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Abstract: We propose smoothing spline mixed-effects density models for nonpara-

metric estimations of density and conditional density functions with clustered data.

The random effects in a density model introduce within-cluster correlation, enabling

us to borrow strength across clusters by shrinking cluster-specific density functions

to the population average, where the amount of shrinkage is decided by the data.

Estimations are carried out using the penalized likelihood and are computed using

a Markov chain Monte Carlo stochastic approximation algorithm. We derive an

approximate cross-validation estimate of the aggregated Kullback–Leibler loss for

the selection of the smoothing parameters. Our simulation study indicates that the

proposed estimation method performs well. We apply our methods to investigate

the evolution of hemoglobin density functions over time in response to guideline

changes on anemia management for dialysis patients.
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1. Introduction

Density estimation plays a fundamental role in many areas, including statis-

tics and machine learning. Estimated density functions are useful for model

building and diagnostics, inferences, predictions, and clustering. Many nonpara-

metric methods have been developed to estimate the density of independent data

(Silverman (1984); Gu (2013)).

A central problem in statistics is the development of methods to assess the

relationship between a dependent variable and one or more independent vari-

ables. A regression analysis usually focuses on univariate characteristics, such as

the conditional expectation or quantile of the dependent variable, given the inde-

pendent variables. Typically, the family of conditional distributions is assumed

to be known (e.g., Gaussian). In some applications, it is difficult, if not impossi-

ble, to specify a family of distributions, and the goal is to investigate covariate
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effects on the whole conditional density function. A conditional density provides

the most informative summary of the relationship between independent and de-

pendent variables. For example, it allows us to examine the overall shape and to

summarize characteristics such as quantiles and modes. Estimated conditional

density functions may be used for further analysis, including inferences, pre-

dictions, clustering, and functional data analyses (Petersen and Müller (2016)).

Many nonparametric methods have been developed to estimate the conditional

density of independent data. See for example, Hall, Racine and Li (2004), Fan

and Yim (2004), Dunson, Pillai and Park (2007), Efromovich (2007), Gu (2013),

and the references therein.

Clustered data arise in areas such as agriculture, pharmacokinetics, epidemi-

ology, medicine, and social science. Observations from the same cluster are usu-

ally correlated, and there is a large body of literature on modeling conditional

means using random effects (Wu and Zhang (2006); Wang (2011)). We are inter-

ested in estimating the density or conditional density for a population, as well as

for each cluster, in order to investigate the covariate effects on the density func-

tions and the variations between clusters. Despite its importance, there has been

little research on density and conditional density estimations for clustered data.

One exception is the study by Rodriguez, Dunson and Taylor (2009), with inter-

esting applications to DNA damage and repair. Rodriguez, Dunson and Taylor

(2009) used a finite mixture of Gaussian distributions to approximate the density,

and a hierarchical model of mixture weights to assess the heterogeneity across

clusters and covariate effects. Note that this is a parametric model because the

number of mixtures is finite. One needs to specify hyperparameters, which may

become difficult when the number of mixtures is not small. To the best of our

knowledge, no similar nonparametric method has been developed. Therefore, we

propose a general and flexible family of nonparametric mixed-effects models for

density and conditional density functions with clustered data.

The remainder of the article is organized as follows. In Section 2, we intro-

duce nonparametric mixed-effects density and conditional density models. Sec-

tions 3 and 4 present the procedures used to estimate and select the smoothing

parameters. Section 5 describes our simulation studies. We apply the proposed

methods to investigate the changes in hemoglobin (Hb) distributions over time

in Section 6. Section 7 concludes the paper.
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2. Nonparametric Mixed-Effects Density Models (NMEDMs)

2.1. Density models for clustered data

Let Yij , for i = 1, . . . ,m and j = 1, . . . , ni, be the jth observation from

cluster i, where the domain of Yij is an arbitrary set Y. Assume that the observed

clusters form a random sample from a population of clusters, denoted as Ω, with

sampling distribution P . Denote f(y|ω) as the cluster-specific density function,

where ω is a random sample from Ω. Consequently, f(y|ω) is a random function

on the product domain Y×Ω. Denote the observed clusters as ω1, . . . , ωm, which

are realizations of the random variable ω. For a given ωi, we assume that Yij
i.i.d.∼

f(y|ωi) and that observations from different clusters are mutually independent.

To enforce the conditions of f > 0 and
∫
Y f = 1 for a density function, throughout

this article, we use the logistic transformation, f = exp(g)/
∫
Y exp(g), where g is

referred to as the logistic transformation of f (Gu (2013)).

A NMEDM for clustered data assumes

g(y, ωi) = η(y) + bi(y), (2.1)

where η(y) is the fixed effect and bi(y) is the random effect. We assume that

η(y) ∈ Hη, where Hη is a reproducing kernel Hilbert space (RKHS) and bi(y)

are independent Gaussian processes with mean zero and covariance function

σ(s, t). Different methods may be used to construct Hη and σ(s, t). Here we

assume that Hη and σ(s, t) are constructed using a smoothing spline ANOVA

(SS ANOVA) decomposition (Wang (2011)). Specifically, we assume that Hη =

H0 ⊕H1 ⊕ · · · ⊕ Hq, where H0 is a finite-dimensional space of all functions that

are not penalized, H1, . . . ,Hq are orthogonal RKHSs, and bi(y) collects some of

the random components in the SS ANOVA decomposition.

Details of SS ANOVA decompositions for general tensor products of RKHSs

can be found in Chapters 4 and 9 of Wang (2011). We now use an example to

illustrate the construction of an NMEDM based on an SS ANOVA decomposition

and compare it with the classical one-way random effect model. Suppose Y = R
and that we want to model g as a function of y using the thin-plate spline model

space Hy = W 3
2 (R)	 {1}, where

W 3
2 (R) =

{
h :

∫ ∞
−∞

(
h(3)(y)

)2
dy <∞

}
. (2.2)

The constant functions have been removed from W 3
2 (R) for identifiability (Gu

(2013)). Hy is an RKHS, which can be decomposed into Hy = H0y⊕H1y, where

H0y = span{ϕ2(y), ϕ3(y)}, ϕ2 and ϕ3 are the linear and quadratic basis func-



400 CHIU, LIU AND WANG

tions, respectively, and H1y is the orthogonal complement of H0y. Let Py be the

projection operator onto H0y, defined under a suitably defined inner product (see

Gu (2013) for details). Let Pωg =
∫

Ω g(y, ω)dP , which computes the population

average with respect to the sampling distribution. We have the following SS

ANOVA decomposition:

g(y, ω) = [Py + (I −Py)][Pω + (I −Pω)]g
a

= gpf (y) + gsf (y) + gpr(y, ω) + gsr(y, ω),

(2.3)

where I is the identity map, gpf ∈ H0y is a quadratic polynomial corresponding

to the parametric fixed main effect of the variable y, gsf is the nonparametric

fixed main effect of y, and gpr and gsr are the parametric and nonparametric

random effects, respectively. The letters “p” and “s” in the subscripts represent

the parametric components in space H0y and the smooth components in space

H1y = W 3
2 (R) 	 {1, ϕ2(y), ϕ3(y)}, respectively. The letters “f” and “r” in the

subscripts represent the fixed and random effects, respectively. Compared with

the NMEDM (2.1), we have η(y) = gpf (y) + gsf (y), H0 = H0y, and H1 = H1y.

Furthermore, assuming that gpr(y, ωi) = u1iϕ2(y) + u2iϕ3(y), u1i
i.i.d.∼ N(0, σ2

1),

u2i
i.i.d.∼ N(0, σ2

2), gsr(y, ωi) are independent Gaussian processes with mean zero

and covariance function σ2
3R

1(s, t), where R1(s, t) is the reproducing kernel (RK)

of H1, and u1i, u2i, and gsr(y, ωi) are mutually independent, then bi(y) =

gpr(y, ωi) + gsr(y, ωi) and σ(s, t) = σ2
1ϕ2(s)ϕ2(t) + σ2

2ϕ3(s)ϕ3(t) + σ2
3R

1(s, t).

For simplicity of notation, we assume that u1i and u2i are mutually indepen-

dent. In practice, a bivariate Gaussian distribution may be assumed for the joint

distribution of (u1i, u2i).

The classical one-way random-effect model for clustered data described in

this section assumes that

Yij = µ+ αi + εij , (2.4)

where αi
i.i.d.∼ N(0, σ2

a), εij
i.i.d.∼ N(0, σ2), and αi and εij are mutually independent.

Then, up to a constant independent of y, the logistic density of Yij conditional

on the random effects αi, has the form (−y2/2 + µy)/σ2 + αiy/σ
2. Compared

with the SS ANOVA decomposition (2.3), the one-way random-effect model is a

special case, with gpf (y) ∼= (−y2/2 + µy)/σ2, gpr(y, ωi) ∼= αiy/σ
2, and gsf (y) =

gsr(y, ω) = 0, where ∼= denotes equality up to a constant.

2.2. Conditional density models for clustered data

Let (Xij , Yij), for i = 1, . . . ,m and j = 1, . . . , ni, be the jth observation



DENSITY ESTIMATION FOR CLUSTERED DATA 401

from cluster i, where the domains of Xij and Yij are arbitrary sets X and Y,

respectively. Again, assume that the observed clusters are a random sample from

a population of clusters, denoted as Ω, with sampling distribution P . Denote

f(y|x, ω) as the cluster-specific density function of Y conditional on X = x,

where ω is a random sample from Ω. Denote the observed clusters as ω1, . . . , ωm,

which are realizations of the random variable ω. For a given ωi, we assume that

Yij |Xij = x
i.i.d.∼ f(y|x, ωi) and observations from different clusters are mutually

independent. Let g(y, x, ωi) be the logistic transformation of f(y|x, ωi).
A nonparametric mixed-effects conditional density model (NMECDM) as-

sumes that

g(y, x, ωi) = η(y, x) + bi(y, x), (2.5)

where η(y, x) denotes the fixed effects and bi(y, x) is the random effect. We

assume that η(y, x) ∈ Hη = H0⊕H1⊕· · ·⊕Hq, and that bi(y, x) are independent

Gaussian processes with mean zero and covariance function σ(s, t|x).

In the Supplementary Material S1, we give an example illustrating the con-

struction of an NMECDM based on an SS ANOVA decomposition, and compare

the resulting model with the SS ANOVA mixed-effects regression models. In the

example, we considered the thin-plate spline space (2.2) because its null space

consists of quadratic polynomials that correspond to the logistic transformation

of Gaussian density functions. The SS ANOVA decomposition may be derived

for tensor products of general RKHSs (Gu (2013); Wang (2011)). Additional

examples of SS ANOVA decompositions logistic transformations of density func-

tions with clustered data can be found in Section 5 and in Chiu (2015). Similarly

to the classical ANOVA, the SS ANOVA produces a hierarchical structure that

facilitates model selection and interpretation. Note that some of the components

(e.g., high-order interactions) in the SS ANOVA decomposition may be dropped

to overcome the curse of dimensionality.

3. Estimation

We describe our estimation procedure for NMECDM (2.5) only, because the

estimation for NMEDM (2.1) is similar, but simpler.

3.1. Penalized likelihood and its approximate solution

Denote the Gaussian stochastic process of the random effect for cluster i as

Bij = {bi(y,Xij), y ∈ Y} and Bi as the collection of Bij , for j = 1, . . . , ni. Let

Y i = (Yi1, . . . , Yini)
T . The log likelihood
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l(ζ, η) =

m∑
i=1

log EBi
fY i|Bi

(Y i), (3.1)

where

fY i|Bi
(Y i) =

ni∏
j=1

exp{η(Yij , Xij) + bi(Yij , Xij)}∫
Y exp{η(y,Xij) + bi(y,Xij)}dy

, (3.2)

is the conditional density of Y i, and ζ collects all parameters related to the

random effects Bi.

Let z = (y, x) and Zij = (Yij , Xij). The model space for η is H0 ⊕ H1 ⊕
· · · ⊕ Hq, where H0 = span{φ1(z), . . . , φp(z)} contains those functions that are

not penalized, and Hj for j = 1, . . . , q are RKHSs with RKs Rj . We estimate ζ

and η by minimizing the penalized likelihood

PL = − 1

N
l(ζ, η) +

1

2

q∑
j=1

λj‖Pjη‖2, (3.3)

where N =
∑m

i=1 ni, Pj is the projector onto the space Hj , and λj are smoothing

parameters. Denote λj = λ/θj . Define H∗1 = ⊕qj=1Hj and a new squared norm

on H∗1 as
∑q

j=1 θ
−1
j ‖P jf‖2. Then, the RK of H∗1 under the new norm is R∗1 =∑q

j=1 θjR
j (see Wang (2011) for details). The penalized likelihood (3.3) reduces

to

PL = − 1

N
l(ζ, η) +

λ

2
‖P ∗1 η‖2, (3.4)

where P ∗1 =
∑q

j=1 Pj . We minimize the PL (3.4) in the following finite-dimensional

data-adaptive space:

H∗η = H0 ⊕ span{R∗1(U l, ·), l = 1, . . . , L}, (3.5)

where {U l, l = 1, . . . , L} is a random subset of {Zij , i = 1, . . . ,m; j = 1, . . . , ni}.
Gu and Wang (2003) suggested that an L close to 10N2/9 is sufficient, in the sense

that the estimates in the whole model space Hη and the subspace H∗η have the

same convergence rate. Let ξl(z) = R∗1(U l, z). The minimizer of the PL (3.4) in

H∗η has the form (Gu and Wang (2003))

η̂(z) =

p∑
ν=1

dνφν(z) +

L∑
l=1

clξl(z). (3.6)

Let c = (c1, . . . , cL)T and d = (d1, . . . , dp)
T . Substituting (3.6) into (3.4), we

have

PL(ζ, c,d) = − 1

N
l(ζ, η) +

λ

2
cTQθc, (3.7)

where Qθ is an L× L matrix with the (i, j)th entry equal to R∗1(U i,U j).
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3.2. Markov chain monte carlo (MCMC) stochastic approximation

The log likelihood function (3.1) involves expectations with respect to the

random effects that do not have closed forms. We use the MCMC method to

approximate the expectations with respect to the random effects. To make our

computational procedure converge to the expected fixed points, we adopt the

stochastic approximation algorithm (SAA), which is described in this section.

See Gu and Kong (1998), Gu and Zhu (2001) and, Jiang, Karcher and Wang

(2011) for details.

Consider solving the following equation

EeH(β, e) = 0, (3.8)

where e is a random vector with a density function fe. Let I(β, e) = −∂H(β, e)/

∂β. At iteration k, an MCMC sample of size mk, with equilibrium distribution

fe, is drawn and denoted as e
(1)
k , . . . , e

(mk)
k . Let H̄k =

∑mk

j=1H(βk−1, e
(j)
k )/mk

and Īk =
∑mk

j=1 I(βk−1, e
(j)
k )/mk. Then, the MCMC SAA updates the parameter

vector β and a matrix Γ, as follows:

Γk = (1− γk)Γk−1 + γkĪk, βk = βk−1 + γkΓ
−1
k H̄k, (3.9)

where Γk acts as a proxy for the Hessian matrix, and γk is the step-size of the

parameter updates. By increasing the MCMC sample size mk, decreasing the

step-size γk, or a combination of the two, the variation in β decreases as the

number of iterations increases. It has been shown that, under some regularity

conditions, βk converges to the solution of (3.8) almost surely (Gu and Kong

(1998)) when mk and γk satisfy the following conditions: (a) γk ≤ 1, for all

k; (b)
∑∞

k=1 γk = ∞; (c)
∑∞

k=1 γ
1+ε
k /mk < ∞, for some ε ∈ (0, 1); and (d)∑∞

k=1 |γk/mk − γk−1/mk−1| <∞.

3.3. Estimation of η

In this subsection, we apply the MCMC SAA to compute c and d with a

fixed ζ. Our goal is to find the values of c and d that minimize the PL (3.7). It

is not difficult to show that

∂PL(ζ, c,d)

∂(cT ,dT )T
= − 1

N

m∑
i=1

EBi|Y i

{
∂ log fY i|Bi

(Y i)

∂(cT ,dT )T

}
+
λ

2

∂cTQθc

∂(cT ,dT )T
.

Denote the above quantity as EeH(c,d,B), where B and Y collect all Bi and

Y i respectively, e = B|Y , and
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H(c,d,B) = − 1

N

m∑
i=1

∂ log fY i|Bi
(Y i)

∂(cT ,dT )T
+
λ

2

∂cTQθc

∂(cT ,dT )T
.

Let I(c,d,B) = −∂H(c,d,B)/∂(cT ,dT )T . It can be shown that (see the Sup-

plementary Material S2)

H(c,d,B) =

[
−N−1

∑m
i=1 Λi1ni + λQθc

−N−1
∑m

i=1 Si1ni

]
, (3.10)

and

I(c,d,B) =

[
N−1

∑m
i=1 Vi,ξξ + λQθ N

−1
∑m

i=1 Vi,ξφ
N−1

∑m
i=1 Vi,φξ N−1

∑m
i=1 Vi,φφ

]
, (3.11)

where Λi is an L × ni matrix with the (l, j)th entry equal to ξl(Yij , Xij) −
EY |Bi

ξl(Y,Xij), Si is a p×ni matrix with the (ν, j)th entry equal to φν(Yij , Xij)−
EY |Bi

φν(Y,Xij), 1ni is an ni-vector of ones, Vi,ξξ is an L × L matrix with the

(k, l)th entry equal to
∑ni

j=1 CovY |Bi
(ξk(Y , Xij), ξl(Y,Xij)), Vi,φφ is a p×pmatrix

with the (ν, κ)th entry equal to
∑ni

j=1 CovY |Bi
(φν(Y , Xij), φκ(Y,Xij)), Vi,ξφ is an

L×p matrix with the (l, ν)th entry being
∑ni

j=1 CovY |Bi
(ξl(Y , Xij), φν(Y,Xij)),

and Vi,φξ = V T
i,ξφ.

At iteration k of the MCMC SAA, let B
(1)
k , . . . ,B

(m1k)
k be an MCMC sam-

ple of size m1k generated from fB|Y . With fixed ζ and the current estimates

of c and d denoted as ck−1 and dk−1, respectively, for any B
(ν)
k , the conditional

distribution of Y |B(ν)
k is known (more precisely, Y |Xij ,B

(ν)
k , where the condi-

tion on Xij is omitted for simplicity of notation). Therefore, the conditional

expectation E
Y |B(ν)

k

a(Y ) and conditional covariance Cov
Y |B(ν)

k

(a(Y ), b(Y )) can

be calculated for any functions a and b. We compute the conditional expecta-

tions and conditional covariances in H and I, and denote the resulting quantities

as H(ck−1,dk−1,B
(ν)
k ) and I(ck−1,dk−1,B

(ν)
k ), respectively. We then compute

H̄k =
∑m1k

ν=1H(ck−1,dk−1,B
(ν)
k )/m1k and Īk =

∑m1k

ν=1 I(ck−1,dk−1,B
(ν)
k )/m1k.

Following (3.9), we update c, d, and Γ as follows:

Γk = (1− γk)Γk−1 + γkĪk,

[
ck
dk

]
=

[
ck−1

dk−1

]
+ γkΓ

−1
k H̄k. (3.12)

3.4. Estimation of ζ and the complete algorithm

We now apply the MCMC SAA to compute ζ with fixed η. Because the

penalty term in the the PL (3.7) does not depend on ζ, it is not difficult to show

that ∂PL(ζ, c,d)/∂ζ = EB|Y H(ζ,B), whereH(ζ,B) = −N−1∂ log pB(B; ζ)/
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∂ζ and pB(B; ζ) is the joint density function of B. It is then straightforward to

apply the MCMC SAA to update ζ.

We now have the following complete algorithm:

1. Provide initial values c(0), d(0), and ζ(0);

2. At iteration k,

(a) with fixed ζ(k−1), draw an MCMC sample of size m1k and update c

and d using equation (3.12);

(b) with fixed updated estimates c(k) and d(k), draw another MCMC sam-

ple of size m2k and update ζ, as discussed above;

3. Repeat Step 2 until convergence.

Methods for deriving the initial values and a stopping criterion can be found

in Chiu (2015). The MCMC procedure is discussed in the Supplementary Ma-

terial S3. Note that we allow the MCMC sample sizes in (a) and (b) to be

different. We considered three MCMC SAA schemes, as in Jiang, Karcher and

Wang (2011): (i) γk = 1 and mjk = mj0 + k2; (ii) γk = 1/k and mjk = mj0;

and (iii) γk = 1/
√
k and mjk = mj0 + k, where j = 1, 2, and m10 and m20 are

the starting MCMC sample sizes for steps (a) and (b), respectively. Simulations

indicate that the scheme (i) is more stable and efficient. Therefore, we use this

scheme in our simulations and application.

The estimate of the population density, f(y|x) = exp{η(y, x)}/
∫
Y exp{η(t,

x)}dt, is f̂(y|x) = exp{η̂(y, x)}/
∫
Y exp{η̂(t, x)}dt. For any fixed x ∈ X , de-

note Bi(x) = {bi(y, x), y ∈ Y}. Conditional on X = x, let b
(l)
i (y, x), for

l = 1, . . . ,M , be an MCMC sample of size M generated from fBi(x)|Y , with

η and ζ fixed at their estimates, where M is a sufficiently large number. We esti-

mate the random effect bi(y, x) in (2.5) by b̂i(y, x) =
∑M

l=1 b
(l)
i (y, x)/M , and esti-

mate the cluster-specific density function f(y|x, ωi) by f̂(y|x, ωi) = exp{η̂(y, x)+

b̂i(y, x)}/
∫
Y exp{η̂(t, x) + b̂i(t, x)}dt.

4. Selection of Smoothing Parameters

The smoothing parameters λj , for j = 1, . . . , q, are crucial to the performance

of the estimation. In this section, we develop a data-driven approach to choose

the smoothing parameters. The Kullback–Leibler (KL) loss is used to evaluate

the quality of a density estimate, and is estimated using cross-validation.
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Let λ = (λ1, . . . , λq). Denote the estimate (3.6) as ηλ, where the dependence

on the smoothing parameters is expressed explicitly. Let Bωx = {bω(y, x), y ∈ Y}
be a Gaussian stochastic process, given ω and x. Denote the true and esti-

mated cluster-specific conditional densities as f(y|x, ω) = exp{η(y, x)+bω(y, x)}/∫
Y exp{η(t, x)+bω(t, x)}dt and fλ(y|x, ω) = exp{ηλ(y, x)+bω(y, x)}/

∫
Y exp{ηλ

(t, x) + bω(t, x)}dt, respectively. We define the aggregated KL loss of fλ(y|x, ω)

as

AKL(f, fλ) =

∫
Ω

∫
X
f(x)EBωx

{∫
Y
f(y|x, ω) log

(
f(y|x, ω)

fλ(y|x, ω)

)
dy

}
dxdP,

(4.1)

where f(x) is the density function of X, and EBωx is the expectation with re-

spect to the Gaussian process, given ω and x. After removing terms that are

independent of the estimate fλ, the aggregated relative KL loss is

ARKL(f, fλ) =

∫
Ω

∫
X
f(x)EBωx

{∫
Y
f(y|x, ω) log

(
1

fλ(y|x, ω)

)
dy

}
dxdP

=

∫
Ω

∫
X
f(x)EBωx

{
log

∫
Y

exp[ηλ(t, x) + bω(t, x)]dt

}
dxdP

−
∫

Ω

∫
X
f(x)EBωx

{∫
Y
f(y|x, ω)ηλ(y, x)dy

}
dxdP. (4.2)

Ideally, we want to select the smoothing parameters λ that minimize (4.1). This

is equivalent to minimizing (4.2), because the aggregated KL loss and the relative

aggregated KL loss differ only by a constant, independent of λ. However, depend-

ing on the unknown density functions f(x) and f(y|x, ω), ARKL(f, fλ) cannot

be calculated directly. Using empirical distributions, the first term of (4.2) can

be approximated by N−1
∑m

i=1

∑ni
j=1 EBij log

∫
Y exp{ηλ(y,Xij) + bij(y,Xij)}dy,

where EBij is the expectation with respect to the Gaussian process, given ω =

ωi, and X = Xij . The second term in (4.2) can be approximated by N−1∑m
i=1

∑ni
j=1 η

[(i,j)]

λ
(Yij , Xij), where η

[(i,j)]

λ
(Yij , Xij) is the estimate that minimizes

the delete-one-observation version of (3.7). Hence, we may select the smoothing

parameters by minimizing the following cross-validation estimate of (4.2):

CV (λ) =
1

N

m∑
i=1

ni∑
j=1

EBij log

∫
Y

exp{ηλ(y,Xij) + bij(y,Xij)}dy

− 1

N

m∑
i=1

ni∑
j=1

η
[(i,j)]

λ
(Yij , Xij). (4.3)

The computation of η
[(i,j)]

λ
(Yij , Xij) is costly. Using a quadratic approxima-
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tion, (4.3) can be approximated by

CVα(λ) =
1

N

m∑
i=1

ni∑
j=1

EBij log

∫
Y

exp{ηλ(y,Xij) + bij(y,Xij)}dy

− 1

N

m∑
i=1

ni∑
j=1

ηλ(Yij , Xij) + α
tr(P⊥1 R̆

TΠ−1R̆TP⊥1 )

N(N − 1)
, (4.4)

where a constant α is added to avoid potential under-smoothing. Gu (2013,

Chap. 7) suggests using an α-value of about 1.4 for various density estimation

problems. The derivation of the approximation (4.4) and the definitions of matri-

ces P⊥1 , R̆, and Π can be found in the Supplementary Material S4. The optimal

smoothing parameters are chosen to minimize of the approximated CV score

(4.4).

5. Simulations

We conduct simulations to evaluate the proposed estimation method and to

compare the estimates of cluster-specific conditional densities from an NMECDM

with those from separate fits. We present the simulation results for the condi-

tional density models only. The results for the density models are similar, and

can be found in Chiu (2015).

We set Y = [0, 1] and consider two simulation scenarios for x: discrete, with

x = 0.25 or x = 0.5 representing two groups, and continuous, with x taking six

equally spaced values in [0.1, 0.9] (i.e., x = 0.1 + 0.16× (k− 1), for k = 1, . . . , 6).

For the discrete case, we consider the two-dimensional Euclidean space R2

as the model space for x, and the Soblev space for cubic splines

W 2
2 [0, 1] =

{
f : f and f ′ are absolutely continuous,

∫ 1

0
(f (2))2dt <∞

}
as the model space for y. The SS ANOVA decomposition leads to the following

NMECDM:

g(y, x, ω) = d2(y − 0.5) + glsf (y, x) + gscf (y) + gssf (y, x)

+b2(ω)(y − 0.5) + gscr(y, ω),
(5.1)

where the first four terms come from the tensor product of W 2
2 [0, 1] ⊗ R2, with

terms independent of y removed for identifiability. The letters "c", "l", and

"s" in the subscripts represent the constant, linear, and smooth components,

respectively, b2(ω) are independent and identical distributed (i.i.d.) N(0, σ2
1),

gscr(y, ω) are i.i.d. Gaussian stochastic processes with mean zero and covari-

ance function Cov(gscr(y1, ω), gscr(y2, ω)) = σ2
2R(y1, y2), where R is the RK of
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Figure 1. Typical fits of the cluster-specific conditional density functions when x is
discrete and m = 100. Three clusters are selected randomly. The solid curves are
the true cluster-specific conditional densities. The dashed curves are fits based on the
NMECDM (5.1). The dotted curves are separate cubic spline estimates based on each
cluster’s data only.

W 2
2 [0, 1]	 {1, y − 0.5}, and b2(ω) and gscr(y, ω) are mutually independent.

For the continuous case, we consider the following NMECDM:

g = d2(y − 0.5) + d3(x− 0.5)(y − 0.5) + glsf (y, x)

+gscf (y) + gslf (y, x) + gssf (y, x) + b2(ω)(y − 0.5) + gscr(y, ω),
(5.2)

where the first six terms come from the tensor product of W 2
2 [0, 1] ⊗W 2

2 [0, 1],

with terms independent of y removed for identifiability, b2(ω) are i.i.d. N(0, σ2
1),

gscr(y, ω) are i.i.d. Gaussian stochastic processes with mean zero and covariance

function Cov(gscr(y1, ω), gscr(y2, ω)) = σ2
2R(y1, y2), and b2(ω) and gscr(y, ω) are

mutually independent.

For both cases, we set the fixed effect in the NMECDM (2.5) η(y, x) =

−18(y−x)2. For the discrete case, this corresponds to setting d2 = 0, glsf (y, x) =

36(x−0.5)(y−0.5), gscf (y) = −18y2 +18y−3, and gssf (y, x) = 0 in model (5.1).

For the continuous case, this corresponds to setting d2 = 0, d3 = 36, gslf (y, x) =

glsf (y, x) = gssf (y, x) = 0, and gscf (y) = −18y2 + 18y − 3 in model (5.2). There

are two random effects, b2(ω) and gscr(y, ω), for both cases, generated using

σ2
1 = 5 and σ2

2 = 50.
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We consider three sizes of m: m = 100, m = 200, and m = 600. For

each cluster i, ni is the nearest integer of a random number generated from a

normal distribution with mean 10 and standard deviation 3. We fit models (5.1)

and (5.2) for the discrete and continuous cases, respectively. All simulations are

replicated 100 times.

We adopt the MCMC SAA scheme (i) with m10 = 50 to estimate the fixed

effects, and m20 = 500 to estimate the variance components of the random effects.

The burn-in phase is chosen as the first 200 MCMC samples, and thinning is

performed every 10 MCMC samples. The estimates of the fixed effects converge

much faster than those of the variance components. Specifically, they usually

converge within 10 iterations. To expedite the computation, we fix the estimates

of c and d after 10 iterations and let the algorithm run until σ̂2
1 and σ̂2

2 converge.

The stopping criterion is defined as the relative difference between the consecutive

estimates σ̂
2(j)
i at iteration j and σ̂

2(j−1)
i at iteration j − 1; specifically,

δ =

√
(σ̂

2(j)
1 − σ̂2(j−1)

1 )2 + (σ̂
2(j)
2 − σ̂2(j−1)

2 )2√
σ̂

4(j−1)
1 + σ̂

4(j−1)
2

.

The iterations stop if δ is less then 5e-4.

To evaluate the estimation of variance of the components, we compute the

means and MSEs of σ̂2
1 and σ̂2

2. To evaluate the estimation of the population

conditional density, we compute the empirical aggregated KL distances

AKL(f(y|x), f̂(y|x)) =
1

N

m∑
i=1

ni∑
j=1

log

(
f(Yij |Xij)

f̂(Yij |Xij)

)
f(Yij |Xij).

To evaluate the estimation of cluster-specific conditional densities, we compute

the empirical aggregated KL distances

AKL(f(y|x, ω), f̂(y|x, ω))

=
1

N

m∑
i=1

ni∑
j=1

log

(
f(Yij |Xij , ωi)

f̂(Yij |Xij , ωi)

)
f(Yij |Xij , ωi).

For comparison, we compute cubic spline conditional density estimates for each

cluster separately, using the sscden function in theR package gss (Gu (2014)), and

the empirical aggregated KL distances between these cluster-specific conditional

densities and the truth.

In Figures A.1 and A.2 of the Supplementary Material, we show the true

population density functions and three estimates for discrete and continuous x,

respectively, when m = 200. We observe that the population density functions
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Table 1. Summary of simulation results. AKL(f, f̂) represents the average of the AKL

loss between the true population density function f and its estimate f̂ based on an
NMECDM. AKL1 represents the average of the AKL losses between each cluster’s density
and its estimate based on an NMECDM. AKL2 represents the average of the AKL losses
between each cluster’s density and its cubic spline estimate using data from this cluster
only.

Covariate x Quantities m = 100 m = 200 m = 600

AKL(f, f̂) 0.0027 0.0018 0.0006
Mean (MSE) of σ̂2

1 4.38 (1.49) 4.72 (0.51) 4.83 (0.33)
Discrete Mean (MSE) of σ̂2

2 48.59 (16.22) 49.84 (4.92) 49.70 (2.98)
AKL1 0.0628 0.0627 0.0613
AKL2 0.1284 0.1299 0.1224

AKL(f, f̂) 0.0027 0.0019 0.0011
Mean (MSE) of σ̂2

1 4.73 (1.05) 4.92 (0.39) 5.05 (0.14)
Continuous Mean (MSE) of σ̂2

2 49.43 (19.13) 49.74 (4.55) 49.68 (4.39)
AKL1 0.0332 0.0327 0.0214
AKL2 0.0709 0.0717 0.0711

are estimated accurately. For three randomly selected clusters, Figure 1 shows

the true cluster-specific density functions and estimates based on model (5.1),

and the cubic spline estimates based on each cluster’s data when x is discrete and

m = 100. The cluster-specific density estimates from the NMECDM are shrink

toward the population conditional density. Table 1 indicates that, by borrow-

ing information across clusters, the cluster-specific density estimates from the

NMECDM have about half the AKL losses of the estimates based on individual

data. Table 1 also indicates the convergence of the estimates of the variance com-

ponents as m increases, although the convergence is slow. Overall, the proposed

estimation method performs well. The estimation procedure is computationally

intensive. When the number of observations is large, as in the real-data anal-

ysis in the following section, one may use the divide-and-recombine approach

(Cleveland and Hafen (2014)) to reduce the computational burden.

6. Evolution of Hb Distributions Over Time

Anemia is prevalent in the majority of hemodialysis patients and its manage-

ment is a major challenge. A central aim of anemia management is to maintain

patients’ Hb levels consistently within a target range. Both low and high Hb

are associated with increased risk of mortality and hospitalization. However, the

optimal target range has been the subject of much debate, and anemia man-
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agement guidelines and protocols have changed in recent years (Spiegel et al.

(2010); Valliant and Hofmann (2013)). The current optimal range for Hb rec-

ommended by the Food and Drug Administration, is 10–12 g/dL (Spiegel et al.

(2010)). The Centers for Medicare and Medicaid Services (CMS) introduced a

Quality Incentive Program (QIP) with anemia management as one of the four

outcomes, measured as the percentage of patients in a dialysis facility with Hb

greater than 12 g/dL. Facilities that do not meet these standards have their

payments reduced by up to 2%. In addition to the optimal range, greater Hb

variation is also associated with higher mortality (Yang et al. (2007)). Spiegel et

al. (2010) noted that the “Hb distribution curve showed a departure from nor-

mality in terms of skewness,” and that is of interest to investigate how the mean,

standard deviation, skewness, and percentage of Hb over/under a certain limit

change over time. Therefore, it is important to investigate the whole distribution

of Hb and its evolution over time in response to guideline changes without para-

metric assumptions about the distribution. Fitting a density function at each

month, previous approaches tend to ignore the longitudinal nature of the data

(e.g., Spiegel et al. (2010)).

Monthly Hb measurements were collected from 200,525 dialysis patients in

811 facilities for the period January 2010 to December 2013. Patients in a given

facility may vary from month to month owning to the arrival of new patients and

the loss of current patients. Nevertheless, Hb measurements over time from the

same facility are likely to be correlated, owning to multiple contributions from

the same patients, common practices in Hb management, and patients with a

similar demographical background. We are interested in how the distribution

of Hb changes over time. Consequently, we fit an NMECDM, with Hb as the

dependent variable, time as the independent variable, and facilities as clusters.

We transform both the time and the Hb measurements into [0, 1]. Let x

be the transformed time variable and y be the transformed Hb measurements.

We consider the model (5.2). Owning to the complexity of the model and the

large number of Hb measurements (2,800,430), it is computationally infeasible

to fit the NMECDM (5.2) to the whole data set. Therefore, we use the divide-

and-recombine approach (Cleveland and Hafen (2014)): we randomly split the

811 facilities into eight subsets and fit model (5.2) to each subset. Rather than

combining the estimates to form a single final estimate, we report the estimates

from all eight subsets. Because eight subsets may be regarded as random samples

from the population, estimates from these subsets will allow us to explore the

variation in the estimations of the parameters and functions.
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(a) Figure 2a: Population density estimate (solid) in January of each year and density estimates of
three facilities corresponding the minimum (dot-dash), median (long dash), and maximum (short
dash) AKL from the population density estimate. The horizontal lines are the corresponding
estimated 5%, 50%, and 95% quantiles. The population density estimate is obtained by averaging
the estimates from the eight subsets.

(b) Figure 2b: Envelopes of the probabilities of Hb greater than 12 g/dL (light gray) and the
probabilities of Hb smaller than 10 g/dL (darker gray).

We show the estimates of the variance components from the eight subsets

in Table A.1 of the Supplementary Material. It is clear that the estimates of σ2
1

and σ2
2 from different subsets are quite close, except for those from subset 2.

The estimates of the population density function from the eight subsets are

very close (not shown). The solid lines in Figure 2a show the combined estimates

of the population density function as averages of the estimates from the eight

subsets in January of each year. The estimated quantiles clearly show that the

distribution of Hb shifted downward in response to guideline changes. Figure

2a also shows the cluster-specific density estimates based on January of each

year from three facilities. The trajectories of facility-specific density functions

are useful for identifying facilities with poor management of Hb. For example,

the facility with a maximum AKL from the population density estimate (short

dashed line in Figure 2a) has heavier tails and became more skewed toward

smaller values.
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Policymakers are interested in the population probability of Hb outside the

target range of 10-12 g/dL. We compute the probabilities of Hb greater than 12

g/dL and those of the probabilities of Hb smaller than 10 g/dL based on the

estimated conditional densities from each subset. Figure 2b shows the envelopes

(i.e., from the minimum to the maximum from the eight subsets at each time

point) of these two probabilities. It is clear that the guideline changes have

effectively reduced the probability of Hb over 12 g/dL from 0.25 in January

2010 to 0.1 in December 2013. However, they also increased the probability

of Hb under 10 g/dL from 0.08 to over 0.2 for the same period. This is not

surprising because the decrease in the Hb level is a result of the reduction of the

erythropoiesis-stimulating agent’s dosage. Our conclusions are in good agreement

with those of Spiegel et al. (2010), who studied dialysis patients from June 2006

to November 2008. One important new finding is that the probability of Hb

under 10 g/dL has been increased significantly in recent years. Consequently,

more dialysis patients may suffer from anemia. This unintended consequence

should be investigated further.

7. Conclusion

We have introduced general density and conditional density models with

random effects for clustered data, and illustrated the construction of these models

using SS ANOVA decompositions. Note that other approaches may be used to

construct these models. The proposed NMEDMs and NMECDMs are flexible

because the domains of both the dependent and the independent variables are

arbitrary sets, and different RKHSs and decompositions may be used to construct

these models. As illustrated in Section 2, the classical mixed-effects models

and SS ANOVA mixed-effects models with Gaussian distributions are special

cases of the NMEDM and NMECDM. Therefore, in addition to nonparametric

estimations of density and conditional density functions with clustered data,

our methods provide potential model building and diagnostic tools for existing

mixed-effects models with Gaussian random errors. Model-selection methods for

SS ANOVA density models based on the KL projection have been developed by

Gu (2013). Further research on model selection and inferences for mixed-effects

density models is merited.

Parameters and nonparametric functions are estimated using the penalized

likelihood. We have developed a computation procedure using MCMC SAA and

an approximated cross-validation criterion to select the smoothing parameters.
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Extensive simulations indicate that our estimation procedure is stable. However,

the estimates of the variance components may converge slowly. In addition, the

estimates of the variance components have a relatively large bias when the sample

size is small, which is a common problem with MLEs in mixed-effects models. The

adjusted profiled likelihood (McCullagh and Tibshirani (1990)) or bias-reducing

penalized likelihood (Kosmidis, Guolo and Varin (2017)) may be used to reduce

the bias in the estimates of the variance components. Involving integrations with

respect to random effects, the marginal likelihood function is not guaranteed to

be convex, which makes it very difficult to derive the asymptotic properties. An

alternative approach is to use the joint (Henderson) likelihood of observations

and random effects, as in Gu and Ma (2005) and Gu (2013). We will explore

these topics in future research.

We have applied our methods to investigate the changes in Hb distributions

over time. We found that guideline changes have shifted the Hb distributions

downward. On the one hand, the probability of Hb over 12 g/dL has been

reduced greatly. On the other hand, the probability of Hb under 10 g/dL has been

increased substantially, raising concerns that the proportion of dialysis patients

who suffer from anemia may have increased. The resulting impacts on mortality,

hospitalization, cost, and quality of life require further investigation.

Supplementary Material

The online Supplementary Material contains derivations not included in the

paper.
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