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Abstract: We consider functional sliced inverse regression (FSIR) when the func-

tional indices are assumed to be elements of a reproducing kernel Hilbert space

(RKHS). This work is motivated by a prior study on functional linear regression

(FLR) that incorporates a penalty involving the RKHS norm. Utilizing a close con-

nection between FLR and FSIR not noted before, we show that the FSIR can be

dealt with by an analogy with the FLR. Methodologically, this is straightforward,

but the corresponding theoretical transfer from the FLR to the FSIR is nontrivial.

In particular, we show that the convergence rate for the FSIR is the same as that of

the FLR, and is thus minimax. This result is particularly interesting given the far

more general specification of dimension-reduction problems compared with that of

FLR. Simulations and real data are used to compare this with the functional PCA-

based approach, where the functional index is expanded using the eigenfunctions

of the covariance kernel.
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1. Introduction: FSIR and FLR

Dimension reduction in a regression aims to reduce the dimension of a mul-

tivariate predictor X, while preserving its predictive capability on a real-valued

response Y (Li (1991); Cook and Weisberg (1991); Zhu and Fang (1996); Cook

and Lee (1999); Yin and Cook (2002); Cook and Ni (2005)). This class of ap-

proaches has been extended to the area of functional data analysis, which is the

focus of this study.

In a functional regression problem, let X be a square integrable random

process, indexed by t ∈ [0, 1], denoted simply by X ∈ L2[0, 1], and let Y be a

scalar random response. As assumed in the functional linear regression (FLR)

literature (Cardot, Ferraty and Sarda (1999); Yao, Mueller and Wang (2005);

Cai and Hall (2006); Hall and Horowitz (2007)), we assume E‖X‖4 <∞, where
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‖X‖ = (
∫ 1
0 X

2)1/2 is the L2 norm of X. Without loss of generality, we further

assume the predictor is centered, with EX = 0. A functional dimension reduction

seeks a set of square integrable functions, denoted by β1, . . . , βM , such that Y

depends on X only through the M inner products 〈β1, X〉, . . . , 〈βM , X〉, where

the inner product 〈f, g〉 =
∫ 1
0 fg, for f, g ∈ L2[0, 1]. Mathematically, this can

be formulated as Y⊥X|(〈β1, X〉, . . . , 〈βM , X〉). That is, Y is independent of X,

given the M indices 〈β1, X〉, . . . , 〈βM , X〉, which means all information about

Y in the process X is contained in the M -dimensional vector. Another way to

formulate the problem is to pose it as a semiparametric regression problem,

Y = g(〈β1, X〉, . . . , 〈βM , X〉, ε),

where g is an unknown nonparametric link function, and ε represents the noise in

the regression problem. The M -dimensional subspace spanned by β1, . . . , βM (as-

suming they are linearly independent) is called the sufficient dimension reduction

(sdr) space, and is denoted by SY |X . The main objective is to estimate this space

(instead of each specific direction, which is unidentifiable, in general). Note that

this model is very similar to the multiple index model. The primary difference is

that the former is more general, whereas the latter imposes a more concrete ad-

ditive error structure, with Y = g(〈β1, X〉, . . . , 〈βM , X〉) + ε. For example, in the

model assumed for a sufficient dimension reduction, the indices can affect both

the mean and the variance. Multiple-index models are often estimated using

more traditional approaches, including kernels and series estimations, whereas

sliced inverse regression(SIR) uses only simple moment estimators. SIR is the

most commonly used dimension-reduction estimator, and has been extended to

functional data (Ferré and Yao (2003); Li and Hsing (2010); Yao, Lei and Wu

(2015)).

The most popular method used to obtain an estimator for FSIR or FLR

is the functional principal component analysis (FPCA), which we explain next.

By Mercer’s theorem, the covariance operator of the random process X, Γ =

E[X ⊗X], can be expressed as

Γ =

∞∑
j=1

λjϕj ⊗ ϕj ,

where λ1 ≥ λ2 ≥ · · · ≥ 0 are eigenvalues, and ϕj ∈ L2[0, 1], for j = 1, 2, . . . ,

is an orthonormal set of eigenfunctions. Recall that for f, g ∈ L2[0, 1], f ⊗ g is

the linear operator that maps h ∈ L2[0, 1] to 〈g, h〉f ∈ L2[0, 1]. Correspondingly,

we have the Karhunen–Loève expansion X =
∑∞

j=1 χjϕj , with Eχjχk = λjδjk,
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where δjk = 1 if j = k, and δjk = 0 if j 6= k. We assume all eigenvalues are

strictly positive and distinct, as usually imposed in the FLR and FSIR literature,

which makes the estimation problem identifiable. Empirically, the eigenvalues

and eigenfunctions can be estimated by the spectral decomposition of Γn :=∑n
i=1Xi ⊗ Xi/n for independent and identically distributed (i.i.d.) data. To

make the arguments slightly simpler, throughout the paper, we assume X̄ :=∑
iXi/n = 0; otherwise, we should define Γn =

∑n
i=1(Xi− X̄)⊗ (Xi− X̄)/n, for

example. The estimated eigenvalues and eigenfunctions are denoted by {λ̂j , ϕ̂j}.
To Illustrate the FPCA approach using FLR, we minimize the objective

function
∑n

i=1(Yi −
∫
βXi)

2 over all β, which can be written as β =
∑k

j=1 bjϕ̂j
for some coefficients bj . Note that the expansion is truncated at some finite

integer k. It can be shown that the minimizer is β̂ = (Π̂kΓnΠ̂k)
+(
∑

iXiYi/n),

where Π̂k is the operator of the projection onto the space spanned by ϕ̂1, . . . , ϕ̂k,

and (.)+ denotes the pseudo-inverse. Ferré and Yao (2003) proved the consistency

of the FSIR without making any connection to the FLR, although their result

hinted at a close similarity to the FLR. Recovering this connection explicitly is

a nontrivial problem.

A crucial condition for the FPCA-based methods to work well is that the

coefficient β in the FLR (or indices in FSIR) can be represented efficiently in

terms of the leading eigenfunctions of Γ, in the sense that the Fourier coefficients

in the FPCA basis {ϕj} decrease fast with j. As demonstrated in Cai and Yuan

(2012) for the FLR, this may not be true, and thus there are opportunities for

significant improvements. They proposed solving the FLR problem by assuming

that the coefficient β lies within a known RKHS.

Motivated by Cai and Yuan (2012), one naturally wonders whether the

methodological and theoretical results can be transferred to the FSIR within the

RKHS framework, which would potentially improve on the FPCA-based method

for FSIR. Our theoretical approach is to transform the eigenvalue problem in

L2[0, 1] to a more standard eigenvalue problem in the Euclidean space, while

studying the property of the new eigenvalue problem by uncovering a connection

to the FLR.

We believe our discovery of connections between FSIR and FLR is more

generally applicable, although we only use an estimation in the RKHS framework

to illustrate that results in the FLR can be transferred to the FSIR. The rest

of the article is organized as follows. In Section 2, we review FSIR and present

the methodology for the FSIR estimation in an RKHS by making an informal

connection to FLR. We then present the asymptotic theory of our estimator for
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an sdr space, which also relaxes some assumptions used in Cai and Yuan (2012).

The proofs in the Appendix uncover a close relationship between the FSIR and

the FLR which is key to proving the convergence rate of the FSIR. In Section 4,

simulations and a real data set are used to show that the RKHS-based approach

improves on the FPCA-based method for the FSIR. Section 5 concludes the

paper. All technical proofs are relegated to the Appendix.

2. Methodology

2.1. FSIR based on FPCA

Here,we review the FSIR, drawing mainly on the results of Ferré and Yao

(2003). Let ΓSY |X be the space spanned by Γβ1, . . . ,ΓβM . The principle of the

FSIR is based on the following result, with proofs omitted, which is a direct

extension of the multivariate case.

Proposition 1. (Ferré and Yao (2003)) Suppose for all b ∈ L2[0, 1], the condi-

tional expectation E[〈b,X〉|〈β1, X〉, . . . , 〈βM , X〉] is linear in 〈β1, X〉, . . . , 〈βM , X〉.
Then, E(X|Y ) ∈ ΓSY |X .

The linearity condition in the proposition above constrains the marginal dis-

tribution of the predictors, not the conditional distribution of Y |X, as is typical

in a regression. The condition holds when X is a Gaussian process, although

Gaussianity is not necessary.

The name of the SIR obviously originates from its use of E[X|Y ] instead

of E[Y |X]. In the FLR it is assumed E[Y |X] = 〈β,X〉, for some β ∈ L2[0, 1].

Note that, for simplicity, we assume there is no intercept in the FLR, because

the intercept can be estimated easily, if necessary.

Based on Proposition 1, because E[X|Y ] ∈ ΓSY |X , we can estimate SY |X
by estimating the eigenfunctions of Γ−1V ar(E[X|Y ]), where V ar(E[X|Y ]) =

E[E(X|Y ) ⊗ E(X|Y )] is the covariance operator of E[X|Y ]. Note that if the

eigenvalues of Γ are all positive, as is typically assumed in the literature, Γ is

invertible, but Γ−1 is often not a bounded operator. Given i.i.d. data, as in the

FLR, Γ−1 can be estimated by (Π̂kΓnΠ̂k)
+. To obtain the slicing estimator of

V ar(E[X|Y ]), the range of Y is divided into H slices. Then, we can estimate

V ar(E[X|Y ]) by

V̂ ar(E[X|Y ]) =
1

H

H∑
h=1

X̂h ⊗ X̂h,

where X̂h is the sample average of the predictors that have an associated response
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in the hth slice.

From the discussion above, we suspect there is some connection between

the FLR and the FSIR that makes it possible to transfer the asymptotic re-

sults proved on the FLR to the FSIR. In both cases, the functional PCA is

used to calculate (Π̂kΓnΠ̂k)
+. On the other hand, in the FLR, the coeffi-

cient β is obtained by applying (Π̂kΓnΠ̂k)
+ to a random process

∑
iXiYi/n ∈

L2[0, 1]. In contrast, in the FSIR the object of interest is the eigenfunction of

(Π̂kΓnΠ̂k)
+V̂ ar(E[X|Y ]), making the connection unclear.

2.2. FSIR in an RKHS

Following Wahba (1990), an RKHS H is a Hilbert space of real-valued

functions defined on, say, the interval [0, 1], with an inner product 〈.〉H, in

which the point evaluation operator Lt : H → R,Lt(f) = f(t) is continu-

ous. The corresponding norm induced by the inner product is denoted by

‖.‖H. By Riesz’s representation theorem, this definition implies the existence

of a nonnegative-definite, square-integrable, bivariate function K(s, t), such that

K(s, ·) ∈ H and 〈K(t, ·), f〉H = f(t) for every f ∈ H and t ∈ [0, 1] . To make

the dependence on K explicit, the RKHS is denoted by HK with the RKHS

norm ‖ · ‖HK
. With an abuse of notation, K also denotes the linear operator

f ∈ L2 → Kf =
∫
K(·, s)f(s)ds. For later use, we note that HK is identical to

the range of K1/2.

For the FLR, Cai and Yuan (2012) assumed that β is in an RKHS HK , and

estimate β by

β̂ = arg min
β∈HK

∑
i

(
Yi −

∫
Xiβ

)2

+ nλ‖β‖2HK
, (2.1)

where ‖.‖HK
is the RKHS norm, and λ is a tuning parameter for the penalty.

The authors show that when the covariance kernel Γ does not align with the

reproducing kernel K, the estimate obtained in the RKHS can be much more

accurate.

As mentioned in the introduction, the covariance operator is Γ = EX ⊗X.

We also use Γ to denote the covariance kernel Γ(s, t) = EX(s)X(t). Perfect

alignment between K and Γ means that the eigenfunctions ordered by the mag-

nitudes of the eigenvalues are the same for the two kernels/operators. Without

assuming the two are aligned, Cai and Yuan (2012) used (2.1) to find an estima-

tor for β. Noting that β ∈ HK is equivalent to β = K1/2f , for some f ∈ L2[0, 1],

and using the property ‖β‖HK
= ‖f‖, (2.1) is equivalent to
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arg min
f∈L2[0,1]

∑
i

(Yi − 〈K1/2Xi, f〉)2 + nλ‖f‖2,

with the solution f̂ = (Tn + λI)−1(
∑

iK
1/2XiYi/n), where Tn = K1/2ΓnK

1/2,

and I is the identity operator. For the population version, the solution to

arg minf E(Y − 〈K1/2X, f〉)2 is T−1E[K1/2XY ], where T = K1/2ΓK1/2. In-

formally, the above equation means that we can simply replace X by K1/2X

and then estimate f = K−1/2β ∈ L2[0, 1]. Hence, the estimation of f no longer

requires considering an RKHS.

Based on this observation, we can construct the FSIR estimator in an RKHS

by replacing X with K1/2X. Assume that the elements in SY |X are contained

in HK . Let S∗Y |X = K−1/2SY |X = {f : f = K−1/2β for some β ∈ SY |X}.
Because E[X|Y ] ∈ ΓSY |X , we have E[K1/2X|Y ] ∈ K1/2ΓSY |X = TS∗Y |X , where

T = K1/2ΓK1/2 and, thus, S∗Y |X can be estimated by the space spanned by the

eigenfunctions of T−1V ar(E[K1/2X|Y ]). We summarize the above arguments in

the following proposition.

Proposition 2. Suppose β1, . . . , βK are in HK , and that for all b ∈ L2[0, 1],

the conditional expectation E[〈b,X〉|〈β1, X〉, . . . , 〈βM , X〉] is linear in 〈β1, X〉,
. . . , 〈βM , X〉. Then, E[K1/2X|Y ] ∈ TS∗Y |X , and the eigenfunctions of T−1

V ar(E[K1/2X|Y ]) associated with its nonzero eigenvalues are inside S∗Y |X .

Empirically, given i.i.d. data, T−1V ar(E[K1/2X|Y ]) is estimated by (Tn +

λI)−1V̂ ar(E[K1/2X|Y ]), where

V̂ ar(E[K1/2X|Y ]) =
1

H

H∑
h=1

(K1/2X̂h)⊗ (K1/2X̂h).

To simplify the asymptotic analysis in the next section, following the lit-

erature on SIR, we assume Y is discrete, taking only a finite number of values

y1, . . . , yH , with probabilities p1, . . . , pH ,respectively. This kind of simplification

is used by, among others, Li (1991); Duan and Li (1991), and Cook and Ni (2005).

As argued in Cook and Ni (2005), even when Y is continuous, we can construct

a discrete version Ỹ of Y by quantization into H values. It is always true that

SỸ |X ⊆ SY |X , and when H is sufficiently large, these two dimension-reduction

spaces are equal. Thus, assuming Y is discrete does not cost much in terms of

generality Ferré and Yao (2003) make this same assumption. Thus, we can write

V ar(E[K1/2X|Y ]) =

H∑
h=1

phE[K1/2X|Y = yh]⊗ E[K1/2X|Y = yh],
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which can be estimated by

V̂ ar(E[K1/2X|Y ]) =

H∑
h=1

p̂h(K1/2X̂h)⊗ (K1/2X̂h),

where X̂h is the average of Xi in the hth slice, defined by Dh = {i : Yi = yh},
and p̂h = |Dh|/n.

3. Convergence Rate of the FSIR Estimator in an RKHS

Given the FSIR estimator constructed in the previous section simply by

replacing X with K1/2X, it is still unclear whether the FSIR can achieve the same

rate of convergence as that of the FLR in an RKHS. Let f̂j , for j = 1, . . . ,M (with

‖f̂‖ = 1), be the eigenfunctions of (Tn+λI)−1V̂ ar(E[K1/2X|Y ]) associated with

its top M eigenvalues, and let β̂j = K1/2f̂j . The following technical assumptions

are imposed.

(A1) E‖X‖4 <∞. Y is discrete, taking H values y1, . . . , yH . Both the reproduc-

ing kernel K and the covariance kernel Γ are positive definite.

(A2) Suppose the spectral expansion of T is T =
∑

j sjψj ⊗ ψj . Note that T

is just the covariance operator when the predictor is K1/2X. Recall the

Karhunen–Loéve expansion K1/2X =
∑

j≥1 ξjψj . There exists a constant

c, such that E[ξ4j ] ≤ c(E[ξ2j ])2, for all j ≥ 1.

(A3) There exists a positive, convex, decreasing function φ : (0,∞) → R+ with

limx→∞ φ(x) = 0, such that sj = φ(j), at least for large j.

(A4) The operator T−1V ar(E[K1/2X|Y ]) has M eigenfunctions f1, . . . , fM (with

‖fj‖ = 1) associated with the distinct eigenvalues α1 > · · · > αM > 0,

respectively. S∗Y |X is spanned by f1, . . . , fM and, thus, SY |X is spanned by

K1/2f1, . . . ,K
1/2fM .

Assumption (A1) imposes a mild moment condition on the predictor typ-

ically assumed in the FLR and FSIR literature. The assumption of positive

definiteness of Γ is necessary for identifiability (otherwise, we can only estimate

the component of β inside the space orthogonal to the kernel space of Γ). As in

Cai and Yuan (2012), the positive definiteness of K is mainly used for theoretical

convenience. Assumption (A2) is similar to that assumed in Hall and Horowitz

(2007) and Cardot, Mas and Sarda (2007). Cai and Yuan (2012) assumed that

E(
∫
X(t)f(t)dt)4 ≤ c(E(

∫
X(t)f(t)dt)2)2, for all f ∈ L2[0, 1]. This assumption
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implies (A2), which can be seen by choosing f = K1/2ψj . Assumption (A3) also

appeared in Cardot, Mas and Sarda (2007). Cai and Yuan (2012) considered a

much more restrictive polynomial decay assumption sj � j−2r, for some r > 0,

which corresponds to φ(x) = x−2r. Taking φ(x) = c1e
−c2x, for some constants

c1, c2 > 0, the exponential decay of the eigenvalues is a special case of our result.

Eigenvalues of K that decay at a rate of j−2r are more common. Among other

examples, this type of scaling covers the case of Sobolev spaces, say, consisting of

functions with r derivatives (Birman and Solomjak (1967); Raskutti, Wainwright

and Yu (2012)). A prominent kernel with exponentially decaying eigenvalues is

the Gaussian kernel (Rasmussen and Williams (2006)). When K = Γ, it is clear

that T = K1/2ΓK1/2 also has polynomially or exponentially decaying eigenval-

ues. In more general cases ,with K 6= Γ, concrete examples seem much harder to

construct. Referring to Proposition 2, (A4) merely assumes that, in the popula-

tion, the FSIR can recover the entire sdr space. This assumption is not necessary

and is used for convenience of exposition. In general, the span of eigenfunctions

extracted from T−1V ar(E[K1/2X|Y ]) is only a subspace of S∗Y |X . In this case,

we can only show the convergence of the estimated f̂j to the true eigenfunctions

fj , which do not span the whole sdr space. In this case, of course, there is no

hope of recovering the whole sdr space, in general, using the FSIR.

The risk measure we consider is the prediction risk E∗(〈β̂j , X∗〉−〈βj , X∗〉)2,
where X∗ is a copy of X, independent of the training data, and E∗ is the expec-

tation taken over X∗. This risk is more natural than ‖β̂j − βj‖, because in the

FSIR, we typically use Xiβ̂j either to plot them against Yi for data exploration,

or to treat them as the new predictors in a multivariate regression. Because

β̂j = K1/2f̂j and βj = K1/2fj , this risk can also be written as ‖T 1/2(f̂j − fj)‖2,
where T 1/2 is the square root of T (i.e., T 1/2T 1/2 = T ).

Theorem 1. Under assumptions (A1)–(A4), and taking λ as the solution of

nλ = φ−1(λ), for each j ∈ {1, . . . ,M}, there exists cj ∈ {−1, 1}, such that

E∗(cj〈β̂j , X∗〉 − 〈βj , X∗〉)2 = Op

λ+
1

n

∑
j

s2j
(sj + λ)2


uniformly for models with β ∈ HK , ‖β‖HK

= 1. More specifically, by definition,

the uniform upper bound means that

lim
a→∞

lim
n→∞

sup
‖β‖HK

=1
min

cj∈{−1,1}
P

E∗(cj〈β̂j , X∗〉−〈βj , X∗〉)2 ≥ a
λ+

1

n

∑
j

s2j
(sj+λ)2


= 0.
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Because the eigenfunctions are only identifiable up to a sign change, cj is

necessary to show the convergence rate.

Roughly speaking, in the convergence rate, λ represents the squared bias and

(1/n)
∑

j s
2
j/(sj + λ)2 represents the variance. The λ that satisfies nλ = φ−1(λ)

is chosen to trade off these two terms to make them of the same order. Thus,

the convergence rate is actually Op(λ) for this λ. We leave both terms in the

statement of the theorem to make the bias and variance more explicit. To see

that this λ balances the two terms in the rate above, let J = bφ−1(λ)c be the

integer part of φ−1(λ). By splitting the sum over j into j ≤ J and j > J , we

have
1

n

∑
j

s2j
(sj + λ)2

≤ J

n
+
sJ+1

∑
j≥J+1 sj

nλ2
.

Because λ is the solution to the equation

φ−1(λ) = nλ, (3.1)

we have J = bφ−1(λ)c ≤ φ−1(λ) and

sJ+1
∑

j≥J+1 sj

nλ2
≤

(J + 2)s2J+1

nλ2
≤ J + 2

n
,

where we use
∑

j≥J+1 sj ≤ (J + 2)sJ+1 obtained from Lemma 1 of Cardot, Mas

and Sarda (2007), and sJ+1 = φ(J + 1) ≤ φ(φ−1(λ)) = λ by the definition of J .

Thus, we have

E∗(cj〈β̂j , X∗〉 − 〈βj , X∗〉)2 = Op(λ),

with λ defined by (3.1), which characterizes the optimal convergence rate. In the

special case φ(x) = x−2r, λ = n−2r/(2r+1), which is the same as the rate obtained

in Cai and Yuan (2012) for the FLR. On the other hand, if φ(x) = e−x, we can

easily show that loglogn/n < λ < logn/n, an almost parametric rate. Finally,

for future reference, note that by the property assumed for φ, it is easy to see

that the λ obtained from (3.1) satisfies λ→ 0, λn→∞.

We now establish the lower bound. Obviously, the lower bound for the

special case that the true model is the FLR with Y = 〈β,X〉 + ε, where X is

a Gaussian process with a positive-definite kernel Γ, ‖K−1/2β‖ = 1, and ε ∼
N(0, σ2), provides a lower bound for an FSIR. Indeed, in this case, we can easily

see that E[X|Y ] 6= 0 (because (X,Y ) are jointly Gaussian and nondegenerate).

Thus, SY |X is spanned by a single element β, and T−1V ar(E[K1/2X|Y ]) has one

nonzero eigenvalue with the corresponding eigenfunction exactly K−1/2β. The

lower bound of the FLR has been considered by Cai and Yuan (2012). A slightly
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different construction is necessary here to deal with more general φ. The details

of the proof are contained in the Appendix.

Theorem 2. Consider the FLR with i.i.d. data: Yi = 〈β,Xi〉 + εi, for i =

1, . . . , n. Given a positive-definite kernel K and covariance operator Γ, suppose

the eigenvalues {sj} of T = K1/2ΓK1/2 satisfy sj = φ(j) for a positive, convex,

decreasing function φ, and let λ be defined by (3.1). Then, for any a > 0,

lim
a→0

lim
n→∞

inf
β̂

sup
β∈HK ,‖β‖HK

=1
P (E∗(〈β̂,X∗〉 − 〈β,X∗〉)2 > aλ) = 1,

where the infimum is taken over all possible estimators based on the training

data (Xi, Yi), for i = 1, . . . , n. If the response Yi is discretized to generate Ỹi, the

lower bound of course still holds for any estimator based on (Xi, Ỹi), because an

estimator based on (Xi, Ỹi) is also an estimator based on (Xi, Yi).

4. Numerical Results

4.1. Simulations

The purpose of this simulation is to compare the FPCA method of Ferré and

Yao (2003) and the RKHS method for the FSIR. Note that the methodological

transfer from the FLR to the FSIR results in a very similar improvement to the

FPCA-based approach. We use two simulation examples. The first simulation

setup is similar to that used in Cai and Yuan (2012). We consider the RKHS

with kernel

K(s, t) =
∑
j≥1

2

(jπ)4
cos(jπs) cos(jπt),

and, thus, HK consists of functions of the form

f(t) =
∑
j≥1

fj cos(jπt),

such that
∑

j j
4f2j <∞. In this case, we actually have ‖f‖2HK

=
∫

(f ′′)2.

We generate the data from the model

Yi = exp

{
〈β1, Xi〉

5

}
· 〈β2, Xi〉+ εi, i = 1, . . . , n,

where β1(t) =
∑50

j=1(4
√

2(−1)j/j2) cos(jπt) and β2(t) = −2
√

2 cos(πt) −
4
√

2 cos(2πt) + 9
√

2 cos(3πt). The noises are generated from N(0, σ2).

For the covariance kernel, we use

Γ(s, t) =
∑
j≥1

2θj cos(jπs) cos(jπt),
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where θj = (|j − j0| + 1)−2. When j0 = 1, the two kernels are perfectly aligned

in the sense that they have the same sequence of eigenfunctions when ordered

according to the eigenvalues. As j0 increases, the level of mis-alignment also

increases, and we expect the performance of the FPCA approach to deteriorate

with j0. We set n = 100, 200 and σ = 1, 3, yielding four scenarios for each

j0. As values of j0, we use j0 ∈ {1, 2, 3, 4, 5}. For the FPCA approach, the

tuning parameter is the truncation point, which we consider in the range from

2 to 25. For the RKHS approach, the tuning parameter is λ and we consider

λ ∈ exp{−20,−19, . . . , 0}. In the simulations, we assume the true sdr dimension

of two is known. The experiment for each scenario was repeated 100 times. In

all situations, the number of slices is set to 10.

In this simulation, the tuning parameters are chosen to yield the smallest

error in order to reflect the best achievable performance for both methods. Let

P and P̂ be the orthogonal projection operators onto the true sdr space and the

estimated sdr space, respectively. The error is measured by the operator norm of

P − P̂ , denoted by ‖P − P̂‖op, with smaller values indicating better estimation

performance. This distance is used in some previous works on sdr such as Zhu

et al. (2010). By Theorem I.5.5 of Stewart (1990), ‖P − P̂‖op is equal to the sine

of the largest canonical angle between the true and the estimated sdr spaces.

We also tried using the prediction risk, as used in the theoretical analysis in the

previous section; the results were similar and, thus, not reported.

The simulation results are summarized in Figure 1, which shows the errors

for both methods. Each panel corresponds to a pair of values of (n, σ), and

the curves show the averaged error over 100 replications for both methods as j0
increases (dashed curve for the FPCA approach, and solid curve for the RKHS

approach). The vertical bar shows ±2 standard errors, computed from the 100

replications.

Clearly, the performance of the RKHS approach is similar to that of the

FPCA approach for j0 = 1. As j0 increases, the performance of the FPCA

approach becomes much worse, while the errors for the RKHS approach remain

at the same level. In general, the difference in performance between these two

methods increases with j0.

In the second set of simulations, we investigate the case in which the eigen-

functions of the covariance and reproducing kernels are different. The data are

generated from Yi = 〈β1, Xi〉3 + 〈β2, Xi〉+ εi, where β1(t) = sin(πt+ 1), β2(t) =

cos(πt + 1), and ε ∼ N(0, 0.52). X is generated as a Brownian motion, with a

starting point randomly generated from a standard normal distribution. For the
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Figure 1. Errors for the FPCA method (dashed line) and the RKHS method (solid line)
for the first simulation example using the optimal tuning parameters.

RKHS approach, we set HK to be the second-order Sobolev space W2, as de-

fined on page 7 of Wahba (1990), with the reproducing kernel given by K(s, t) =

1 + st+
∫ 1
0 (t− u)+(s− u)+du. We set the sample sizes to n = 50, 100, 150, 200.

The simulation results are shown in Figure 2. Once again, the RKHS approach

is outperforms the PCA-based approach.

In general, the selection of the tuning parameter λ is a difficult task. When

the ultimate goal is prediction, we can use cross-validation (CV) to select λ.

More specifically, because we estimate two indices, a two-dimensional Gaussian

process regression is fitted (using the tgp package (Gramacy (2007)) in R) and

10-fold CV is used to choose λ. The results are shown as the dash-dotted line

in Figure 2. We see that CV does a reasonably good job and that the errors are

close to those when using the optimal λ.
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Figure 2. Errors for the FPCA method (dashed line) and the RKHS method (solid line)
for the second simulation example using the optimal tuning parameters. The dash-dotted
line shows the results using λ selected by CV.

4.2. Real data

We now turn to the prediction performance of the proposed method on a

real data set.

Canadian weather data. The daily weather data consist of daily tempera-

ture and precipitation measurements recorded by 35 Canadian weather stations.

Each observation consists of functional data observed on an equally spaced grid

of 365 points. We treat temperature as the independent variable, and our goal is

to predict the corresponding annual precipitation amount, given the temperature

measurements. We set the dependent variable as the log-transformed precipita-

tion. First, the number of indices need to be selected. For this, we use the

adaptive Neyman test proposed in (Li and Hsing (2010)), which is used for the

FSIR based on FPCA. Briefly, for any truncation level k, to test H0 : M ≤ M0

vs. Ha : M > M0, the test statistic is given by the sum of the eigenvalues of

an estimator of V ar(E[X|Y ]), except for the M0 largest eigenvalues. Intuitively,

this sum should be small if the null hypothesis M ≤ M0 is true. To remove the

effect of the choice of k, the adaptive Neyman test standardizes the test statis-

tics for different k and takes the maximum. The asymptotic distribution of the

test statistic is established in Li and Hsing (2010). Thus, we can sequentially

consider M0 = 0, 1, 2, . . . , and stop when we fail to reject the null. At a sig-
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Table 1. The estimated distance correlations for the estimated indices. The numbers in
brackets are standard errors, which are computable from the multiple folds of the CV
performed.

β1 β2 β3 β4
FPCA 0.821(0.040) 0.481(0.079) 0.459(0.055) 0.364(0.055)
RKHS 0.869(0.044) 0.752(0.108) 0.654(0.025) 0.594(0.100)

−
−

Figure 3. The estimated β1, . . . , β4 based on the RKHS approach. The first to the
fourth functions are shown as the thick solid, the thick dashed, the thin solid, and the
thin dashed line, respectively.

nificance level of 0.05, the number of indices selected is four for the data set.

Four eigenfunctions are then extracted in both the FPCA-based and the RKHS-

based approaches. Given the periodic nature of the data, we set HK = Wper
2 ,

the second-order Sobolev space of periodic functions on [0, 1]. The reproducing

kernel is given by K(s, t) = 1 +
∑

j≥1(2/(2πj)
4) cos(2πj(s − t)). After esti-

mating the four eigenfunctions, a four-dimensional Gaussian process regression

is fitted (using the tgp package (Gramacy (2007)) in R). We use leave-one-out

CV to determine the best tuning parameters for both methods. The average

mean squared leave-one-out CV error for the FPCA-based approach is 0.178,

and is 0.138 for the RKHS-based approach, with standard deviations of 0.037

and 0.022, respectively. Furthermore, we can use the distance correlation to

quantify the dependence between 〈β,X〉 and Y , which is a measure of indepen-

dence taking values in [0, 1]. The correlation is zero if and only if the two random

variables are independent. The distance correlations between 〈βj , X〉 and Y , for
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j = 1, . . . , 4, are reported in Table 1. As shown, the correlations for the RKHS-

based approach are larger, suggesting better performance. The four estimated

index function β1, . . . , β4 are shown in Figure 3, based on the proposed RKHS

approach. Based on the shapes, we see that β1 and β3 focus on the contrast

between the temperatures of the first half and the second half of a year, whereas

β2 concentrates on the summer months. Furthermore, β4 has a periodic nature,

taking larger values in both very hot and very cold months.

5. Conclusion

We have established the minimax rate of convergence for estimations in the

FSIR in the general setting where the covariance kernel Γ and the reproducing

kernel K are not aligned, as well as under a general assumption on the decay

rate of the eigenvalues of the operator T = K1/2ΓK1/2. Our simulations show

that as the degree of alignment of the two kernels decreases, the RKHS esti-

mator significantly outperforms the estimator based on FPCA. The application

to the weather data further demonstrates that the RKHS estimator has better

prediction accuracy.

We compared our results with those of Ferré and Yao (2003), who used the

slicing estimator for the conditional expectation E[X|Y ]. Ferré and Yao (2005)

proposed using the kernel estimator to estimate E[X|Y ], which we could do for

the RKHS approach proposed here as well. This is left for future work.

In general, choosing a smoothing parameter λ is difficult. Thus, in most

of the simulations, we choose the parameter that results in the smallest error.

This is fine if the purpose is to obtain the best achievable performance in the

simulations. This difficulty is not specific to the proposed method, with a similar

difficulty existing in the FPCA-based approach of Ferré and Yao (2003) owing

to the need to choose the truncation level k.

Given the well-known problem that the FSIR sometimes cannot cover the

entire sdr, it is natural to consider a functional version of other sdr approaches,

such as the sliced average variance estimation (Cook and Weisberg (1991)) or di-

rectional regression (Li and Wang (2007)). However, given the more complicated

form of these estimators, it may be challenging to demonstrate the convergence

rate. In addition, the FSIR is not posed in an optimization framework, unlike the

linear model (2.1). In the literature, an optimization approach is sometimes used

for sparse sdr (Li (2007); Chen, Zou and Cook (2010); Lin, Zhao and Liu (2016)),

and it might be more natural and interesting to extend the RKHS framework
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to these models. For example, by equation (7) of Lin, Zhao and Liu (2016),

if we define P as an the n × H matrix with entries Pih = I{Yi = yh}, η̂ as

the eigenfunction of V̂ ar(E[X|Y ]) associated with its largest eigenvalue µ̂, and

Ỹi = (H/(nµ̂))
∑

i′,h PihPi′h〈Xi′ , η̂〉, we can formulate the penalized function as

minβ∈HK

∑
i(Ỹi−

∫
Xiβ)2 +nλ‖β‖2HK

, in the same form as in (2.1). However, Ỹi
are no longer i.i.d. and studying the properties of this estimator is challenging.

We leave these topics for future research.

Supplementary Materials

The online Supplementary Materials contains proofs of technical results.

Acknowledgment

The authors sincerely thank the Editor Professor Hsin-Cheng Huang, an As-

sociate Editor, and two reviewers for their insightful comments, which led to sig-

nificant improvements in the manuscript. The research of Heng Lian is supported

by Hong Kong RGC general research fund 11301718, and by National Natural

Science Foundation of China (No. 11871411). The research of Guochang Wang

is supported by National Natural Science Foundation of China (No. 11501248)

and the Fundamental Research Funds for the Central Universities.

References
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Ferré, L. and Yao, A. (2005). Smoothed functional inverse regression. Statistica Sinica 15,

665–683.

Gramacy, R. (2007). TGP: an R package for Bayesian nonstationary, semiparametric nonlinear

regression and design by treed Gaussian process models. Journal of Statistical Software

19.

Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear

regression. The Annals of Statistics 35, 70–91.

Li, B. and Wang, S. (2007). On directional regression for dimension reduction. Journal of the

American Statistical Association 102, 997–1008.

Li, K. (1991). Sliced inverse regression for dimension reduction. Journal of the American Sta-

tistical Association 86, 316–327.

Li, L. (2007). Sparse sufficient dimension reduction. Biometrika 94, 603–613.

Li, Y. and Hsing, T. (2010). Deciding the dimension of effective dimension reduction space for

functional and high-dimensional data. The Annals of Statistics 38, 3028–3062.

Lin, Q., Zhao, Z. and Liu, J. S. (2016). Sparse sliced inverse regression for high dimensional

data. arXiv preprint arXiv:1611.06655.

Raskutti, G., Wainwright, M. J. and Yu, B. (2012). Minimax-optimal rates for sparse additive

models over kernel classes via convex programming. Journal of Machine Learning Research

13, 389–427.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian Processes for Machine Learning. MIT

press Cambridge.

Stewart, G. W. (1990). Matrix Perturbation Theory. Academic Press, Boston.

Wahba, G. (1990). Spline Models for Observational Data. Society for Industrial and Applied

Mathematics, Philadelphia, PA.

Yao, F., Lei, E. and Wu, Y. (2015). Effective dimension reduction for sparse functional data.

Biometrika 102, 421–437.

Yao, F., Mueller, H. G. and Wang, J. L. (2005). Functional linear regression analysis for longi-

tudinal data. The Annals of Statistics 33, 2873–2903.

Yin, X. and Cook, R. (2002). Dimension reduction for the conditional kth moment in regression.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64, 159–175.

Zhu, L. and Fang, K. (1996). Asymptotics for kernel estimate of sliced inverse regression. The

Annals of Statistics 24, 1053–1068.
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