ. Here, the selection curves are obtained using 100 bootstrap samples,

with the red curves corresponding to the top 10 genes shown in the first column

of Table 4. Figure 2 shows that the top ten genes are clearly identifiable over a

wide range of γ.

To further compare the screening methods, we consider prediction errors

(PE), as follows. First, we randomly split the data set into a training set com-

prising 58 observations and a test set containing the remaining 58 observations.

We applied the method being evaluated to the training data set, obtaining es-

timators of the regression coefficients pβ
select

for selected variables X select. Then,

the prediction error was calculated as
řn
i“1 Ipi in Test Setq∆ipYi ´ pβ

T

select
X select

i q2{ pGtestpYiq
řn
i“1 Ipi in Test Setq∆i{ pGtestpYiq

,

where pGtest denotes the Kaplan–Meier estimator of the survival function of the

censoring time, computed based on the test data set. Here, a smaller predic-

tion error indicates better performance. The predictor errors for four screening

methods with models of size from one to ten are summarized in Table 5. The

average prediction error (APE) and median prediction error (MPE) based on 100

random splits of the data set are reported. We see that, overall, the proposed

joint screening meothd outperforms the marginal screening methods, achieving

the smallest APE and MPE. Furthermore, given that the selected model con-

tains eight covariates, the joint screening method achieves the best prediction

accuracy.
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Figure 2. The selection-proportion curves based on 100 bootstrap samples when applying
the joint screening method to acute myeloid leukemia data.

Table 5. Prediction errors for the four screening methods when applied to adult acute
myeloid leukemia data.

Model size JS CR FAST PL JS CR FAST PL
APE MPE

1 5.97 6.25 6.13 6.25 5.86 6.25 6.18 6.25
2 6.01 6.48 6.05 5.86 5.90 6.57 6.20 5.72
3 6.10 6.43 6.38 6.01 6.03 6.42 6.31 6.10
4 5.76 6.66 6.82 6.65 5.82 6.66 6.72 6.60
5 5.70 7.11 7.49 6.54 5.67 6.99 7.27 6.39
6 5.26 7.36 7.86 6.68 5.18 7.25 7.66 6.51
7 4.83 7.51 8.63 6.95 4.69 7.45 8.24 6.86
8 4.66 7.81 8.54 7.03 4.41 7.66 8.03 6.81
9 4.80 8.11 9.08 7.23 4.65 7.89 8.71 6.99

10 4.92 7.83 8.85 7.34 4.75 7.65 8.32 7.22

7. Discussion

In a high-dimensional survival analysis, where the number of covariates

greatly exceeds the number of observations, a preliminary screening method re-

duces the data dimension effectively, simplifying the subsequent detailed data
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analysis. The effectiveness of a screening approach depends on whether impor-

tant variables are retained when the data dimension is reduced. However, most

existing approaches evaluate the relevance of variables, based only on marginal

survival models. This prevents a joint regression analysis of survival data. This

is less desirable because, in most high-dimensional situations, relevant variables

exhibit significant effects in a joint manner, not marginally.

We develop a new screening scheme that employs the AFT model to directly

evaluate the joint covariate-survival association in the presence of an ultrahigh-

dimensional vector of covariates. The resulting screening procedure is easy to

implement, enjoys easy and direct interpretation, and exhibits sure screening

properties. For ease of exposition, we consider the situation where the censoring

time is independent of both the covariates and the survival time. When the

censoring time possibly depends on some covariates, our method can be extended

by replacing the Kaplan–Meier estimator with the local Kaplan–Meier estimator

using kernel smoothing Gonzalez-Manteiga and Cadarso-Suarenz (1994).

Supplementary Material

The online Supplementary Material contains detailed proofs of Theorems

1–2 and Propositions 1–2.
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