
Functional Sliced Inverse Regression in a Reproducing Kernel Hilbert

Space: a Theoretical Connection to Functional Linear Regression

Jinan University and City University of Hong Kong

Supplementary Material

Proofs

As we mentioned in the text, the proof for the main result is based on

a connection to the FLR problem. Since we assumed the more general

conditions for the eigenvalues of T than Cai and Yuan (2012) (in condition

(A3)), we provide a proof of the convergence rates for the estimator of the

FLR problem for completeness. Our proof also differs from that used in

Cai and Yuan (2012) and is slightly simpler. To ease notation, we do not

emphasize the uniformity of the upper bound over {β ∈ HK : ‖β‖HK
= 1}

below, but it can be easily checked step by step that all the bounds we

obtain below are uniform over this set.

Proposition 1. For a FLR problem Y = 〈β,X〉+ε with EXε = 0. Suppose

the model satisfies conditions (A1)-(A3) (except Y does not have to be dis-



crete here), and β ∈ HK. Given i.i.d. data (Xi, Yi), the RKHS-based esti-

mator f̂ of f = K−1/2β is as explained in Section 2. With λ→ 0, nλ→∞,

we have

‖T 1/2(f̂ − f)‖2 = Op(λ+
1

n

∑
j

s2j
(sj + λ)2

).

Proof of Proposition 1. In the proofs we use C to denote a generic

positive constant. With β̂ = K1/2f̂ and β = K1/2f , using f̂ = (Tn +

λI)−1(
∑

iK
1/2XiYi/n) and noting that Tn =

∑
i(K

1/2Xi ⊗K1/2Xi)/n, we

have

T 1/2(f̂ − f)

= T 1/2(Tn + λI)−1
∑

iK
1/2Xi(〈f,K1/2Xi〉+ εi)

n
− T 1/2f

= T 1/2(Tn + λI)−1Tnf − T 1/2f + T 1/2(Tn + λI)−1
∑

iK
1/2Xiεi
n

= T 1/2(Tn(Tn + λI)−1 − I)f + T 1/2(Tn + λI)−1
∑

iK
1/2Xiεi
n

.

Using the identity that for two operators A and B, A−1 −B−1 = B−1(B −

A)A−1, we have

Tn(Tn + λI)

= −λ(Tn + λI)−1

= −λ(T + λI)−1 − λ(T + λI)−1(T − Tn)(Tn + λI)−1,



and thus we have

T 1/2(f̂ − f)

= −λT 1/2(T + λI)−1f − λT 1/2(T + λI)−1(T − Tn)(Tn + λI)−1f

+T 1/2(Tn + λI)−1
∑

iK
1/2Xiεi
n

=: A1 + A2 + A3.

For A1, using that ‖T 1/2(T + λI)−1/2‖op ≤ 1, ‖
√
λ(T + λI)−1/2‖op ≤ 1, we

have ‖A1‖2 = Op(λ).

For A2, we have

‖A2‖2

≤ ‖T 1/2(T + λI)−1(T − Tn)‖2op‖λ(Tn + λI)−1‖2op

≤ ‖T 1/2(T + λI)−1(T − Tn)‖2HS,

where ‖.‖HS is the Hilbert-Schmidt norm, and we used the property that

the operator norm is upper bounded by the Hilbert-Schmidt norm. We

have

E‖(T − Tn)(T + λI)−1T 1/2‖2HS

= E
∑
j,k

〈(T − Tn)(T + λI)−1T 1/2ψj, ψk〉2

= E
∑
j,k

〈(T − Tn)
s
1/2
j

(sj + λ)
ψj, ψk〉2. (S0.1)



Direct calculation reveals that

E〈(T − Tn)ψj, ψk〉2

= E〈sjψj −
1

n

∑
i

((
∑
l

ξilψl)⊗ (
∑
m

ξimψm))ψj, ψk〉2

= E〈sjψj −
∑
i

∑
l ξilξijψl
n

, ψk〉2

= E(sjδjk −
∑

i ξijξik
n

)2.

Noting that E[ξijξik] = sjδjk, the above is equal to V ar(
∑

i ξijξik/n) ≤

E(
∑

i ξijξik/n)2. Using assumption (A2), we have E〈(T − Tn)ψj, ψk〉2 ≤

Csjsk/n, which combined with (S0.1) implies

E‖(T − Tn)(T + λI)−1T 1/2‖2HS ≤
C

n

∑
j,k

s2jsk

(sj + λ)2
= O

(
1

n

∑
j

s2j
(sj + λ)2

)
.

(S0.2)

Thus ‖A2‖2 = Op(
1
n

∑
j

s2j
(sj+λ)2

).

For A3, we write A3 = T 1/2(T + λI)−1
∑

iK
1/2Xiεi
n

+ T 1/2(T + λI)−1(T −

Tn)(Tn + λI)−1
∑

iK
1/2Xiεi
n

. Writing K1/2Xi =
∑

j ξijψj, we have

E‖T 1/2(T + λI)−1
∑

iK
1/2Xiεi
n

‖2

=
σ2
ε

n
E‖T 1/2(T + λI)−1K1/2X1‖2

=
σ2
ε

n
E‖T 1/2(T + λI)−1

∑
j

ξ1jψj‖2,

where σ2
ε = E[ε2]. Since (T + λI)−1ψj = (sj + λ)−1ψj and T 1/2ψj =

√
sjψj,

we have E‖T 1/2(T + λI)−1
∑

j ξ1jψj‖2 = E‖
∑

j

√
sjξ1j
sj+λ

ψj‖2 =
∑

j

s2j
(sj+λ)2

.



Furthermore, using (S0.2), letting A := T 1/2(T + λI)−1(T − Tn) and

AT the adjoint operator of A for simplicity of notation, we have

E[‖T 1/2(T + λI)−1(T − Tn)(Tn + λI)−1
∑

iK
1/2Xiεi
n

‖2|X1, . . . , Xn]

=
σ2
ε

n2

∑
i

‖A(Tn + λI)−1K1/2Xi‖2

=
σ2
ε

n2

∑
i

〈A(Tn + λI)−1K1/2Xi,A(Tn + λI)−1K1/2Xi〉

=
σ2
ε

n2

∑
i

〈(Tn + λI)−1ATA(Tn + λI)−1K1/2Xi, K
1/2Xi〉.

Next we introduce the definition of the trace, which is given by tr(F) :=∑
j〈Fej, ej〉 for any orthonormal basis {ej}. Using the properties 〈f, g〉 =

tr(f ⊗ g) for any f, g ∈ L2[0, 1], tr(FG) = tr(GF) and tr(FTF) = ‖F‖2HS

(see section 18 of Conway (2000) for these basic properties of trace and

Hilbert-Schmidt norm), we get

1

n2

∑
i

〈(Tn + λI)−1ATA(Tn + λI)−1K1/2Xi, K
1/2Xi〉

=
1

n2

∑
i

tr
(
(Tn + λI)−1ATA(Tn + λI)−1K1/2Xi ⊗K1/2Xi

)
=

1

n
tr((Tn + λI)−1ATA(Tn + λI)−1Tn)

=
1

n
tr(T 1/2

n (Tn + λI)−1ATA(Tn + λI)−1T 1/2
n )

=
1

n
‖A(Tn + λI)−1T 1/2

n ‖2HS.

Using ‖FG‖HS ≤ ‖F‖HS‖G‖op and the bound for ‖A‖HS which was already



obtained in (S0.1), the above is bounded by

Op

(
1

n
‖(Tn + λI)−1T 1/2

n ‖2op‖A‖2HS
)

= Op(
1

nλ
)Op(

1

n

∑
j

s2j
(sj + λ)2

)

= op(
1

n

∑
j

s2j
(sj + λ)2

),

since nλ→∞.

Thus we have ‖A3‖2 = Op(
1
n

∑
j

s2j
(sj+λ)2

). The theorem is proved by

combining the bounds for ‖A1‖2, ‖A2‖2 and ‖A3‖2. �

The above proposition demonstrated the convergence rate based on the

prediction risk ‖T 1/2(f̂ − f)‖. Since T 1/2 has eigenvalues converging to

zero, this does not even imply the consistency of f̂ itself. The following

proposition shows ‖f̂ − f‖ = Op(1), which suffices for our purpose later (in

particular, this is used in Step 5 in the proof of Theorem 1 below).

Proposition 2. Under the same setup for FLR as in Proposition 1, and

choose λ to be the solution of (3.2), we have ‖f̂−f‖ = Op(1). In particular,

‖f̂‖ = Op(1).

Proof of Proposition 2. The proof follows similar lines of Proposition 1.



We now have

f̂ − f

= −λ(T + λI)−1f − λ(T + λI)−1(T − Tn)(Tn + λI)−1f

+(Tn + λI)−1
∑

iK
1/2Xiεi
n

=: B1 +B2 +B3.

Since ‖λ(T + λ)−1‖op ≤ 1, obviously ‖B1‖ = Op(1).

For B2, we have ‖B2‖2 ≤ ‖(T − Tn)(T + λI)−1‖2HS. Unlike (S0.2) here

T 1/2 does not appear. However, we can follow the same lines to get

E‖(T − Tn)(T + λI)−1‖2HS = O

(
1

n

∑
j

sj
(sj + λ)2

)
.

For B3 we similarly have ‖B3‖2 = Op

(
1
n

∑
j

sj
(sj+λ)2

)
.

Thus we only need to show

1

n

∑
j

sj
(sj + λ)2

= Op(1). (S0.3)

Demonstration of (S0.3) is similar to the discussions following the statement

of Theorem 1. Let J = bφ−1(λ)c. By splitting the sum over j into j ≤ J

and j > J , we have

1

n

∑
j

sj
(sj + λ)2

≤ J

nsJ
+

∑
j≥J+1 sj

nλ2
.

Since λ satisfies φ−1(λ) = nλ, and J ≤ φ−1(λ), J + 1 > φ−1(λ), we have

J

nsJ
=

J

nφ(J)
≤ φ−1(λ)

nφ(φ−1(λ))
= 1,



and ∑
j≥J+1 sj

nλ2
≤ (J + 2)sJ+1

nλ2
≤ J

nλ
≤ 1,

where we used that
∑

j≥J+1 sj ≤ (J + 2)sJ+1 obtained from Lemma 1 of

Cardot et al. (2007). This established (S0.3) and thus ‖f̂ − f‖ = Op(1). �

Proof of Theorem 1. For clarity, the proof is splitted into several step-

s. For simplicity of notation, we only consider the convergence rate of

the first eigenfunction associated with eigenvalue α1. That is we focus on

‖Γ1/2(β̂1 − β1)‖ = ‖T 1/2(f̂1 − f1)‖, and we omit the subscript 1 in the fol-

lowing. Convergence rates for other eigenfunctions can be proved in exactly

the same way.

STEP 1. There exists H numbers a1, . . . , aH such that f =
∑H

h=1 ahT
−1K1/2Xh

and a = (a1, . . . , aH)T satisfies the eigenvalue equation PCa = αa, where

Xh = E[X|Y = yh], P = diag(p1, . . . , pH) and C is an H ×H matrix with

entries given by Ch,h′ = 〈T−1K1/2Xh, K
1/2Xh′〉.

Proof. Here we use the fact that V ar(E[K1/2X|Y ]) =
∑

h phK
1/2Xh ⊗

K1/2Xh is of finite-rank. T−1V ar(E[K1/2X|Y ])f = αf can be equivalently

written as ∑
h

ph〈K1/2Xh, f〉T−1K1/2Xh = αf. (S0.4)



Since we assumed α > 0, f is a linear combination of T−1K1/2Xh, h =

1, . . . , H. We write f =
∑

h ãhT
−1K1/2Xh. Note that in generalK1/2Xh, h =

1, . . . , H are not linearly independent (for example we know
∑

h phXh =

EX = 0). We will pick a particular ãh soon.

Plugging this expression of f into (S0.4), we get

H∑
h=1

(
H∑
h′=1

phãh′Chh′)T−1K1/2Xh =
∑
h

αãhT
−1K1/2Xh, (S0.5)

where Chh′ = 〈T−1K1/2Xh, K
1/2Xh′〉. Using the notations introduced above,

this is same as

(PCã− αã)T (T−1K1/2X1:H) = 0, (S0.6)

where ã = (ã1, . . . , ãH)T and T−1K1/2X1:H = (Γ−1K1/2X1, . . . ,Γ
−1K1/2XH)T

is a vector of elements in L2[0, 1]. Let b = PCã − αã and (S0.6) says

bTT−1K1/2X1:H = 0, and thus Cb = 0 by the definition of C. Using Cb = 0

and b = PCã−αã, we have PC(ã+b/α) = α(ã+b/α), and thus a := ã+b/α

satisfies the statement at the beginning of the step.

STEP 2. There exists H numbers â1, . . . , âH such that f̂ =
∑H

h=1 âh(Tn+

λI)−1K1/2X̂h and â = (â1, . . . , âH)T satisfies the eigenvalue equation P̂Ĉâ =

α̂â, where P̂ = diag(p̂1, . . . , p̂H) and Ĉ is an H×H matrix with entries giv-

en by Ĉh,h′ = 〈(Tn + λI)−1K1/2X̂h, K
1/2X̂h′〉.



Proof. Given that V̂ ar(E[K1/2X|Y ]) =
∑

h p̂hK
1/2X̂h ⊗K1/2X̂h and f̂

satisfies (Tn + λI)−1V̂ ar(E[K1/2X|Y ])f̂ = α̂f̂ , the proof is the same as for

Step 1.

STEP 3. Let Z(h) = I{Y = yh} − ph where I{.} is the indicator func-

tion. Then Z(h) can be expressed as Z(h) = 〈β(h), X〉 + ε for some ε with

E[Xε] = 0, and some β(h) ∈ HK.

Proof. We use the arguments put forward in Section 2 of Cardot

et al. (2003) (see page 575 in that paper). More specifically, consider the

minimization problem f (h) = arg minf E[(Z(h) − 〈f,K1/2X〉)2]. For this

minimization problem, the covariance operator is T with eigenvalues and

eigenfunctions {sj, ψj}. We have E[Z(h)K1/2X] = E[I{Y = yh}K1/2X] =

phE[K1/2X|Y = yh] ∈ TS∗Y |X . Thus E[Z(h)K1/2X] is a linear combination

of f1, . . . , fM which spans S∗Y |X . Since∑
j

〈Tfm, ψj〉2

s2j
=
∑
j

〈fm, Tψj〉2

s2j
=
∑
j

〈fm, sjψj〉2

s2j
=
∑
j

〈fm, ψj〉2 = ‖fm‖2 <∞,

we also have ∑
j

〈E[Z(h)K1/2X], ψj〉2

s2j
<∞,

which verifies condition 1 of Cardot et al. (2003) and thus f (h) exists and is

unique. We can thus write Z(h) = 〈f (h), K1/2X〉 + ε with E[Xε] = 0. Now



we only need to let β(h) = K1/2X.

STEP 4. For 1 ≤ h ≤ H, ‖p̂hT 1/2(Tn+λI)−1K1/2X̂h−phT−1/2K1/2Xh‖2 =

Op(λ+ 1
n

∑
j

s2j
(sj+λ)2

).

Proof. Note that phK
1/2Xh = EK1/2XZ(h) and p̂hK

1/2X̂h =
∑

iK
1/2XiZ

(h)
i /n

(note we assumed
∑

iXi/n = 0 to make arguments simpler), where Z
(h)
i =

I{Yi = yh} − ph. By the representation of Z(h) presented in Step 3,

‖T 1/2(Tn+λI)−1
∑

iK
1/2XiZ

(h)
i /n−phT−1/2K1/2Xh‖2 is exactly the risk for

the FLR problem Z(h) = 〈β(h), X〉+ε and thus is order Op(λ+ 1
n

∑
j

s2j
(sj+λ)2

).

STEP 5. For 1 ≤ h, h′ ≤ H, ((P̂Ĉ)h,h′−(PC)h,h′)2 = Op(λ+ 1
n

∑
j

s2j
(sj+λ)2

),

where (PC)h,h′ is the (h, h′)-entry of PC, for example.

Proof. We have

[(P̂Ĉ)h,h′ − (PC)h,h′ ]2

= [〈p̂h(Tn + λI)−1K1/2X̂h, K
1/2X̂h′〉 − 〈phT−1K1/2Xh, K

1/2Xh′〉]2

≤ 2〈p̂h(Tn + λI)−1K1/2X̂h − phT−1K1/2Xh, K
1/2Xh′〉2

+2〈p̂h(Tn + λI)−1K1/2X̂h, K
1/2X̂h′ −K1/2Xh′〉2. (S0.7)



Noting K1/2X ′h = Tβ for some β ∈ SY |X , we have 〈p̂h(Tn +λI)−1K1/2X̂h−

phT
−1K1/2Xh, K

1/2Xh′〉2 = 〈p̂hT 1/2(Tn+λI)−1K1/2X̂h−phT−1/2K1/2Xh, T
1/2β〉2.

Using Step 4, the first term in (S0.7) is thus Op(λ+ 1
n

∑
j

s2j
(sj+λ)2

). Further-

more, for the second term in (S0.7), we have

p̂h(Tn + λI)−1K1/2X̂h = (Tn + λI)−1
∑
i

K1/2XiZ
(h)
i /n.

By Proposition 2, noting the right hand side above is the estimator of

f (h) for the FLR problem Z(h) = 〈f (h), K1/2X〉 + ε, we see it is of order

Op(1).

Finally, it is easy to show that ‖K1/2X̂h′−K1/2Xh′‖2 = Op(n
−1). Thus

the second term of (S0.7) is also Op(λ+ 1
n

∑
j

s2j
(sj+λ)2

).

STEP 6. Finally we can combine the claims above to prove the theo-

rem. Based on Steps 1,2,5 and the perturbation theory for matrices, one

can get ‖α− α̂‖2 = Op(λ+ 1
n

∑
j

s2j
(sj+λ)2

) and ‖â−a‖ = Op(λ+ 1
n

∑
j

s2j
(sj+λ)2

)

(when the sign of the eigenvector is appropriately chosen). Using T 1/2f̂ =∑H
h=1 âhT

1/2(Tn + λI)−1K1/2X̂h and T 1/2f =
∑H

h=1 ahT
−1/2K1/2Xh, com-

bined with Step 4, we have ‖T 1/2(f̂ − f)‖2 = Op(λ+ 1
n

∑
j

s2j
(sj+λ)2

). �



Proof of Theorem 2. Consider the model

Yi =

∫
β(s)Xi(s)ds+ εi,

with ‖β‖HK
≤ 1. We need a modification of the proof of Theorem 1 in Cai

and Yuan (2012) due to the more general assumption on the eigenvalues of

T . Let ηj =
√
cλ/(Jsj) for some 0 < c ≤ 1 to be determined later. We

apply Theorem 2.5 of Tsybakov (2009) using the following collection of 2J

functions

fθ =
J∑
k=1

θkηkK
1/2ψk,

where θ = (θ1, . . . , θJ) ∈ {0, 1}J .

First, using that ‖K1/2ψj, K
1/2ψk‖HK

= 〈ψj, ψk〉 = δjk,

‖fθ‖2HK
=

J∑
k=1

θ2kη
2
k ≤

J∑
k=1

η2k =
cλ

J

J∑
k=1

1

sk
≤ cλ

J

J

sJ
≤ c ≤ 1,

since sJ ≥ λ by sJ = φ(J) and the definition J = bφ−1(λ)c.

By the Varshamov-Gilbert bound (Lemma 2.9 in Tsybakov (2009)),

there is a subset Θ = {θ0, . . . , θN} ⊂ {0, 1}J such that θ0 = (0, . . . , 0),

N ≥ 2J/8 and
∑J

k=1(θk − θ′k)2 ≥ J/8 whenever θ 6= θ′ ∈ Θ.

We have

‖Γ1/2(fθ − fθ′)‖2 =
J∑
k=1

η2k(θk − θ′k)2sk ≥
cλ

J

J

8
= cλ/8,

verifying condition (i) in Theorem 2.5 of Tsybakov (2009). Furthermore, the

Kullback-Leibler distance between Pθ and Pθ′ (Pθ is the joint distribution



of training data when β = fθ) can be found to be

K(Pθ|Pθ′) =
n

2σ2

J∑
k=1

η2k(θk − θ′k)2sk ≤
ncλ

2σ2
,

and thus

1

N

N∑
j=1

K(Pθ|Pθ′) ≤
ncλ

2σ2
=
cφ−1(λ)

2σ2
≤ c

2σ2
(J + 1) ≤ αlogN,

for some 0 < α < 1/8 if c is chosen small enough, verifying condition (ii) in

Theorem 2.5 of Tsybakov (2009). The lower bound is proved by applying

Theorem 2.5 of Tsybakov (2009). �
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