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Abstract: This paper proposes a portmanteau test for the adequacy of nonlinear
cointegrating regression models. The proposed test is applicable to a wide class
of integrable and nonintegrable regression functions, with endogenous regressors
driven by either short or long memory innovations. In addition, the limiting dis-
tribution of the test is shown to be approximated by a chi-squared distribution.
Moreover, the scope of the test is generalized to include an additive nonlinear coin-
tegrating regression model, the consistency results of which are investigated as an
independent interest. Finally, the effectiveness of the portmanteau test is demon-
strated using simulations and real data.
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1. Introduction

Since the seminal work of Park and Phillips (1999} |2001), we have witnessed
significant progress in nonlinear cointegrating regressions. As shown in [Chang,
Park and Phillips (2001)), Park and Phillips| (2001), and |Chan and Wang| (2015),
the asymptotics of a least squares estimator (LSE) in a parametric nonlinear coin-
tegrating regression model highly depend on the specification of the nonlinearity
function. Hence, a mis-specified or inadequate parametric model may lead to
misleading statistical inferences or erroneous conclusions. Therefore, we require
a test for checking the adequacy of nonlinear cointegrating regression models.

A growing body of research is focusing on testing the adequacy of parametric
nonlinear cointegrating regression models. When the error term is a martingale
difference sequence (m.d.s.), Kasparis (2010)) constructed Bierens tests for the
integrable regression function, Kasparis and Phillips| (2012)) proposed two robust
tests for linearity, Wang and Phillips| (2012)) considered a kernel-smoothed U-test
for integrable and nonintegrable regression functions, and Wang, Wu and Zhu
(2018)) utilized the idea of a marked process to form a parametric specification
test. See also |Gao et al. (2009a,b)) for further details on testing for linearity
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in autoregressions and parametric time series regressions. However, the m.d.s.
assumption for the error term may be restrictive in practice, because it rules
out endogenous regressors, which are expected in many applications, but make it
cumbersome to develop statistical inference methods; see, for example, Wang and
Phillips (2009alb) and Wang| (2015). To take endogenous regressors into account,
Wang and Phillips (2016]) studied a kernel-smoothed test based on the work of
Hardle and Mammen (1993); see also |Gao, Tjgstheim and Yin| (2012)). Their test
is applicable when the regressor is driven by short memory innovations, but is
not well suited to the long memory case, owing to the zero asymptotic size and
the substantial reductions in power. To the best of our knowledge, no attempt
has been made to propose a useful test for examining the adequacy of a nonlinear
cointegrating regression model when the regressor is endogenous and driven by
long memory innovations.

Utilizing the idea originated by |[Box and Pierce (1970) and Ljung and Box
(1978)), this study develops an easy-to-implement portmanteau test for check-
ing the adequacy of parametric nonlinear cointegrating regression models. The
limiting distribution of this test is shown to be approximated by a chi-squared
distribution under regular conditions, covering a wide class of integrable and
nonintegrable regression functions with an endogenous regressor driven by either
short or long memory innovations. The implementation of the proposed test
requires only a consistent preliminary estimator when the regression function is
integrable. When nonintegrable, it requires a consistent preliminary estimator
with a certain convergence rate, depending on the form of the nonlinearity. Com-
pared with the portmanteau test for the stationary model, the estimation effect
resulting from the nonlinear cointegrating regression model is not involved in the
limiting distribution of the proposed test. Compared with the kernel-smoothed
test of [Wang and Phillips (2016)), the proposed test works for the endogenous
regressor driven by long memory innovations, while avoiding the use of band-
widths. As we know, choosing bandwidths is often difficult for practitioners.
Furthermore, the scope of the proposed test is generalized to include the addi-
tive nonlinear cointegrating regression model, the consistency results of which
are interesting in their own rights.

The remainder of this paper is organized as follows. Section 2 proposes the
portmanteau test for checking the adequacy of nonlinear cointegrating regression
models, obtains its asymptotics, and generalizes its result to additive models.
Section 3 gives the consistency results for the corresponding additive models.
Simulation studies and applications are provided in Sections 4 and 5, respectively.
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Concluding remarks are offered in Section 6. Some additional simulation results
are given in the online Supplementary Material. All proofs are deferred to the
Appendix.

2. The Model and Main Results

Consider a nonlinear cointegrating regression model

yr = g(@,0) + ue, (2.1)
where u; = pu—1 + v with |p| < 1, x4 is a nonstationary regressor, g(x,6) is
a given real function, and 6 = (6y,...,6,,) are unknown parameters that lie
in the compact parameter space o C R"™. Model allows the regressor xy
to be endogenous and to be driven by long memory innovations, which are two
important aspects to meeting the practical demand. However, no existing tests
for checking the adequacy of model take these two aspects into account.
This motivates us to propose a portmanteau test, that is compatible with these
two aspects.

Assume that §n is a consistent estimator of 6y based on the observations
{(x¢,y1) 1y, where 6y = (6o1,...,00m)" € Qo is the true value of 6. Let u; =
yr — g(xy, én) be the residual of u; and 7y = uy — puy_1 be the residual of v, where

~ ZZ:Q asas—l

P L,
is the LSE of p based on the autoregression u; = pu;_1 + 14. In particular, when
p =0, we set vy = uy for all t. Based on {7;}}";, our portmanteau test statistic

is defined as
M ~9

Up(M) :=n(n+2) Z

k=1

for some integer M > 1, where
G, — Dbkl PPk
Y v

is the sample autocorrelation of 74 at lag k. Clearly, the portmanteau test [A]n(M )
aims to detect the autocorrelation of the residual of v; at the first M lags. This
idea was first proposed by Box and Pierce| (1970) and Ljung and Box (1978),
followed by many variants for stationary models, including Romano and Thombs
(1996), Francq, Roy and Zakolan| (2005)), [Escanciano and Lobato| (2009), | Delgado
and Velasco (2011)), and |Zhu| (2016). As a parallel tool, the spectral test can be
used to detect the residual autocorrelation at each valid lag; see, for example,
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Hong (1996) and Zhu and Li (2015) for stationary models. An investigation of
the spectral test for model is an interesting topic for future study.

Throughout this section, let n; = (e;,v;), for i € Z, be a sequence of in-
dependent and identically distributed (i.i.d.) random vectors, with Eny = 0,
E (nony) = %, and E||no]|® < oo, for some a > 2. Furthermore, assume that
Ee2 = 1 and that the characteristic function ¢(t) of €y satisfies the integrability
condition [% (14 [¢]) |¢(t)|dt < oo, thus ensuring smoothness in the correspond-
ing density.

To establish the asymptotics of ﬁn(M ), we use the following assumptions.

Assumption 1. z; = Z;Zl &j, where &, for 3 > 1, is a linear process defined
by & =D pneo Pk €j—k, with coefficients ¢y, for k > 0, satisfying ¢o # 0 and one
of the following conditions:

C1. ¢ ~ k™ #n(k), where 1/2 < p < 1 and n(k) is a function slowly varying
at 0o,

C2. > 72|kl < oo and =377 # 0.
Assumption 2. For each 0,60y € Qq, there exists a bounded and integrable real
function T(z) such that
|g(x,0) — g(z,00)] < h([|6 — o) T(x), (2.2)

where h(x) is a bounded real function satisfying h(z) — 0 as |z| — 0.

Assumption 3. For each 0,0y € Qq, there exist positive real functions T(z),
v(z), and vj(x), for j =1,...,m, such that, for any A\ > 0,

(i) T(A\x) < v\ + |z|?), ’(89(1‘,90))/(003-)‘ <T(x), forj=1,...,m, and

9(0.) ~ gl 00) = 316 00 )| < o gul @), (23)

j=1
for some a >0 and > 0;

11) whenever x and y are in a compact set, for each 1 < 7 <m
(it) y P : j<m,

ag(gg; - 89(33; & ‘ < o) [le =yl + Ris() + Ros )], (2:4)

where R1;(z) and Raj(2) are bounded and integrable functions;

(i) as K — 00, SUp|y> g maxi<j<m v(z)/v;(x) < 0o.

Assumption 1 allows for long (under C1) and short (under C2) memory
innovations §; to drive the regressor z;. Furthermore, it allows the equation error
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u to be cross-correlated with the regressor x4, for all s < ¢, thereby inducing
endogeneity and yielding the structural model (2.1). Let d? = var(z,). Under
Assumption 1(ii), it follows from |Wang, Lin and Gulati (2003) that
c,m37 2 7%(n), under C1,
&% n, under C2,
where ¢, = (1/((1 —p)(3 —2p))) fooo ™ H(x 4+ 1) Hdx and maxi<p<y, |Tk|/dn =
Op(1). These facts are used later without further explanation.

d? ~

n

(2.5)

Assumption 2 essentially requires that g(x, ) is bounded and integrable for
each 6 € Qg. Typical examples for Assumption 2 include the following inte-
grable functions: g¢(z,0) = 61|z|%I(z € [a,b]), for finite constants a and b;

—022%. and the Laplacian function g(z,0) =

the Gaussian function g(x,0) = 6,e
01?1l Assumption 3 removes the boundedness and integrability conditions
on g(z,0), but imposes additional conditions for technical reasons. Typical
examples for Assumption 3 include the following asymptotically homogeneous
functions: g¢(z,0) = (x + 0)? 0e*/(1 + €%); Olog|z|; 0|z|* (« is fixed); and
01 + Oa|x| + - - - 4 O |z|*. Both Assumptions 2 and 3 are weak and partially used
in|Wang and Phillips| (2016) to estimate the parameter § in model . See also
Section 3 of this paper for further details.

We have the following main results for U, (M).

Theorem 1. Suppose that Assumptions 1 and 2 hold, and that an estimator §n
exists such that 0,, € Qo and 0,, —p 0. If model (2.1)) is specified correctly, then
the limiting distribution of U, (M) can be approzimated by X?\/l—l for large M.

Theorem 2. Suppose that Assumptions 1 and 3 hold, and that an estimator é\n
exists such that 6, € Qo and | Dy, (0, — 00)|| = Op(log® n), for some § > 0, where

D, = diag(\/ﬁ vi(dp), ..., \/ﬁvm(dn)) If model (2.1)) is specified correctly, then
the limiting distribution of U, (M) can be approrimated by X?\/I—l for large M .

Remark 1. The proofs of Theorems 1 and 2 depend only on the fact that, for
any k > 0,

I & 1 <
7 Z usus_k:% Z us us—k +op(1), (2.6)

s=k+1 s=k+1
which guarantees that the estimation effect on 6 does not exist in the limiting
distribution of U, (M). Indeed, from |D and some standard calculations, we
have that

. _ > kiq VtV—k
Vnay = vnay + op(1) :=v/n (tz’“zlyz +op(1),
t=1"t
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where U, = u; — puy—1 and

5= Z:ZQ UsUs—1
POl
Hence, the limiting distribution of ﬁn(M ) is the same as that of U, (M), where

M
— a
Un(M) =n(n+2)> :n_kk.
k=1

Note that p is the LSE of p in the autoregressive model u; = pus_1 + 14, and @y is
exactly the lag-k autocorrelation of its model residuals. Therefore, the limiting
distribution of U, (M) (or U,(M)) involving the estimation effect on p, is given
in Theorem 3 of Francq, Roy and Zakotan (2005)), and can be approximated by
X3y for large M when 14 is i.i.d.

Under Assumption 1, the regressor z; is nonstationary. If the regression
function g(z,#) is bounded and integrable, result can be established under
the minimum conditions that é\n € )y and én —p Bp. This is because the
nonstationarity weakens the signal and, hence, the restriction imposed on 571
when g(z,0) is integrable. This is quite different from the stationary regression
and time series model. In the latter case, we usually require \/n-consistency
of a preliminary estimator. If g(z,6) is not bounded and integrable, result
requires a certain convergence rate on §n in order to check the adequacy of model
. Again, this differs from the stationary situation, because the convergence
rate depends on the form of g(x,#). Note that both of the convergence conditions
required for «/9\,1 in Theorems 1 and 2 can be achieved under Assumption 1 and
some additional smooth conditions on g(z, #); see Section 3 for additional details.

Remark 2. The portmanteau test ﬁn(M) checks whether the form of g(z, 0) is
specified correctly, but cannot be used when g(z,#) itself is unknown. To see
this clearly, we consider a simple nonparametric cointegrating regression model:

yr = g(x¢,00) + uy,
where 6 is given and g(z,6p) is an unknown real function. As investigated in
Wang and Phillips (2009a,b, 2016), the function g(x, ) can be estimated by the

conventional kernel estimator
I K — h
/g\($’ 00) _ Ztil Yt [(ajt .I‘)/ ] ’
Zt:l K[(x¢ — x)/h]

where K (z) is a positive kernel function and h — 0 is a bandwidth. De-

fine 4y = y¢ — g(x,6p). As noted in |Linton and Wang (2016), it is unrealis-
tic to establish (2.6)), even for k& = 0, owing to the slow convergence rate for
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G(z,00) —p g(x,00). Therefore, the portmanteau test Uy, (M) cannot be used for

nonparametric cointegrating regression models with nonstationarity.

Remark 3. The condition that v, is i.i.d. is standard in the nonstationary
time series literature; see, for example, |Chan and Wang] (2015), [Wang (2015),
and Wang and Phillips| (2016]), among many others. This technical condition
is not necessary. Some simple algebra in part A.1 of the Appendix shows that
v can be replaced by a less restrictive linear process v, = Ei":o YV, with
> o EY44pp| < oo. It is not clear, however, whether v, can be replaced by a
nonlinear stationary process, such as autoregressive conditional heteroskedastic-
ity (ARCH)-type errors. Numerically, our simulation studies (see the Supplemen-
tary Material) show that our portmanteau tests (with a slight modification to
take into account the conditional heteroskedasticity and the estimation effect on
p) have good finite-sample performance when v; has an ARCH-type structure.
Theoretically, new technique is required to modify Lemma 1 in the Appendix
from a linear process v; to a nonlinear stationary process. This kind of modifi-
cation seems challenging and, hence, is left for future work.

Remark 4. Consider model with AR(p) errors; that is, u; is assumed to
be strictly stationary satisfying
Ut = P1Us—1 + Paut—2 + - -+ + PpUs—p + Vi, (2.7)
where 1 — p1z — p2z? — -+ — pp2P # 0 when |z| < 1. In this situation, we set
Uy = Uy _Z§:1 pjui—j, where (p1,...,pp) is the LSE of (p1, ..., pp) based on the
autoregression Uy = piUi—1 + palt—2 + - - - + pplt—p + 4. As before, we construct
the portmanteau test statistic as
. Mo 52
Un(M) :=n(n+2) Z k

n—Fk’
k=1

for some integer M > 1, where
G = Z?:k—l—l %thk
D1 Vi
Under the conditions in Theorem 1 or 2, we can similarly show that the limiting
distribution of U,(M) can be approximated by X?Wfp for large M.

To end this section, we show that the results for our portmanteau tests can
be generalized to the following additive nonlinear cointegrating regression model:

yr = g9(x4,0) + f(z,m) + e, (2.8)

where uy = pu;—1 414 with |p| < 1, x4 and z; are nonstationary regressors, g(z, 6)
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and f(x,n) are given real functions, and 6 = (01,...,0,,) and n = (m,...,n)
are unknown parameters that lie in the compact parameter space 2o C R™ and
Q1 C RF, respectively.

Let 6y and 79 be the true values of 6 and 7 in model . As zy and g(z,0) in
Assumptions 1 and 3, we make the following two assumptions on z; and f(x,n),
respectively.

Assumption 4. z; = 2221 Cj, where (j, for j > 1, is a linear process defined by
GG =D heo Pk €j—k, with coefficients oy, k > 0, satisfying po # 0 and one of the
following conditions:

C1’. ¢, ~ k7"nw(k), where 1/2 < p < 1 and w(k) is a function slowly
varying at oQ.

C2°. Y77 lek| < oo and o =07 vr # 0.

Assumption 5. For each n,n9 € 1, there exists a bounded and integrable real
function T'(x), such that

[f(@,m) = f(@,m0)| < h(ln—noll) T (), (2.9)

where h(x) is a bounded real function satisfying h(z) — 0 as |z| — 0.

Note that the innovation ¢; in 2z; can be replaced by the random sequence €
satisfying that (e;, €, v;), for i € Z, are i.i.d. random vectors, where € has
the same distributional properties as those of ¢;. In addition, as discussed in
Remark 2, the technical condition that 14 is i.i.d. is not entirely necessary for
our asymptotics to hold.

As before, we define the portmanteau test statistic ﬁn(M ) for model ,
but with u; replaced by

ur =yt — g(wt,0n) — f(2t,7n),
where 571 and 7),, are consistent estimators of 6 and 7, respectively. We have the
following result, which extends Theorems 1 and 2.

Theorem 3. Suppose Assumptions 1 and 3-5 hold, and there exist estimators @\n
and T, such that (i) 0, € Qo and | Dy, (65, — 60)|| = Op(log® n), for some & > 0,
where D,, = diag(\/ﬁvl(dn), R \/ﬁvm(dn)), and (i) N, € Q1 and 0, —p no. If
model is specified correctly, then the limiting distribution of ﬁn(M) can be
approrimated by X?\4—1 for large M .

Remark 5. The estimators §n and 7, of # and 7, respectively, in model 1' that
satisfy the conditions required in Theorem 3 are constructed in the next section.
In principle, there are no technical difficulties in extending model ([2.8)) to allow for
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the time trend or for additional integrable and nonintegrable functions whenever
the model parameters can be estimated with certain convergence rates. However,
when the regressors are endogenous and driven by long memory innovations, it
becomes difficult to construct the corresponding consistent estimators under the
general settings of the model. More details can be found in Remark 6.

3. Parametric Consistency

The estimation of 6 in model has been considered in \Wang and Phillips
(2016)). In this section, we provide primitive conditions for the verification of
consistent parametric estimations of 6 and 7 in model . This is required in
Theorem 3 and, to the best of our knowledge, is new to the literature.

Let wy = f(z¢,m) + us. Then, model can be rewritten as

yr = g(x,0) + wy. (3.1)

Note that the behavior of w; is similar to that of a stationary process, owing to
the boundedness and integrability of f(z,n). The unknown parameters 6y and
7o in model can be estimated using the following two-step nonlinear least
squares estimation procedure:

Step 1: Estimate 6y by

n
0, = i — g(z, 0]
n aregegtlfl; [Z/t g(xt )}

Step 2: Set wy =y — g(x¢, 0,). Estimate ng by

n
M = argminz [f&)} — f(zt,n)]Z.
ne =1
To establish the consistent properties of én and 7),, as required in Theorem 3,
we need additional smooth conditions on g(x, ) and f(x,n). Let g and § be the
first and second derivatives of g(x,#), such that ¢ = dg/00 and § = 0%g/0606'.
Similar definitions are used for f and f.

Assumption 6. Let p(x,0) be any of g, gi, or §ij, for 1 <i,j < m. There exists
a positive real function vy(X) that is bounded away from zero as A — oo, and a
constant B > 0 such that, for each 0,6y € Qq:

(i) Ip(z,0) — p(x,00)| < C[|0 — 00| Tip(2), where Trp(ha) < Cup(X) (1 +]2]%);

(ii) p(Az,00) < Cup(N) (1 + |2[°), and for p(x,60) = gi(x,00) or gij(x,600), for
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1<4,5 <m,
|p()\ac,«90) _p()‘yv 90)| S OUP()\) [|x - y| + Rlp(Ax) + RQP()‘x)]v

whenever x and y are in a compact set, where Rip(2) and Ray(2) are bounded

and integrable functions;

(iii) gi(Ax,00) = vg, (A) hi(z, 00)+Ri(\, z,6p), for 1 < i < m, where R;(\,x,6p) =
o[vg,(N) hi(z,60)] as |A| = oo, and hi(z,09) is a locally bounded function
(i.e., bounded on any compact set) satisfying Y 5 = f|s|§6 h(s,00)h(s,0p) ds >
0, for all 6 > 0, where h(zx,0y) = (hl(x, 00),. .., hm(z, 90))/;

(iv) SUP1<j<m |U(dn)/i)j(dn)| < 00 and SUP1<j j<m |(v(dn) ijij(dn))/(i’i(dn) bj(dn))’
< 00, where v(A) = vg(A), V(X)) = vy, (N), and V(X)) = vy, (A).

Assumption 7. Let p(z,n) be any of f, f;, or fij, 1<i,5 <k.
(i) p(x,n0) is a bounded and integrable real function;

(1) there exists a bounded and integrable function T, : R — R, such that
Ip(x,n) = p(z,no)| < Clln —mol| Tp(), for each n,no € ;

(i) ¥ = ffooo f(37770)f(37770)/d3 > 0, for each ny € Qq, where f(s,ﬁo) =
(f1(5,770)>---, fk(S,no))/,

Assumptions 6 and 7 are both used in Wang and Phillips| (2016) for the
consistency of 6 in model . Assumption 6 allows for asymptotically homoge-
neous functions, and Assumption 7 holds for a wide range of integrable regression
functions; see Section 2 for specific examples in each group.

We have the following result for the consistency of 0, and 7, indicating that

o~

6,, and 7, are applicable to construct ﬁn(M ).

Theorem 4. Suppose that Assumptions 1, and 4-6 hold, and T = ffooo [f(x,n)
—f(z,m0)]?dx # 0, for any n # no. Then, under model (2.8)), we have

Dy (6r — 00)|| = Op(1) and  7in —p 10, (3.2)
where Dy, = diag(/nvg, (dn),...,/nvg, (dn)). Furthermore, if Assumption 7

holds, we have

d1n>1/2 {Op(l), under C1°, (3.3)

M —noll = | —~
| | <n Op(log'/?n), under C2’,

where d3,, = var(zy,).
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Remark 6. When there is a martingale difference structure in the error term,
Chang, Park and Phillips| (2001)) considered the nonlinear LSE in a general addi-
tive model, including the time trend and additional integrable and nonintegrable
regression functions. The present model is less general than that of |Chang,
Park and Phillips| (2001), but it allows for endogenous regressors driven by the
long memory innovations. From the viewpoint of nonlinear cointegrating regres-
sions, endogeneity seems to be in greater demand. Moreover, unlike the LSE of
Chang, Park and Phillips (2001), the estimators 0, and M in the present model
are constructed using a two-step least squares estimation procedure. For
the usual LSE, we need to establish the general limiting distribution theory for
@L and 7),; see, for example, [Wang and Phillips (2016)). This remaining challenge
in nonlinear nonstationary asymptotics is left for future work. Although the
theoretical development is absent, the simulation studies in the Supplementary
Material show that our portmanteau test exhibits good finite-sample performance
for the additive model in |(Chang, Park and Phillips| (2001)) with the endogenous
and long memory regressor. This implies that our portmanteau test should be

widely applicable.

4. Simulation

In this section, we examine the finite-sample performance of (/}n(M ) for in-
tegrable regression functions, nonintegrable regression functions, and additive
regression functions. Here, we consider the case in which the error term wu; fol-
lows an AR(1) model with an i.i.d. innovation. Additional simulation results can
be found in the Supplementary Material, where u; follows an AR(1) model with
an ARCH-type innovation.

4.1. Integrable regression function

We generate 5,000 replications of sample size n = 100, 200, or 500 from the
following data-generating models:

Yy = exp(—0o|ze|) + ws; (4.1)

Yy = exp(—0o|z¢]) + 0.5z 2T (|| < 10) + uy; (4.2)

yr = exp(—0o|e]) 4+ 20 exp(—|z¢]?) + uy; (4.3)

yr = exp(—0o|x¢]) + 0.1z | + uy; (4.4)

(—=0olz:|) (4.5)

yr = exp(—0o x| —|—O.1|xt\2—|—ut,
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where 0y = 1, 2; = 241 + & with (1 — 0.8B)(1 — B)4; = (1 +0.3B)es, uy =
pui—1 + vy with p = £0.5, and

.. 1 r
(et,1¢) ~1id. N (O, ( .1 >> .

Here, model is used as the null model, and models — are used as
alternative models, in which the first (or last) two models deviate from the null
model by an integrable (or nonintegrable) function. For each examined model,
the regressor x; is designed to be short memory (d = 0) or long memory (d = 0.2),
and exogenous (r = 0) or endogenous (r = 0.5 or 0.8). In all calculations, we
compute §n as the nonlinear LSE of 6y based on model .

Table 1 reports the size and power of Uy, (M) for M = 6, 12, and 18 at the
5% significance level. The size of U, (M) corresponds to the case in which y; ~
model , where the critical value of ﬁn(M ) is chosen to be the 5% upper
percentile of X?\/l—l' From this table, our findings are as follows.

(ai) The size of ﬁn(M ) is generally precise, although it seems to be slightly
oversized when M = 12 (or 18) and n is small.

(aii) The power of Uy, (M) is less affected by the choice of M, and increases
with the value of n.

(aiii) In general, the power of ﬁn(M ) under models f is larger than

that under models (4.2))—(4.3]).

(avi) For each examined alternative with the same values of p and d, the
power of ﬁn(M ) is largely unaffected by the choice of 7, meaning that the endo-
geneity of z; has little impact on the performance of ﬁn(M ). For each examined
alternative with the same value of p, the power of Un(M ) is robust to the choice
of d, especially when M = 12 or 18. Lastly, in general, the power of ﬁn(M ) when
p = —0.5 is greater than that when p = 0.5.

4.2. Nonintegrable regression function

We generate 5,000 replications of sample size n = 100,200, or 500 from the
following data-generating models:

Yt = 10 + O20mt + us; (

Y = 010 + 020 + 0.5[ae|*1(|a:| < 10) + ug; (

Y = 010 + Oooxs + 20 exp(—|z¢|*) + uy (

Yt = tho + Oo0my + 0.1|m| + uy; (

Yt = 010 + 20wy + 0.1]m|* + uy, (4.10
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Table 1. Size and power (x100) of U, (M) for models (4.1)—(4.5]).
M=6 M=12 M =18
Model p d n 100 200 500 100 200 500 100 200 500
(4.1} 0.5 0.0 0.0 5.4 4.7 5.4 6.1 5.1 5.3 6.4 5.4 5.9
0.5 4.7 4.4 4.9 5.6 5.3 4.8 6.2 5.8 5.5
0.8 5.2 4.3 4.9 5.4 5.0 4.5 6.8 5.9 4.8
0.2 0.0 5.1 4.8 4.7 5.4 5.2 4.9 6.1 5.5 5.5
0.5 5.3 5.5 4.3 5.7 5.5 4.9 6.2 5.8 5.4
0.8 50 49 52 51 51 55 59 52 56
-0.5 0.0 0.0 5.1 5.3 5.1 5.8 5.6 5.7 6.3 5.7 5.6
0.5 5.2 4.8 5.0 6.0 5.3 5.1 6.6 6.1 4.7
0.8 54 52 52 63 56 4.9 67 61 4.9
0.2 0.0 5.2 5.4 5.2 5.6 5.4 5.2 6.2 5.7 5.0
0.5 49 52 47 55 52 44 6.1 58 48
0.8 5.5 5.3 4.6 5.6 5.3 5.2 5.9 5.7 5.3
M 0.5 0.0 0.0 12.9 28.5 53.5 13.7 35.4 70.6 13.0 35.0 74.2
0.5 119 282 529 132 341 705 129 328 747
0.8 132 27.1 546 13.3 342 722 126 341 747
0.2 0.0 13.8 33.6 63.2 12.9 35.4 70.3 12.0 32.8 68.8
0.5 140 337 634 126 346 714 120 318 706
0.8 13.5 33.7 62.8 13.5 34.9 70.3 12.0 31.7 69.0
-0.5 0.0 0.0 13.0 30.5 66.1 12.6 36.4 78.8 12.0 36.5 80.2
0.5 12.4 29.9 65.1 12.6 37.0 78.0 12.4 36.0 79.6
0.8 124 30.0 64.8 13.6 36.8 78.2 12.5 36.5 80.1
0.2 0.0 14.4 37.6 75.3 13.1 38.5 78.0 12.0 35.1 75.2
0.5 14.6 37.2 74.4 12.9 38.2 77.9 11.7 34.7 75.3
0.8 150 363 752 142 380 785 124 347 758
3 05 0.0 0.0 171 241 364 124 241 387 S4 209 380
0.5 16.5 24.9 35.1 12.1 23.5 38.0 8.5 20.2 37.9
0.8 16.0 24.2 36.5 11.8 23.0 38.8 7.9 20.0 38.2
0.2 0.0 14.1 20.7 27.9 9.9 18.8 28.8 6.2 15.7 27.4
0.5 13.9 21.3 26.1 9.9 19.5 27.6 6.1 16.2 27.1
0.8 13.9 19.5 26.9 10.0 18.5 28.1 6.6 15.4 26.7
-0.5 0.0 0.0 14.0 28.1 55.5 11.4 26.8 55.0 7.6 23.3 53.9
0.5 145 285 566 11.0 277 558 81 245 549
0.8 14.1 27.3 56.6 11.0 26.2 55.3 8.0 23.9 54.1
0.2 0.0 124 224 40.2 9.7 215 39.0 6.2 189 379
0.5 115 219 419 8.9 214 40.8 6.1 194  39.6
0.8 11.3 22.5 40.9 8.6 21.4 39.6 5.8 18.9 39.4
(4.4] 0.5 0.0 0.0 16.1 39.1 83.3 14.2 33.7 85.0 13.1 29.5 83.4
0.5 15.8 36.9 83.4 13.9 31.3 83.8 13.2 27.8 80.9
0.8 14.7 33.6 80.8 12.9 28.7 81.6 12.1 25.3 79.0
0.2 0.0 201  43.2 883 170 355 842 158 316 775
0.5 19.0 40.8 86.9 16.8 33.8 81.9 154 29.7 75.7
0.8 17.9 37.3 82.2 15.3 30.6 75.9 14.5 27.9 69.9
0.5 0.0 0.0 83.9 984 100 81.0  97.9 100 789 97.2 100
0.5 85.5 98.5 100 82.4 97.9 100 80.4 97.2 100
0.8 86.5 98.6 100 83.9 98.3 100 80.9 97.7 100
0.2 0.0 94.2 99.9 100 92.7 99.7 100 91.6 99.6 100
0.5 94.6 99.8 100 93.0 99.7 100 92.1 99.7 100
0.8 94.1 99.8 100 92.5 99.6 100 91.3 99.6 100
(4.5] 0.5 0.0 0.0 98.8 100 100 98.3 99.9 100 97.6 99.9 100
0.5 98.6 99.9 100 98.0 99.9 100 97.1 99.9 100
0.8 98.8 100 100 98.2 100 100 97.5 100 100
0.2 0.0 99.9 100 100 99.8 100 100 99.5 100 100
0.5 99.8 100 100 99.7 100 100 99.4 100 100
0.8 99.8 100 100 99.5 100 100 99.3 100 100
-0.5 0.0 0.0 97.7 99.9 100 96.5 99.9 100 95.1 99.8 100
0.5 98.0 100 100 96.6 99.8 100 95.2 99.8 100
0.8 97.1 100 100 96.0 100 100 95.0 99.9 100
0.2 0.0 99.7 100 100 99.4 100 100 98.8 100 100
0.5 99.7 100 100 99.4 100 100 99.0 100 100
0.8 99.8 100 100 99.4 100 100 99.1 100 100
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where (010, 620) = (0,1), and the remaining setups follow those of models (4.1])—
. In all calculations, we compute (§0n, 51,1) as the nonlinear LSE of (610, 629)
based on model .

Table 2 reports the size and power of ﬁn(M ) at the 5% significance level,
where the size of ﬁn(M ) corresponds to the case of y; ~ model , and the
critical value of Un(M ) is chosen to be the 5% upper percentile of x3, ;. From
this table, our findings are similar to those in Table 1, except that the power of
ﬁn(M ) seems less satisfactory when y; ~ model (4.9), with p = 0.5 and small n.

4.3. Additive regression function

We generate 5,000 replications of sample size n = 100, 200, or 500 from the
following data-generating models:

Y = 010 + 0202 + exp(—no|2¢]) + us; (4.11)
ye = 010 + Oooxs + exp(—nol|zt]) + 0.5]ke|2I(|re] < 10) + g (4.12)
Y = 010 + Oooxs + exp(—nolze|) + 20 exp(—|re|*) + ug; (4.13)
yr = 010 + O20x¢ + exp(—no|zt]) + 0.1 k¢ | + uy; (4.14)
Y = 010 + Oooxs + exp(—nolze|) + 0.1]ke|? + uy, (4.15)

where k; = max(zy, z¢), (010,6020,m0) = (0,1,1), 2z = 2,1+ with (1-0.8B)(1—
B)¢; = (14 0.3B)¢;,
1 05 r
(et €;,v) ~iid. N[0, 0.5 1 05 ,
r 05 1

and the remaining setups follow those of models 7. In all calculations,
we compute (§0n, é\ln, M) as the two-step nonlinear LSE of (619, 20, 10) based on
model .

Table 3 reports the size and power of U, (M ) at the 5% significance level,
where the size of ﬁn(M ) corresponds to the case of y; ~ model (4.11)), and
the critical value of ﬁn(M ) is chosen to be the 5% upper percentile of x3, ;.
Once again, our findings are similar to those in Table 2. However, note that
the additional simulation studies in the Supplementary Material show that our
portmanteau test ﬁn(M ) also exhibits good finite-sample performance for the
additive model in |Chang, Park and Phillips (2001)), with a time trend and two
integrable or nonintegrable functions.

In summary, regardless of the type of regression function, the proposed port-
manteau test exhibits good finite-sample performance in all examined cases. In



A MEASURE OF LACK OF FIT 385
Table 2. Size and power (x100) of U, (M) for models (4.6)—(4.10)).
M=6 M=12 M =18
Model p d r n 100 200 500 100 200 500 100 200 500
(4.6} 0.5 0.0 0.0 5.7 5.2 4.5 6.4 6.3 5.2 7.0 6.5 5.4
0.5 5.1 5.2 4.8 6.1 4.9 5.5 6.8 5.6 5.8
0.8 5.7 5.9 5.0 6.3 6.2 5.3 6.9 6.4 5.6
0.2 0.0 5.1 4.9 4.9 6.1 5.5 5.3 6.4 6.1 5.4
0.5 5.7 5.1 5.4 7.0 5.3 5.2 7.3 5.5 5.3
0.8 58 49 56 63 61 53 67 65 55
-0.5 0.0 0.0 5.5 5.6 5.1 6.4 5.9 4.9 6.8 6.2 5.5
0.5 5.3 5.6 5.1 6.0 5.7 5.2 7.1 5.6 5.1
0.8 51 54 50 57 58 5.0 59 60 5.4
0.2 0.0 6.0 5.2 5.6 7.0 5.8 5.3 7.4 6.4 5.7
0.5 5.9 5.3 4.8 6.2 5.8 5.1 7.1 6.6 5.1
0.8 5.6 5.9 5.3 5.9 6.1 5.2 6.1 6.6 5.0
M 0.5 0.0 0.0 14.7 27.8 50.3 14.5 32.7 64.6 14.3 31.5 67.3
0.5 13.6 276 494 137 316 65.0 130 313 679
0.8 14.1 26.8 49.5 14.3 31.7 64.3 13.7 31.3 67.0
0.2 0.0 13.8 32.2 61.6 13.4 34.1 68.7 12.5 31.8 68.1
0.5 147 321 625 147 332 704 130 312 689
0.8 147 316 611 13.9 324 688 126 30.1  67.1
-0.5 0.0 0.0 13.1 26.6 59.7 13.2 30.9 70.4 13.2 30.5 72.5
0.5 12.7 26.3 59.0 13.1 30.8 70.2 12.3 30.8 71.5
0.8 12.5 26.9 59.2 13.2 31.1 69.6 12.8 30.3 71.5
0.2 0.0 13.5 33.5 74.5 13.2 33.3 77.3 12.5 30.6 74.4
0.5 14.0 35.2 75.6 13.2 36.0 77.0 11.7 32.5 74.7
0.8 144 337 738 140 342 764 121 310 73.7
3 05 0.0 0.0 172 239 359 133 232 389 93 203 37.8
0.5 15.8 24.0 34.5 12.6 23.0 37.5 8.5 20.5 36.7
0.8 16.6 23.3 34.0 13.2 22.6 36.4 8.6 19.7 36.7
0.2 0.0 14.7 20.8 26.7 10.8 18.8 28.1 7.1 16.6 27.3
0.5 13.8 20.3 25.7 9.5 19.0 26.2 5.7 17.3 25.9
0.8 14.0 196  26.1 101 184  27.6 6.6 157 264
-0.5 0.0 0.0 19.7 30.7 59.8 16.5 29.7 58.4 12.4 27.4 56.2
0.5 200 309 609 169 291 585 128 257 576
0.8 19.9 30.9 59.8 16.4 29.3 57.9 13.2 26.9 56.9
0.2 0.0 19.3 258 440 16,5 25.0 421 131 228 417
0.5 201 27.0 448 166 251 432 133 227 415
0.8 205 26.1 452 177 262 43.7 13.9 239 419
14.9] 0.5 0.0 0.0 5.5 12.1 48.5 6.3 11.3 50.2 6.6 10.4 47.7
0.5 5.7 11.0 47.8 6.8 10.5 49.7 7.5 10.0 47.6
0.8 6.1 12.0 46.8 6.6 11.0 49.1 7.3 106 471
0.2 0.0 56 147 525 6.0 11.6 49.3 6.3 103 435
0.5 64 138 51.2 65 109 474 72 99 427
0.8 6.6 13.4 51.4 6.4 11.6 48.6 7.3 10.8 43.8
0.5 0.0 0.0 425 616 747 406 60.2 745 40.0  60.0 741
0.5 42.2 60.5 76.0 40.1 59.9 75.8 39.4 59.5 75.3
0.8 41.8 61.3 75.4 39.8 60.2 74.7 39.3 59.4 4.7
0.2 0.0 45.3 61.2 74.4 44.7 60.2 74.1 44.1 60.1 74.0
0.5 45.6 60.6 75.1 44.7 60.7 74.6 44.2 60.4 74.7
0.8 45.9 60.9 4.7 44.7 60.2 74.2 43.6 59.6 73.9
(4.10 0.5 0.0 0.0 86.2 92.8 97.6 82.3 89.5 96.1 80.0 87.7 94.8
0.5 86.5 92.4 97.0 82.6 89.3 95.1 80.5 87.7 93.9
0.8 86.1 93.8  97.7 82.6  91.0  95.7 804  89.3 943
0.2 0.0 83.1 87.3 92.9 78.1 83.0 89.0 75.4 80.3 86.7
0.5 82.9 87.4 93.1 77.8 83.0 90.2 75.0 80.4 88.1
0.8 82.0 88.0 92.6 76.8 83.2 89.4 74.3 80.4 87.2
-0.5 0.0 0.0 85.4 92.5 97.5 81.0 89.3 95.7 78.2 87.4 94.5
0.5 85.1 92.4 97.5 81.0 89.3 96.2 78.6 87.5 95.1
0.8 84.1 92.7 97.3 80.3 89.5 95.6 78.2 87.7 94.4
0.2 0.0 83.0 875 923 775 826  89.2 751 79.7  87.0
0.5 81.6 87.7 92.8 76.5 83.2 89.8 73.8 80.3 88.1
0.8 82.2 87.2 92.7 76.3 82.4 89.9 73.1 79.9 87.8
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Table 3. Size and power (x100) of U, (M) for models (4.11)—(4.15]).
M=6 M=12 M =18

Model p d N 100 200 500 100 200 500 100 200 500
(4.11 0.5 0.0 0.0 6.0 5.1 4.9 6.1 5.6 5.6 7.0 6.2 5.2
0.5 5.4 5.0 5.4 6.4 5.6 5.4 6.8 5.8 5.8
0.8 5.8 5.9 5.2 6.1 5.7 5.7 6.6 6.2 5.8
0.2 0.0 6.2 5.2 5.2 6.2 5.7 5.6 7.0 6.6 5.7
0.5 5.8 5.5 5.7 6.5 5.4 5.6 6.9 6.2 5.7
0.8 55 52 5.1 64 53 55 70 54 59
-0.5 0.0 0.0 5.6 5.0 4.7 6.5 5.1 5.2 7.2 5.6 5.8
0.5 5.5 4.8 4.8 5.8 5.0 5.3 6.5 5.1 5.6
0.8 50 43 53 55 46 48 65 53 52
0.2 0.0 5.4 4.7 5.0 5.9 5.4 5.7 6.8 6.1 5.2
0.5 5.4 5.3 5.3 5.9 5.7 5.1 6.3 5.9 5.8
0.8 5.4 5.4 5.0 6.2 5.6 5.3 6.9 6.1 5.6
4.12 0.5 0.0 0.0 132 26,6 51.0 133 304 656 126 29. 67.9
0.5 135 260 508 135 310 63.7 132 306  66.1
0.8 134 267 514 131 324 640 124 318 667
0.2 0.0 136 31.2 594 129 339  66.0 12.0 313 647
0.5 142 320 599 136 330 668 126 304 654
0.8 13.7  31.0 60.0 13.6 326 668 126 304 652
-0.5 0.0 0.0 124 26.7 589 128 621 689 11.6 304 708
0.5 125 284  60.2 123 326 699 11.7 308 713
0.8 137 282 60.1 13.6 31.8 70.0 121 303 711
0.2 0.0 13.5 336 719 126 33.7 745 11.5 309 73.0
0.5 127 333 720 123 34.0 73.7 108 31.7 708
0.8 126 333 722 121 340 746 108 312 729
INE] 05 00 0.0 169 255 351 120 239 379 88 211 367
0.5 16.3 248  35.7 124 233  38.0 8.6 207 37.0
0.8 171 243 356 131 235 379 9.1 21.0 371
0.2 0.0 14.0 203  26.5 102 18.0  28.7 69 15.6  27.2
0.5 145 197 266 104 182 277 69 157  26.2
0.8 143 209 264 10.0 186  28.0 70 162 270
-0.5 0.0 0.0 21.0 313 573 182  30.0 56.6 144 28.0 548
0.5 204 317 579 165 309 567 137 284 551
0.8 209 319 588 179 308 579 148 285 564
0.2 0.0 214 266 430 185 266 426 148 242 414
0.5 21.3 260 421 190 260 4038 159 231 401
0.8 214 265 435 177 254 425 142 238 418
(4.14 0.5 0.0 0.0 70 224 76.7 6.7 207 779 6.7 181 746
0.5 76 220 772 8.0 200 775 8.1 183 745
0.8 76 222 754 7.8 19.1 76.5 8.1 16.9 735
0.2 0.0 84 239 TL5 77192 647 75 164 577
0.5 8.6 241 714 83 185 649 82 154 583
0.8 9.5 258  69.8 9.0 206 64.7 85 170 573
0.5 0.0 0.0 765 889 952 743 885 949 737 881 948
0.5 775 889 951 75.8 885  95.0 749 882 949
0.8 76.3  88.8 947 745 887 947 73.2 883 946
0.2 0.0 80.7 89.0 948 79.9 88.6  94.7 794 884 945
0.5 80.4 894 948 783  89.1 947 77T 888 946
0.8 79.7 882 952 78.6 88.0 951 778 875 950
(4.15 0.5 0.0 0.0 91.9  96.7  99.1 88.5 949  98.3 86.5 933 978
0.5 91.9  96.5  98.9 88.1 944 981 86.0 929 976
0.8 929 962 99.0  89.3 944 984 87.0 928  97.8
0.2 0.0 88.0 93.6  96.5 834 903 949 81.4 88.0 93.7
0.5 87.8 922  96.7 83.6 891 94.6 81.2 86.8 929
0.8 88.4 924  96.7 83.7 839 950 81.4 86.6 935
-0.5 0.0 0.0 91.1  97.0 99.1 872 949 981 849 933 974
0.5 91.5  96.8  99.1 87.1 947  98.2 849 931 975
0.8 91.3 964  99.1 87.2 946  98.3 84.6 934 97.7
0.2 0.0 88.6 927 966 843 893 94T 81.8  87.0 934
0.5 88.7 926 97.0 84.3 89.1 952 81.7 86.6 935
0.8 88.3 932 964 834 895 94.0 80.6 873 925
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Figure 1. Plots of log(CO3) against log(GDP) for JAP and USA.

particular, the test is not affected by the endogeneity of the regressor, and it
works well for regressors driven by either short or long memory innovations.

These features are important for practitioners.

5. Application

In this section, we study the Carbon Kuznets Curve (CKC), which relates
the per capita COqy emission of a country to its per capita GDP. As argued in
Piaggio and Padillal (2012)) and |(Chan and Wang] (2015)), the CKC has an inverted
U-shape (see, e.g., the right panel in Figure 1). The upward slope of the CKC can
be interpreted as an increase in the depletion of natural resources as economic
activities grow. The downward slope of the CKC indicates a reduction in the
emission of air pollutants as the country continues to develop technological ad-
vance and stricter regulatory policies. Following the aforementioned two papers,
we consider a quadratic polynomial formulation below for the CKC in order to
capture its inverted U-shape:

{log(et) = 01 + 0z log(x¢) + O3[log(z¢)]? + e,

U = P1Ut—1 + p2Ut—2 + -+ + PplUt—p + V¢,

(5.1)

for 1 <t < n, where e; and x; are the per capita emissions of COy and GDP
in period ¢, respectively. Here, we use an AR(p) model to fit u;, because the
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Table 4. The choice of p and the p-values of Un(M ) or U (M ) for 16 countries when

Countries
AUS AUT BEL CAN CHN DEN FIN FRA
D 1 1 1 1 2 1 1 1
M=6 0.8470 0.1001  0.7905 0.9973 0.9473 1.0000 1.0000 0.9529
M =12 0.9690 0.0713 0.9399 1.0000 0.9990 1.0000 1.0000 0.9975
M =18 0.9929 0.0485 0.9805 1.0000 1.0000 1.0000  1.0000 0.9999
Countries
HOL IND IRE ITA JAP NOR SWI USA
D 1 1 1 1 2 1 1 1
M=6 0.7338  0.9997 0.9492 0.9645 0.0000 0.5927 0.6042 0.2175
M =12 0.9010 1.0000 0.9971 0.9987 0.0000 0.7650 0.7781 0.2284
M =18 0.9587 1.0000 0.9998 0.9999 0.0000 0.8506 0.8626  0.2207

! The value of p is selected by BIC. R
2When p = 1, the reported p-values are for U,(M), and when p = 2, the reported

p-values are for U, (M).

specification test in |Wang, Wu and Zhu| (2018) indicates that u; is unlike to be
an m.d.s.

Now, we wish to examine whether model can fit the CKC adequately for
16 countries using annual data from 1951 to 2009 (see |Piaggio and Padillal (2012)
and (Chan and Wang (2015)). We first choose the order p € {1,2,...,6} using
the Bayesian information criterion (BIC) for each data set. As such, we find that
p = 1 is selected in all cases except CHN and JAP; see Table 4. Hence, we apply
our portmanteau tests U, (M) for CHN (or JAP) and U, (M) for the remaining
countries in order to check the adequacy of model . The corresponding
results are given in Table 4, providing strong evidence that model cannot
fit the CKC adequately for JAP. Note that if we apply the Akaike information
criterion (AIC) to select the order p, we get the same results as those based on
the BIC, except that p = 5 is selected for JAP. In this case, the p-value of ﬁn(M)
(M =6, 12, or 18) for JAP is also close to zero, supporting the above conclusion.

To gain additional evidence, Figure 1 plots the CKC for JAP and USA. From
this figure, we can see that the CKC for JAP does not have the inverted U-shape
shown for USA, which may result in the inadequacy of model to fit the
CKC for JAP.

6. Conclusion

We have proposed a portmanteau test for the adequacy of nonlinear cointe-



A MEASURE OF LACK OF FIT 389

grating regression models. This test is based on a two-step estimation procedure.
However, unlike the portmanteau test for stationary models, we find that the lim-
iting distribution of the proposed test does not involve the estimation effect in
the first step of the estimation of the nonlinear cointegrating regression model.
Therefore, the limiting distribution of the test is the same as that of the sta-
tionary autoregressive model, and can be approximated by a simple chi-squared
distribution. Compared with the kernel-smoothed test of |Gao et al.| (2009b) and
Wang and Phillips (2012} 2016), the proposed test has two advantages. First,
our test is valid for an endogenous regressor driven by long memory innovations.
Second, our test is easy-to-implement and does not require the selection of band-
widths. Furthermore, we generalize the applicability scope of the proposed test
to include the additive nonlinear cointegrating regression model, the consistency
results of which are established. Simulation studies reveal that our proposed test
has wide applicability. Finally, we apply the proposed test to study the CKC in
16 countries.

Supplementary Material

The online Supplementary Material contains additional simulation results.
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Appendix: Proof of Main Results

A.1. Proofs of Theorems 1-3

In this appendix, we only prove Theorem 3, as others are similar except
simpler. To facilitate the proof, the following lemma is needed, and its proof is
referred to (7.2)-(7.3), (7.7) and (7.9) in Wang and Phillips| (2016 with minor
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modifications due to the fact that, for the u; appeared in one of model ({2.1)),
Remark 3 and model (2.7)), we may write uy = Y o 14— with the coefficients
Y1y satisfying 200 o kY4 vx| < oc.

Lemma 1. Suppose that Assumption 1 holds.

(i) If l(z) is a bounded function satisfying [ |l(z)|dz < oo, then

%" D (@)l (U + uei]) + Hzoi) Jus]] = Op(1), (A1)
s=k+1

dn, 12 » Op(1), under C1,
<> > i) ug = p() s (A.2)
" k=1 Op(log'/*n), under C2.

(ii) If l(x) is a locally bounded function, then

l(fi) (1+ [us—g]) + ’l<x8k>

dn,

(i1i) Let v(X\) be a positive real function which is bounded away from zero as
A\ — 00. For any real function I(x) satisfying [[(Ax)| < Cv(\)(1 + |z|?) for
some B >0 and

[l Ax) —l(Ay)| < Co(N) Ua: —yl+ Ri(Ax) + Rg(/\y)], (A.4)
whenever x and y are in a compact set, where R1(z) and Ro(z) are bounded
and integrable functions, we have

1

v(dn) 1t

23|

s=k+1

\us@ = 0p(1). (A3)

D [lws)us—k + Has—k)us] = Op(1). (A.5)

s=k+1

(iv) Results in (i)-(iii) still hold if we replace x; and d*> = var(z,) by 2 and
d3, = var(z,), respectively.

Proof of Theorem 3. As noticed in Remark 1, using some standard arguments,
it suffices to show that, for any k£ > 0, we have

1 . 1 <
% Us Us_} = % Z us us— +op(1), (A.6)

s=k+1 s=k+1

n

where u; =y — g(a4, §n) — f(z,0n). Let Ay = Ay g+ Ay 5, where

~

Al,s = g(xs, en) - g(lﬁs, 90) and A2,5 = f(ZS7 ﬁn) — f(zsa 770)'
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For any k > 0, we may write that us; = us + Ag and

Z as asfk = Z UsUs—k + R1p + Rop + R3y, (A7>
s=k+1 s=k+1
where
Ry, = Z Us As—ka Rg, = Z Us—k A and Rz, = Z A As—k'
s=k+1 s=k+1 s=k+1
The result (A.6]) will follow if we prove
Rm = Op(\/?l), 1= 1, 2, 3. (AS)

We first prove (A.8) for i = 2. Since f(z,0) satisfies ([2.9)), it follows from
(A.1) with i(z) = T'(z) that

ST Jusoil (Bl < AT —n0l) > Jussl T(ws)

s=k+1 s=k+1
= Op(v/n) ([ — moll) = op(v/n). (A.9)
On the other hand, under Assumption 3, we have

" PN - 9g(zs,00)
Z Us—k Al,s = Z(Gn] - 90j) Z Us—k 87;, + R§n7
s=k+1 Jj=1 s=k+1 !

where, by using (A.3)),

n
Rl < 1100 = 60lI"™ D s s|T ()
s=k+1

n B
~ €T
<18 - ol o) Y- fuenal |1+ (51

s=k+1
= Op(1) no(dy) [|6n — 6o,
for some o > 0. This, together with (A.4) and Lemma 1, yields that

n
§ Us—k A1,5

s=k+1

< Op(v/n) Y vj(dn) |0nj — bo;] + Op(1) nv(dy) |8 — o]+
j=1

= 0p(1) [I1Da(@ = 80) | + /2| Dy (B, — 60)]|+

= op(v/n). (A.10)
It follows from (A.9)) and (A.10) that, for any k£ > 0,

n
§ Us—F A1,5

s=k+1

n

’R2n| < Z |usfk’ |A2,s‘ +
s=k+1

= op(Vn).
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Similarly, we have |R1,| = op(y/n).
We next consider Rs,. By noting

xsﬂ
5 9

Al = lg(a2080) = 9o 8] < €1, = b0 ofa) (14 |3

a:sﬁ 2
dn,

due to Assumption 3(i), we have

ZA < Cv*(dn))|0n — 60]* D (1 +
s=1

< CHDn(9n —00)|* = op(Vn).
Similarly to ), by using (2 , we have

ZA < B2([[fin = moll) ZT2 (z5) = op(v/n).
s=1

It follows from these inequalities that

Roal <3 A2 <2[ 3 A3, + > A3, ] =op(vin).
s=1 s=1 s=1

We now establish (A.8]), and hence completed the proof of Theorem 3.

A.2. Proof of Theorem 4

To prove Theorem 4, we first introduce two lemmas below. Let A; and
B(0),0 € ©, be well-defined sequences of random variables on some probability
space, where ©® C R™ is a compact set. Let B, and B, be the first and second
derivatives of B.(f), so that B, = 0B, /00 and B, = 0°B, /0006’. We assume
these quantities exist whenever they are introduced. Set U; = A; — By(6p),
where 6 is a finite interior point of ©, and define /H\n = arg mingce @n(0), where

Qn(0) = X1, [Ar — Bi(9)]”.

Lemma 2. Suppose that there exists a sequence of random variables T}, j > 1,
such that

(i) for each 61,05 € O,
| B;j(61) — Bj(62)| < h(]|61 — 62]]) T}, (A.11)
where h(x) is a bounded real function such that h(x) | h(0) =0, as z | 0;

(ii) for an increasing sequence 0 < Kk, — 00,

(a) w2 3251 Tj [1+|Uj] + T3] = Op(),
(b) K2 S [Bi(0) — B(00)] Uy = op(1) for each 6 € ©;
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(i1i) for any n > 0 and 6 # Oy, where 0,0y € O, there exist ng > 0 and M > 0
such that

P (@2 ; [B:(6) — B(60)]” > ;4) >1-—1, (A.12)

for all n > ng, where 0 < K, — 00 is given in (ii).
Then, we have @\n —p bp.

Proof. The proof is similar to Theorem 5.8 of Wang| (2015) with minor modifi-
cations. We omit the details.

Lemma 3. Suppose that there erxist a sequence of constants {kn,n > 1} and
a sequence of m x m nonrandom nonsingular matrices {Dy,n > 1} satisfying
kn — o0 and ky || DY ||— 0, as n — oo, such that the following conditions hold:

(D) Py [Bu(0)Bi(6) — Bi(60) Bi(60)'] Dyt ||=

(i) SupPg.| D, (6—60)||<k»
OP((Srjz);

(i) SUPg|p, (9—0))|<kn | (Dr') Yotoy Be(8) [Bi(6) — Bi(60)] Dyt ||= 0p(6,2);
(iii) supgp, (9—a0) <k, || (D) Yorey Bi(8) U Dt ||= op(6,%);
(iv) Yy = (DY) S0 Bi(60)Bi(60) D' —p M, where M >0 (a.s.), and

Zn = (D1 Zn: Bi(00) Uy = Op(5,), (A.13)
t=1

where 1 < 8, < kL= for some e¢g > 0. Then, we have
Dy (6n — 00) = Y. Zy + 0p(1) = Op(5,). (A.14)

Proof. The proof is similar to Theorem 4.1 of |Wang and Phillips (2016) with
minor modifications. We omit the details.
Proof of Theorem 4. For the first part of (3.2), i.e., | Dn(6, — 60)|| = Op(1),
we make use of Lemma 3 with 4, = 1, k,, = logn,

A=y, Bi(0) =g(x1,0) and Uy =y — g(y, 00).

By noting Uy = f(zt,m0) + u¢ under model (22.8)), to verify conditions (i)-(iv) in
Lemma 3, it suffices to show that

(DY Zﬁ(l‘t, 0) f(zt,m0) Dy || = op(1),  (A.15)
=1

I, = sup
0:|| D, (0—060)||<logn

Ioy = (Dgl)/ Zg(wta 90) f(Zt7770) = OP(1>7 (A16>
t=1
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where D, = diag(v/nvg, (dn),...,v/nvg, (dn)). In fact, it follows easily from
Assumption 6(ii) with p(x 0o) = g(z,0p) and (iv) that

EA (dn)
= G S lsteom 1+ (50) ] e, 92

= 0p(1) [14— (g}gﬁxnlac;g]) ] \FZ\f zt,m)| = Op(1),

due to Lemma 1(iv) and maxj<g<y, |z%|/dn = Op(1). This proves . Simi-
larly, it follows from Assumption 6(i)—(ii) with p(x,f0) = §(z,0y) and (iv) that

1, O x|\ ? o(dy)vg,, (dn)
I, < Co 1(dn>g2|f(ztﬂ70)’ [1‘*‘ (’dt|> } | nax Wzgr(d)
j=1 n Sti=m Vg \Un)Ug; \Un

= Op(n™'?) = 0p(1),
which yields (A.16)). So, the proof for the first part of (3.2]) is completed.

We next consider the second part of (3.2)), i.e., 7, —p 1o, by usng Lemma 2
with

Ay =wy, By(0) = f(z,m) and Uy =Wy — f(zt,70)-
By noting U; = us + g(x¢, é\n) —g(zy,00), to verify conditions (i)-(iii) in Lemma 2,
it suffices to show that

Iy =™/ Y T(z) gt B) — (e 0)] = Op(1): (A17)
j—l
Iy, = n" /2 Z (zt,m) — f(zt,m0)] [g(act,é\n) — g(act,ﬁo)] =op(l), (A.18)

for each 6 € O, where T(z) is bounded and integrable. Note that

o) gt 00 < 1 a1+ (2Y] )

= Op(n™"?) [|Dn(Br — 601
due to Assumption 6(i) with p(x,0y) = g(z,6p) and (iv). The proofs of
and are similar to those of the first part in . We omit the details.
We finally prove by using Lemma 3 with §,, = logl/ 2n, k, =logn,
A =w, B(0) = f(zr,m) and Uy = — f(21,m0)-
Using the same ideas as in the proof of , together with Theorem 4.2 of [Wang
and Phillips (2016)), it suffices to show that
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Is, := u D;lln nZ, x,é\n* zy, 0 Dgl
o e (D7) 1Z;f( t1) [9(2t, 0n) — 9(1,00)] |
— onl(L). (A.20)
Ion = (Dgl)/ Zf(ztano) [g<xtvan) - g(l‘t,eo)] - OP(1)7 (A'21>
t=1

where D, = diag(y/nvy, (din), ..., vnvs (din)). By recalling (A.19) and using
Assumption 7, the proofs of (A.20) and (A.21)) are the same as those of (A.15)
and (A.16)). We omit the details. The proof of Theorem 4 is now completed.
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