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Abstract: This paper proposes a portmanteau test for the adequacy of nonlinear

cointegrating regression models. The proposed test is applicable to a wide class

of integrable and nonintegrable regression functions, with endogenous regressors

driven by either short or long memory innovations. In addition, the limiting dis-

tribution of the test is shown to be approximated by a chi-squared distribution.

Moreover, the scope of the test is generalized to include an additive nonlinear coin-

tegrating regression model, the consistency results of which are investigated as an

independent interest. Finally, the effectiveness of the portmanteau test is demon-

strated using simulations and real data.
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1. Introduction

Since the seminal work of Park and Phillips (1999, 2001), we have witnessed

significant progress in nonlinear cointegrating regressions. As shown in Chang,

Park and Phillips (2001), Park and Phillips (2001), and Chan and Wang (2015),

the asymptotics of a least squares estimator (LSE) in a parametric nonlinear coin-

tegrating regression model highly depend on the specification of the nonlinearity

function. Hence, a mis-specified or inadequate parametric model may lead to

misleading statistical inferences or erroneous conclusions. Therefore, we require

a test for checking the adequacy of nonlinear cointegrating regression models.

A growing body of research is focusing on testing the adequacy of parametric

nonlinear cointegrating regression models. When the error term is a martingale

difference sequence (m.d.s.), Kasparis (2010) constructed Bierens tests for the

integrable regression function, Kasparis and Phillips (2012) proposed two robust

tests for linearity, Wang and Phillips (2012) considered a kernel-smoothed U-test

for integrable and nonintegrable regression functions, and Wang, Wu and Zhu

(2018) utilized the idea of a marked process to form a parametric specification

test. See also Gao et al. (2009a,b) for further details on testing for linearity
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in autoregressions and parametric time series regressions. However, the m.d.s.

assumption for the error term may be restrictive in practice, because it rules

out endogenous regressors, which are expected in many applications, but make it

cumbersome to develop statistical inference methods; see, for example, Wang and

Phillips (2009a,b) and Wang (2015). To take endogenous regressors into account,

Wang and Phillips (2016) studied a kernel-smoothed test based on the work of

Härdle and Mammen (1993); see also Gao, Tjøstheim and Yin (2012). Their test

is applicable when the regressor is driven by short memory innovations, but is

not well suited to the long memory case, owing to the zero asymptotic size and

the substantial reductions in power. To the best of our knowledge, no attempt

has been made to propose a useful test for examining the adequacy of a nonlinear

cointegrating regression model when the regressor is endogenous and driven by

long memory innovations.

Utilizing the idea originated by Box and Pierce (1970) and Ljung and Box

(1978), this study develops an easy-to-implement portmanteau test for check-

ing the adequacy of parametric nonlinear cointegrating regression models. The

limiting distribution of this test is shown to be approximated by a chi-squared

distribution under regular conditions, covering a wide class of integrable and

nonintegrable regression functions with an endogenous regressor driven by either

short or long memory innovations. The implementation of the proposed test

requires only a consistent preliminary estimator when the regression function is

integrable. When nonintegrable, it requires a consistent preliminary estimator

with a certain convergence rate, depending on the form of the nonlinearity. Com-

pared with the portmanteau test for the stationary model, the estimation effect

resulting from the nonlinear cointegrating regression model is not involved in the

limiting distribution of the proposed test. Compared with the kernel-smoothed

test of Wang and Phillips (2016), the proposed test works for the endogenous

regressor driven by long memory innovations, while avoiding the use of band-

widths. As we know, choosing bandwidths is often difficult for practitioners.

Furthermore, the scope of the proposed test is generalized to include the addi-

tive nonlinear cointegrating regression model, the consistency results of which

are interesting in their own rights.

The remainder of this paper is organized as follows. Section 2 proposes the

portmanteau test for checking the adequacy of nonlinear cointegrating regression

models, obtains its asymptotics, and generalizes its result to additive models.

Section 3 gives the consistency results for the corresponding additive models.

Simulation studies and applications are provided in Sections 4 and 5, respectively.
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Concluding remarks are offered in Section 6. Some additional simulation results

are given in the online Supplementary Material. All proofs are deferred to the

Appendix.

2. The Model and Main Results

Consider a nonlinear cointegrating regression model

yt = g(xt, θ) + ut, (2.1)

where ut = ρut−1 + νt with |ρ| < 1, xt is a nonstationary regressor, g(x, θ) is

a given real function, and θ = (θ1, . . . , θm)′ are unknown parameters that lie

in the compact parameter space Ω0 ⊂ Rm. Model (2.1) allows the regressor xt
to be endogenous and to be driven by long memory innovations, which are two

important aspects to meeting the practical demand. However, no existing tests

for checking the adequacy of model (2.1) take these two aspects into account.

This motivates us to propose a portmanteau test, that is compatible with these

two aspects.

Assume that θ̂n is a consistent estimator of θ0 based on the observations

{(xt, yt)}nt=1, where θ0 = (θ01, . . . , θ0m)′ ∈ Ω0 is the true value of θ. Let ût =

yt−g(xt, θ̂n) be the residual of ut and ν̂t = ût− ρ̂ût−1 be the residual of vt, where

ρ̂ =

∑n
s=2 ûsûs−1∑n
s=2 û

2
s−1

is the LSE of ρ based on the autoregression ût = ρût−1 + νt. In particular, when

ρ = 0, we set ν̂t = ût for all t. Based on {ν̂t}nt=1, our portmanteau test statistic

is defined as

Ûn(M) := n(n+ 2)

M∑
k=1

â2
k

n− k
,

for some integer M ≥ 1, where

âk =

∑n
t=k+1 ν̂tν̂t−k∑n

t=1 ν̂
2
t

is the sample autocorrelation of ν̂t at lag k. Clearly, the portmanteau test Ûn(M)

aims to detect the autocorrelation of the residual of νt at the first M lags. This

idea was first proposed by Box and Pierce (1970) and Ljung and Box (1978),

followed by many variants for stationary models, including Romano and Thombs

(1996), Francq, Roy and Zaköıan (2005), Escanciano and Lobato (2009), Delgado

and Velasco (2011), and Zhu (2016). As a parallel tool, the spectral test can be

used to detect the residual autocorrelation at each valid lag; see, for example,
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Hong (1996) and Zhu and Li (2015) for stationary models. An investigation of

the spectral test for model (2.1) is an interesting topic for future study.

Throughout this section, let ηi ≡ (εi, νi)
′, for i ∈ Z, be a sequence of in-

dependent and identically distributed (i.i.d.) random vectors, with Eη0 = 0,

E (η0η
′
0) = Σ, and E‖η0‖α < ∞, for some α > 2. Furthermore, assume that

Eε20 = 1 and that the characteristic function ϕ(t) of ε0 satisfies the integrability

condition
∫∞
−∞(1+ |t|) |ϕ(t)|dt <∞, thus ensuring smoothness in the correspond-

ing density.

To establish the asymptotics of Ûn(M), we use the following assumptions.

Assumption 1. xt =
∑t

j=1 ξj, where ξj, for j ≥ 1, is a linear process defined

by ξj =
∑∞

k=0 φk εj−k, with coefficients φk, for k ≥ 0, satisfying φ0 6= 0 and one

of the following conditions:

C1. φk ∼ k−µ π(k), where 1/2 < µ < 1 and π(k) is a function slowly varying

at ∞;

C2.
∑∞

k=0 |φk| <∞ and φ ≡
∑∞

k=0 φk 6= 0.

Assumption 2. For each θ, θ0 ∈ Ω0, there exists a bounded and integrable real

function T (x) such that

|g(x, θ)− g(x, θ0)| ≤ h(‖θ − θ0‖)T (x), (2.2)

where h(x) is a bounded real function satisfying h(x)→ 0 as |x| → 0.

Assumption 3. For each θ, θ0 ∈ Ω0, there exist positive real functions T (x),

v(x), and vj(x), for j = 1, . . . ,m, such that, for any λ > 0,

(i) T (λx) ≤ v(λ)(1 + |x|β),
∣∣(∂g(x, θ0))/(∂θj)

∣∣ ≤ T (x), for j = 1, . . . ,m, and∣∣∣∣ g(x, θ)− g(x, θ0)−
m∑
j=1

(θj − θ0j)
∂g(x, θ0)

∂θj

∣∣∣∣ ≤ ‖θ − θ0‖1+α T (x), (2.3)

for some α > 0 and β > 0;

(ii) whenever x and y are in a compact set, for each 1 ≤ j ≤ m,∣∣∣∣∂g(λx, θ0)

∂θj
− ∂g(λy, θ0)

∂θj

∣∣∣∣ ≤ vj(λ)
[
|x− y|+R1j(λx) +R2j(λy)

]
, (2.4)

where R1j(z) and R2j(z) are bounded and integrable functions;

(iii) as K →∞, sup|x|≥K max1≤j≤m v(x)/vj(x) <∞.

Assumption 1 allows for long (under C1) and short (under C2) memory

innovations ξj to drive the regressor xt. Furthermore, it allows the equation error
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ut to be cross-correlated with the regressor xs, for all s ≤ t, thereby inducing

endogeneity and yielding the structural model (2.1). Let d2
n = var(xn). Under

Assumption 1(ii), it follows from Wang, Lin and Gulati (2003) that

d2
n ∼

{
cµ n

3−2µ π2(n), under C1,

φ2 n, under C2,
(2.5)

where cµ = (1/((1− µ)(3− 2µ)))
∫∞

0 x−µ(x + 1)−µdx and max1≤k≤n |xk|/dn =

OP (1). These facts are used later without further explanation.

Assumption 2 essentially requires that g(x, θ) is bounded and integrable for

each θ ∈ Ω0. Typical examples for Assumption 2 include the following inte-

grable functions: g(x, θ) = θ1|x|θ2I(x ∈ [a, b]), for finite constants a and b;

the Gaussian function g(x, θ) = θ1e
−θ2x2

; and the Laplacian function g(x, θ) =

θ1e
−θ2|x|. Assumption 3 removes the boundedness and integrability conditions

on g(x, θ), but imposes additional conditions for technical reasons. Typical

examples for Assumption 3 include the following asymptotically homogeneous

functions: g(x, θ) = (x + θ)2; θex/(1 + ex); θ log |x|; θ|x|α (α is fixed); and

θ1 + θ2|x|+ · · ·+ θk|x|k. Both Assumptions 2 and 3 are weak and partially used

in Wang and Phillips (2016) to estimate the parameter θ in model (2.1). See also

Section 3 of this paper for further details.

We have the following main results for Ûn(M).

Theorem 1. Suppose that Assumptions 1 and 2 hold, and that an estimator θ̂n
exists such that θ̂n ∈ Ω0 and θ̂n →P θ0. If model (2.1) is specified correctly, then

the limiting distribution of Ûn(M) can be approximated by χ2
M−1 for large M .

Theorem 2. Suppose that Assumptions 1 and 3 hold, and that an estimator θ̂n
exists such that θ̂n ∈ Ω0 and ‖Dn (θ̂n− θ0)‖ = OP (logδ n), for some δ > 0, where

Dn = diag
(√
n v1(dn), . . . ,

√
n vm(dn)

)
. If model (2.1) is specified correctly, then

the limiting distribution of Ûn(M) can be approximated by χ2
M−1 for large M .

Remark 1. The proofs of Theorems 1 and 2 depend only on the fact that, for

any k ≥ 0,

1√
n

n∑
s=k+1

ûs ûs−k =
1√
n

n∑
s=k+1

us us−k + oP (1), (2.6)

which guarantees that the estimation effect on θ does not exist in the limiting

distribution of Ûn(M). Indeed, from (2.6) and some standard calculations, we

have that

√
nâk =

√
nak + oP (1) :=

√
n

(∑n
t=k+1 νtνt−k∑n

t=1 ν
2
t

)
+ oP (1),
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where νt = ut − ρut−1 and

ρ =

∑n
s=2 usus−1∑n
s=2 u

2
s−1

.

Hence, the limiting distribution of Ûn(M) is the same as that of Un(M), where

Un(M) = n(n+ 2)

M∑
k=1

a2
k

n− k
.

Note that ρ is the LSE of ρ in the autoregressive model ut = ρut−1 +νt, and ak is

exactly the lag-k autocorrelation of its model residuals. Therefore, the limiting

distribution of Un(M) (or Ûn(M)) involving the estimation effect on ρ, is given

in Theorem 3 of Francq, Roy and Zaköıan (2005), and can be approximated by

χ2
M−1 for large M when νt is i.i.d.

Under Assumption 1, the regressor xt is nonstationary. If the regression

function g(x, θ) is bounded and integrable, result (2.6) can be established under

the minimum conditions that θ̂n ∈ Ω0 and θ̂n →P θ0. This is because the

nonstationarity weakens the signal and, hence, the restriction imposed on θ̂n
when g(x, θ) is integrable. This is quite different from the stationary regression

and time series model. In the latter case, we usually require
√
n-consistency

of a preliminary estimator. If g(x, θ) is not bounded and integrable, result (2.6)

requires a certain convergence rate on θ̂n in order to check the adequacy of model

(2.1). Again, this differs from the stationary situation, because the convergence

rate depends on the form of g(x, θ). Note that both of the convergence conditions

required for θ̂n in Theorems 1 and 2 can be achieved under Assumption 1 and

some additional smooth conditions on g(x, θ); see Section 3 for additional details.

Remark 2. The portmanteau test Ûn(M) checks whether the form of g(x, θ) is

specified correctly, but cannot be used when g(x, θ) itself is unknown. To see

this clearly, we consider a simple nonparametric cointegrating regression model:

yt = g(xt, θ0) + ut,

where θ0 is given and g(x, θ0) is an unknown real function. As investigated in

Wang and Phillips (2009a,b, 2016), the function g(x, θ0) can be estimated by the

conventional kernel estimator

ĝ(x, θ0) =

∑n
t=1 ytK[(xt − x)/h]∑n
t=1K[(xt − x)/h]

,

where K(x) is a positive kernel function and h → 0 is a bandwidth. De-

fine ût = yt − ĝ(x, θ0). As noted in Linton and Wang (2016), it is unrealis-

tic to establish (2.6), even for k = 0, owing to the slow convergence rate for
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ĝ(x, θ0)→P g(x, θ0). Therefore, the portmanteau test Ûn(M) cannot be used for

nonparametric cointegrating regression models with nonstationarity.

Remark 3. The condition that νt is i.i.d. is standard in the nonstationary

time series literature; see, for example, Chan and Wang (2015), Wang (2015),

and Wang and Phillips (2016), among many others. This technical condition

is not necessary. Some simple algebra in part A.1 of the Appendix shows that

νt can be replaced by a less restrictive linear process ν ′t =
∑∞

k=0 ψkνt−k, with∑∞
k=0 k

1/4|ψk| < ∞. It is not clear, however, whether νt can be replaced by a

nonlinear stationary process, such as autoregressive conditional heteroskedastic-

ity (ARCH)-type errors. Numerically, our simulation studies (see the Supplemen-

tary Material) show that our portmanteau tests (with a slight modification to

take into account the conditional heteroskedasticity and the estimation effect on

ρ) have good finite-sample performance when νt has an ARCH-type structure.

Theoretically, new technique is required to modify Lemma 1 in the Appendix

from a linear process νt to a nonlinear stationary process. This kind of modifi-

cation seems challenging and, hence, is left for future work.

Remark 4. Consider model (2.1) with AR(p) errors; that is, ut is assumed to

be strictly stationary satisfying

ut = ρ1ut−1 + ρ2ut−2 + · · ·+ ρput−p + νt, (2.7)

where 1 − ρ1z − ρ2z
2 − · · · − ρpzp 6= 0 when |z| ≤ 1. In this situation, we set

ν̃t = ût−
∑p

j=1 ρ̂j ût−j , where (ρ̂1, . . . , ρ̂p)
′ is the LSE of (ρ1, . . . , ρp)

′ based on the

autoregression ût = ρ1ût−1 + ρ2ût−2 + · · ·+ ρpût−p + νt. As before, we construct

the portmanteau test statistic as

Ũn(M) := n(n+ 2)

M∑
k=1

ã2
k

n− k
,

for some integer M ≥ 1, where

ãk =

∑n
t=k+1 ν̃tν̃t−k∑n

t=1 ν̃
2
t

.

Under the conditions in Theorem 1 or 2, we can similarly show that the limiting

distribution of Ũn(M) can be approximated by χ2
M−p for large M .

To end this section, we show that the results for our portmanteau tests can

be generalized to the following additive nonlinear cointegrating regression model:

yt = g(xt, θ) + f(zt, η) + ut, (2.8)

where ut = ρut−1 +νt with |ρ| < 1, xt and zt are nonstationary regressors, g(x, θ)
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and f(x, η) are given real functions, and θ = (θ1, . . . , θm)′ and η = (η1, . . . , ηk)
′

are unknown parameters that lie in the compact parameter space Ω0 ⊂ Rm and

Ω1 ⊂ Rk, respectively.

Let θ0 and η0 be the true values of θ and η in model (2.8). As xt and g(x, θ) in

Assumptions 1 and 3, we make the following two assumptions on zt and f(x, η),

respectively.

Assumption 4. zt =
∑t

j=1 ζj, where ζj, for j ≥ 1, is a linear process defined by

ζj =
∑∞

k=0 ϕk εj−k, with coefficients ϕk, k ≥ 0, satisfying ϕ0 6= 0 and one of the

following conditions:

C1’. ϕk ∼ k−µ π(k), where 1/2 < µ < 1 and π(k) is a function slowly

varying at ∞.

C2’.
∑∞

k=0 |ϕk| <∞ and ϕ ≡
∑∞

k=0 ϕk 6= 0.

Assumption 5. For each η, η0 ∈ Ω1, there exists a bounded and integrable real

function T (x), such that

|f(x, η)− f(x, η0)| ≤ h(‖η − η0‖)T (x), (2.9)

where h(x) is a bounded real function satisfying h(x)→ 0 as |x| → 0.

Note that the innovation εi in zt can be replaced by the random sequence ε∗i
satisfying that (εi, ε

∗
i , νi)

′, for i ∈ Z, are i.i.d. random vectors, where ε∗i has

the same distributional properties as those of εi. In addition, as discussed in

Remark 2, the technical condition that νt is i.i.d. is not entirely necessary for

our asymptotics to hold.

As before, we define the portmanteau test statistic Ûn(M) for model (2.8),

but with ût replaced by

ût = yt − g(xt, θ̂n)− f(zt, η̂n),

where θ̂n and η̂n are consistent estimators of θ and η, respectively. We have the

following result, which extends Theorems 1 and 2.

Theorem 3. Suppose Assumptions 1 and 3–5 hold, and there exist estimators θ̂n
and η̂n, such that (i) θ̂n ∈ Ω0 and ‖Dn (θ̂n − θ0)‖ = OP (logδ n), for some δ > 0,

where Dn = diag
(√
n v1(dn), . . . ,

√
n vm(dn)

)
, and (ii) η̂n ∈ Ω1 and η̂n →P η0. If

model (2.8) is specified correctly, then the limiting distribution of Ûn(M) can be

approximated by χ2
M−1 for large M .

Remark 5. The estimators θ̂n and η̂n of θ and η, respectively, in model (2.8) that

satisfy the conditions required in Theorem 3 are constructed in the next section.

In principle, there are no technical difficulties in extending model (2.8) to allow for
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the time trend or for additional integrable and nonintegrable functions whenever

the model parameters can be estimated with certain convergence rates. However,

when the regressors are endogenous and driven by long memory innovations, it

becomes difficult to construct the corresponding consistent estimators under the

general settings of the model. More details can be found in Remark 6.

3. Parametric Consistency

The estimation of θ in model (2.1) has been considered in Wang and Phillips

(2016). In this section, we provide primitive conditions for the verification of

consistent parametric estimations of θ and η in model (2.8). This is required in

Theorem 3 and, to the best of our knowledge, is new to the literature.

Let wt = f(zt, η) + ut. Then, model (2.8) can be rewritten as

yt = g(xt, θ) + wt. (3.1)

Note that the behavior of wt is similar to that of a stationary process, owing to

the boundedness and integrability of f(x, η). The unknown parameters θ0 and

η0 in model (2.8) can be estimated using the following two-step nonlinear least

squares estimation procedure:

Step 1: Estimate θ0 by

θ̂n = arg min
θ∈Ω0

n∑
t=1

[
yt − g(xt, θ)

]2
.

Step 2: Set ŵt = yt − g(xt, θ̂n). Estimate η0 by

η̂n = arg min
η∈Ω1

n∑
t=1

[
ŵt − f(zt, η)

]2
.

To establish the consistent properties of θ̂n and η̂n, as required in Theorem 3,

we need additional smooth conditions on g(x, θ) and f(x, η). Let ġ and g̈ be the

first and second derivatives of g(x, θ), such that ġ = ∂g/∂θ and g̈ = ∂2g/∂θ∂θ′.

Similar definitions are used for ḟ and f̈ .

Assumption 6. Let p(x, θ) be any of g, ġi, or g̈ij, for 1 ≤ i, j ≤ m. There exists

a positive real function vp(λ) that is bounded away from zero as λ → ∞, and a

constant β ≥ 0 such that, for each θ, θ0 ∈ Ω0:

(i) |p(x, θ)− p(x, θ0)| ≤ C ‖θ − θ0‖T1p(x), where T1p(λx) ≤ C vp(λ) (1 + |x|β);

(ii) p(λx, θ0) ≤ C vp(λ) (1 + |x|β), and for p(x, θ0) = ġi(x, θ0) or g̈ij(x, θ0), for
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1 ≤ i, j ≤ m,

|p(λx, θ0)− p(λy, θ0)| ≤ Cvp(λ)
[
|x− y|+R1p(λx) +R2p(λx)

]
,

whenever x and y are in a compact set, where R1p(z) and R2p(z) are bounded

and integrable functions;

(iii) ġi(λx, θ0) = vġi(λ)hi(x, θ0)+Ri(λ, x, θ0), for 1 ≤ i ≤ m, where Ri(λ, x, θ0) =

o
[
vġi(λ)hi(x, θ0)

]
as |λ| → ∞, and hi(x, θ0) is a locally bounded function

(i.e., bounded on any compact set) satisfying
∑

δ =
∫
|s|≤δ h(s, θ0)h(s, θ0)′ds >

0, for all δ > 0, where h(x, θ0) =
(
h1(x, θ0), . . . , hm(x, θ0)

)′
;

(iv) sup1≤j≤m |v(dn)/v̇j(dn)| <∞ and sup1≤i,j≤m |(v(dn) v̈ij(dn))/(v̇i(dn) v̇j(dn))|
<∞, where v(λ) = vg(λ), v̇i(λ) = vġi(λ), and v̈ij(λ) = vg̈ij (λ).

Assumption 7. Let p(x, η) be any of f , ḟi, or f̈ij, 1 ≤ i, j ≤ k.

(i) p(x, η0) is a bounded and integrable real function;

(ii) there exists a bounded and integrable function Tp : R → R, such that

|p(x, η)− p(x, η0)| ≤ C ‖η − η0‖Tp(x), for each η, η0 ∈ Ω1;

(iii) Σ =
∫∞
−∞ ḟ(s, η0)ḟ(s, η0)′ds > 0, for each η0 ∈ Ω1, where ḟ(s, η0) =(

ḟ1(s, η0), . . . , ḟk(s, η0)
)′

.

Assumptions 6 and 7 are both used in Wang and Phillips (2016) for the

consistency of θ in model (2.1). Assumption 6 allows for asymptotically homoge-

neous functions, and Assumption 7 holds for a wide range of integrable regression

functions; see Section 2 for specific examples in each group.

We have the following result for the consistency of θ̂n and η̂n, indicating that

θ̂n and η̂n are applicable to construct Ûn(M).

Theorem 4. Suppose that Assumptions 1, and 4–6 hold, and τ =
∫∞
−∞[f(x, η)

−f(x, η0)]2dx 6= 0, for any η 6= η0. Then, under model (2.8), we have

‖Dn(θ̂n − θ0)‖ = OP (1) and η̂n →P η0, (3.2)

where Dn = diag(
√
nvġ1(dn), . . . ,

√
nvġm(dn)). Furthermore, if Assumption 7

holds, we have

‖η̂n − η0‖ =

(
d1n

n

)1/2
{
OP (1), under C1’,

OP (log1/2 n), under C2’,
(3.3)

where d2
1n = var(zn).
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Remark 6. When there is a martingale difference structure in the error term,

Chang, Park and Phillips (2001) considered the nonlinear LSE in a general addi-

tive model, including the time trend and additional integrable and nonintegrable

regression functions. The present model (2.8) is less general than that of Chang,

Park and Phillips (2001), but it allows for endogenous regressors driven by the

long memory innovations. From the viewpoint of nonlinear cointegrating regres-

sions, endogeneity seems to be in greater demand. Moreover, unlike the LSE of

Chang, Park and Phillips (2001), the estimators θ̂n and η̂n in the present model

(2.8) are constructed using a two-step least squares estimation procedure. For

the usual LSE, we need to establish the general limiting distribution theory for

θ̂n and η̂n; see, for example, Wang and Phillips (2016). This remaining challenge

in nonlinear nonstationary asymptotics is left for future work. Although the

theoretical development is absent, the simulation studies in the Supplementary

Material show that our portmanteau test exhibits good finite-sample performance

for the additive model in Chang, Park and Phillips (2001) with the endogenous

and long memory regressor. This implies that our portmanteau test should be

widely applicable.

4. Simulation

In this section, we examine the finite-sample performance of Ûn(M) for in-

tegrable regression functions, nonintegrable regression functions, and additive

regression functions. Here, we consider the case in which the error term ut fol-

lows an AR(1) model with an i.i.d. innovation. Additional simulation results can

be found in the Supplementary Material, where ut follows an AR(1) model with

an ARCH-type innovation.

4.1. Integrable regression function

We generate 5,000 replications of sample size n = 100, 200, or 500 from the

following data-generating models:

yt = exp(−θ0|xt|) + ut; (4.1)

yt = exp(−θ0|xt|) + 0.5|xt|2I(|xt| ≤ 10) + ut; (4.2)

yt = exp(−θ0|xt|) + 20 exp(−|xt|2) + ut; (4.3)

yt = exp(−θ0|xt|) + 0.1|xt|+ ut; (4.4)

yt = exp(−θ0|xt|) + 0.1|xt|2 + ut, (4.5)
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where θ0 = 1, xt = xt−1 + ξt with (1 − 0.8B)(1 − B)dξt = (1 + 0.3B)εt, ut =

ρut−1 + νt with ρ = ±0.5, and

(εt, νt) ∼ i.i.d. N

(
0,

(
1 r

r 1

))
.

Here, model (4.1) is used as the null model, and models (4.2)-(4.5) are used as

alternative models, in which the first (or last) two models deviate from the null

model by an integrable (or nonintegrable) function. For each examined model,

the regressor xt is designed to be short memory (d = 0) or long memory (d = 0.2),

and exogenous (r = 0) or endogenous (r = 0.5 or 0.8). In all calculations, we

compute θ̂n as the nonlinear LSE of θ0 based on model (4.1).

Table 1 reports the size and power of Ûn(M) for M = 6, 12, and 18 at the

5% significance level. The size of Ûn(M) corresponds to the case in which yt ∼
model (4.1), where the critical value of Ûn(M) is chosen to be the 5% upper

percentile of χ2
M−1. From this table, our findings are as follows.

(ai) The size of Ûn(M) is generally precise, although it seems to be slightly

oversized when M = 12 (or 18) and n is small.

(aii) The power of Ûn(M) is less affected by the choice of M , and increases

with the value of n.

(aiii) In general, the power of Ûn(M) under models (4.4)–(4.5) is larger than

that under models (4.2)–(4.3).

(avi) For each examined alternative with the same values of ρ and d, the

power of Ûn(M) is largely unaffected by the choice of r, meaning that the endo-

geneity of xt has little impact on the performance of Ûn(M). For each examined

alternative with the same value of ρ, the power of Ûn(M) is robust to the choice

of d, especially when M = 12 or 18. Lastly, in general, the power of Ûn(M) when

ρ = −0.5 is greater than that when ρ = 0.5.

4.2. Nonintegrable regression function

We generate 5,000 replications of sample size n = 100, 200, or 500 from the

following data-generating models:

yt = θ10 + θ20xt + ut; (4.6)

yt = θ10 + θ20xt + 0.5|xt|2I(|xt| ≤ 10) + ut; (4.7)

yt = θ10 + θ20xt + 20 exp(−|xt|2) + ut; (4.8)

yt = θ10 + θ20xt + 0.1|xt|+ ut; (4.9)

yt = θ10 + θ20xt + 0.1|xt|2 + ut, (4.10)
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Table 1. Size and power (×100) of Ûn(M) for models (4.1)–(4.5).

M = 6 M = 12 M = 18

Model ρ d r
n 100 200 500 100 200 500 100 200 500

(4.1) 0.5 0.0 0.0 5.4 4.7 5.4 6.1 5.1 5.3 6.4 5.4 5.9
0.5 4.7 4.4 4.9 5.6 5.3 4.8 6.2 5.8 5.5
0.8 5.2 4.3 4.9 5.4 5.0 4.5 6.8 5.9 4.8

0.2 0.0 5.1 4.8 4.7 5.4 5.2 4.9 6.1 5.5 5.5
0.5 5.3 5.5 4.3 5.7 5.5 4.9 6.2 5.8 5.4
0.8 5.0 4.9 5.2 5.1 5.1 5.5 5.9 5.2 5.6

-0.5 0.0 0.0 5.1 5.3 5.1 5.8 5.6 5.7 6.3 5.7 5.6
0.5 5.2 4.8 5.0 6.0 5.3 5.1 6.6 6.1 4.7
0.8 5.4 5.2 5.2 6.3 5.6 4.9 6.7 6.1 4.9

0.2 0.0 5.2 5.4 5.2 5.6 5.4 5.2 6.2 5.7 5.0
0.5 4.9 5.2 4.7 5.5 5.2 4.4 6.1 5.8 4.8
0.8 5.5 5.3 4.6 5.6 5.3 5.2 5.9 5.7 5.3

(4.2) 0.5 0.0 0.0 12.9 28.5 53.5 13.7 35.4 70.6 13.0 35.0 74.2
0.5 11.9 28.2 52.9 13.2 34.1 70.5 12.9 32.8 74.7
0.8 13.2 27.1 54.6 13.3 34.2 72.2 12.6 34.1 74.7

0.2 0.0 13.8 33.6 63.2 12.9 35.4 70.3 12.0 32.8 68.8
0.5 14.0 33.7 63.4 12.6 34.6 71.4 12.0 31.8 70.6
0.8 13.5 33.7 62.8 13.5 34.9 70.3 12.0 31.7 69.0

-0.5 0.0 0.0 13.0 30.5 66.1 12.6 36.4 78.8 12.0 36.5 80.2
0.5 12.4 29.9 65.1 12.6 37.0 78.0 12.4 36.0 79.6
0.8 12.4 30.0 64.8 13.6 36.8 78.2 12.5 36.5 80.1

0.2 0.0 14.4 37.6 75.3 13.1 38.5 78.0 12.0 35.1 75.2
0.5 14.6 37.2 74.4 12.9 38.2 77.9 11.7 34.7 75.3
0.8 15.0 36.3 75.2 14.2 38.0 78.5 12.4 34.7 75.8

(4.3) 0.5 0.0 0.0 17.1 24.1 36.4 12.4 24.1 38.7 8.4 20.9 38.0
0.5 16.5 24.9 35.1 12.1 23.5 38.0 8.5 20.2 37.9
0.8 16.0 24.2 36.5 11.8 23.0 38.8 7.9 20.0 38.2

0.2 0.0 14.1 20.7 27.9 9.9 18.8 28.8 6.2 15.7 27.4
0.5 13.9 21.3 26.1 9.9 19.5 27.6 6.1 16.2 27.1
0.8 13.9 19.5 26.9 10.0 18.5 28.1 6.6 15.4 26.7

-0.5 0.0 0.0 14.0 28.1 55.5 11.4 26.8 55.0 7.6 23.3 53.9
0.5 14.5 28.5 56.6 11.0 27.7 55.8 8.1 24.5 54.9
0.8 14.1 27.3 56.6 11.0 26.2 55.3 8.0 23.9 54.1

0.2 0.0 12.4 22.4 40.2 9.7 21.5 39.0 6.2 18.9 37.9
0.5 11.5 21.9 41.9 8.9 21.4 40.8 6.1 19.4 39.6
0.8 11.3 22.5 40.9 8.6 21.4 39.6 5.8 18.9 39.4

(4.4) 0.5 0.0 0.0 16.1 39.1 83.3 14.2 33.7 85.0 13.1 29.5 83.4
0.5 15.8 36.9 83.4 13.9 31.3 83.8 13.2 27.8 80.9
0.8 14.7 33.6 80.8 12.9 28.7 81.6 12.1 25.3 79.0

0.2 0.0 20.1 43.2 88.3 17.0 35.5 84.2 15.8 31.6 77.5
0.5 19.0 40.8 86.9 16.8 33.8 81.9 15.4 29.7 75.7
0.8 17.9 37.3 82.2 15.3 30.6 75.9 14.5 27.9 69.9

-0.5 0.0 0.0 83.9 98.4 100 81.0 97.9 100 78.9 97.2 100
0.5 85.5 98.5 100 82.4 97.9 100 80.4 97.2 100
0.8 86.5 98.6 100 83.9 98.3 100 80.9 97.7 100

0.2 0.0 94.2 99.9 100 92.7 99.7 100 91.6 99.6 100
0.5 94.6 99.8 100 93.0 99.7 100 92.1 99.7 100
0.8 94.1 99.8 100 92.5 99.6 100 91.3 99.6 100

(4.5) 0.5 0.0 0.0 98.8 100 100 98.3 99.9 100 97.6 99.9 100
0.5 98.6 99.9 100 98.0 99.9 100 97.1 99.9 100
0.8 98.8 100 100 98.2 100 100 97.5 100 100

0.2 0.0 99.9 100 100 99.8 100 100 99.5 100 100
0.5 99.8 100 100 99.7 100 100 99.4 100 100
0.8 99.8 100 100 99.5 100 100 99.3 100 100

-0.5 0.0 0.0 97.7 99.9 100 96.5 99.9 100 95.1 99.8 100
0.5 98.0 100 100 96.6 99.8 100 95.2 99.8 100
0.8 97.1 100 100 96.0 100 100 95.0 99.9 100

0.2 0.0 99.7 100 100 99.4 100 100 98.8 100 100
0.5 99.7 100 100 99.4 100 100 99.0 100 100
0.8 99.8 100 100 99.4 100 100 99.1 100 100
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where (θ10, θ20) = (0, 1), and the remaining setups follow those of models (4.1)–

(4.5). In all calculations, we compute (θ̂0n, θ̂1n) as the nonlinear LSE of (θ10, θ20)

based on model (4.6).

Table 2 reports the size and power of Ûn(M) at the 5% significance level,

where the size of Ûn(M) corresponds to the case of yt ∼ model (4.6), and the

critical value of Ûn(M) is chosen to be the 5% upper percentile of χ2
M−1. From

this table, our findings are similar to those in Table 1, except that the power of

Ûn(M) seems less satisfactory when yt ∼ model (4.9), with ρ = 0.5 and small n.

4.3. Additive regression function

We generate 5,000 replications of sample size n = 100, 200, or 500 from the

following data-generating models:

yt = θ10 + θ20xt + exp(−η0|zt|) + ut; (4.11)

yt = θ10 + θ20xt + exp(−η0|zt|) + 0.5|κt|2I(|κt| ≤ 10) + ut; (4.12)

yt = θ10 + θ20xt + exp(−η0|zt|) + 20 exp(−|κt|2) + ut; (4.13)

yt = θ10 + θ20xt + exp(−η0|zt|) + 0.1|κt|+ ut; (4.14)

yt = θ10 + θ20xt + exp(−η0|zt|) + 0.1|κt|2 + ut, (4.15)

where κt = max(xt, zt), (θ10, θ20, η0) = (0, 1, 1), zt = zt−1 +ζt with (1−0.8B)(1−
B)dζt = (1 + 0.3B)ε∗t ,

(εt, ε
∗
t , νt) ∼ i.i.d. N

0,

 1 0.5 r

0.5 1 0.5

r 0.5 1


 ,

and the remaining setups follow those of models (4.1)–(4.5). In all calculations,

we compute (θ̂0n, θ̂1n, η̂n) as the two-step nonlinear LSE of (θ10, θ20, η0) based on

model (4.11).

Table 3 reports the size and power of Ûn(M) at the 5% significance level,

where the size of Ûn(M) corresponds to the case of yt ∼ model (4.11), and

the critical value of Ûn(M) is chosen to be the 5% upper percentile of χ2
M−1.

Once again, our findings are similar to those in Table 2. However, note that

the additional simulation studies in the Supplementary Material show that our

portmanteau test Ûn(M) also exhibits good finite-sample performance for the

additive model in Chang, Park and Phillips (2001), with a time trend and two

integrable or nonintegrable functions.

In summary, regardless of the type of regression function, the proposed port-

manteau test exhibits good finite-sample performance in all examined cases. In
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Table 2. Size and power (×100) of Ûn(M) for models (4.6)–(4.10).

M = 6 M = 12 M = 18

Model ρ d r
n 100 200 500 100 200 500 100 200 500

(4.6) 0.5 0.0 0.0 5.7 5.2 4.5 6.4 6.3 5.2 7.0 6.5 5.4
0.5 5.1 5.2 4.8 6.1 4.9 5.5 6.8 5.6 5.8
0.8 5.7 5.9 5.0 6.3 6.2 5.3 6.9 6.4 5.6

0.2 0.0 5.1 4.9 4.9 6.1 5.5 5.3 6.4 6.1 5.4
0.5 5.7 5.1 5.4 7.0 5.3 5.2 7.3 5.5 5.3
0.8 5.8 4.9 5.6 6.3 6.1 5.3 6.7 6.5 5.5

-0.5 0.0 0.0 5.5 5.6 5.1 6.4 5.9 4.9 6.8 6.2 5.5
0.5 5.3 5.6 5.1 6.0 5.7 5.2 7.1 5.6 5.1
0.8 5.1 5.4 5.0 5.7 5.8 5.0 5.9 6.0 5.4

0.2 0.0 6.0 5.2 5.6 7.0 5.8 5.3 7.4 6.4 5.7
0.5 5.9 5.3 4.8 6.2 5.8 5.1 7.1 6.6 5.1
0.8 5.6 5.9 5.3 5.9 6.1 5.2 6.1 6.6 5.0

(4.7) 0.5 0.0 0.0 14.7 27.8 50.3 14.5 32.7 64.6 14.3 31.5 67.3
0.5 13.6 27.6 49.4 13.7 31.6 65.0 13.0 31.3 67.9
0.8 14.1 26.8 49.5 14.3 31.7 64.3 13.7 31.3 67.0

0.2 0.0 13.8 32.2 61.6 13.4 34.1 68.7 12.5 31.8 68.1
0.5 14.7 32.1 62.5 14.7 33.2 70.4 13.0 31.2 68.9
0.8 14.7 31.6 61.1 13.9 32.4 68.8 12.6 30.1 67.1

-0.5 0.0 0.0 13.1 26.6 59.7 13.2 30.9 70.4 13.2 30.5 72.5
0.5 12.7 26.3 59.0 13.1 30.8 70.2 12.3 30.8 71.5
0.8 12.5 26.9 59.2 13.2 31.1 69.6 12.8 30.3 71.5

0.2 0.0 13.5 33.5 74.5 13.2 33.3 77.3 12.5 30.6 74.4
0.5 14.0 35.2 75.6 13.2 36.0 77.0 11.7 32.5 74.7
0.8 14.4 33.7 73.8 14.0 34.2 76.4 12.1 31.0 73.7

(4.8) 0.5 0.0 0.0 17.2 23.9 35.9 13.3 23.2 38.9 9.3 20.3 37.8
0.5 15.8 24.0 34.5 12.6 23.0 37.5 8.5 20.5 36.7
0.8 16.6 23.3 34.0 13.2 22.6 36.4 8.6 19.7 36.7

0.2 0.0 14.7 20.8 26.7 10.8 18.8 28.1 7.1 16.6 27.3
0.5 13.8 20.3 25.7 9.5 19.0 26.2 5.7 17.3 25.9
0.8 14.0 19.6 26.1 10.1 18.4 27.6 6.6 15.7 26.4

-0.5 0.0 0.0 19.7 30.7 59.8 16.5 29.7 58.4 12.4 27.4 56.2
0.5 20.0 30.9 60.9 16.9 29.1 58.5 12.8 25.7 57.6
0.8 19.9 30.9 59.8 16.4 29.3 57.9 13.2 26.9 56.9

0.2 0.0 19.3 25.8 44.0 16.5 25.0 42.1 13.1 22.8 41.7
0.5 20.1 27.0 44.8 16.6 25.1 43.2 13.3 22.7 41.5
0.8 20.5 26.1 45.2 17.7 26.2 43.7 13.9 23.9 41.9

(4.9) 0.5 0.0 0.0 5.5 12.1 48.5 6.3 11.3 50.2 6.6 10.4 47.7
0.5 5.7 11.0 47.8 6.8 10.5 49.7 7.5 10.0 47.6
0.8 6.1 12.0 46.8 6.6 11.0 49.1 7.3 10.6 47.1

0.2 0.0 5.6 14.7 52.5 6.0 11.6 49.3 6.3 10.3 43.5
0.5 6.4 13.8 51.2 6.5 10.9 47.4 7.2 9.9 42.7
0.8 6.6 13.4 51.4 6.4 11.6 48.6 7.3 10.8 43.8

-0.5 0.0 0.0 42.5 61.6 74.7 40.6 60.2 74.5 40.0 60.0 74.1
0.5 42.2 60.5 76.0 40.1 59.9 75.8 39.4 59.5 75.3
0.8 41.8 61.3 75.4 39.8 60.2 74.7 39.3 59.4 74.7

0.2 0.0 45.3 61.2 74.4 44.7 60.2 74.1 44.1 60.1 74.0
0.5 45.6 60.6 75.1 44.7 60.7 74.6 44.2 60.4 74.7
0.8 45.9 60.9 74.7 44.7 60.2 74.2 43.6 59.6 73.9

(4.10) 0.5 0.0 0.0 86.2 92.8 97.6 82.3 89.5 96.1 80.0 87.7 94.8
0.5 86.5 92.4 97.0 82.6 89.3 95.1 80.5 87.7 93.9
0.8 86.1 93.8 97.7 82.6 91.0 95.7 80.4 89.3 94.3

0.2 0.0 83.1 87.3 92.9 78.1 83.0 89.0 75.4 80.3 86.7
0.5 82.9 87.4 93.1 77.8 83.0 90.2 75.0 80.4 88.1
0.8 82.0 88.0 92.6 76.8 83.2 89.4 74.3 80.4 87.2

-0.5 0.0 0.0 85.4 92.5 97.5 81.0 89.3 95.7 78.2 87.4 94.5
0.5 85.1 92.4 97.5 81.0 89.3 96.2 78.6 87.5 95.1
0.8 84.1 92.7 97.3 80.3 89.5 95.6 78.2 87.7 94.4

0.2 0.0 83.0 87.5 92.3 77.5 82.6 89.2 75.1 79.7 87.0
0.5 81.6 87.7 92.8 76.5 83.2 89.8 73.8 80.3 88.1
0.8 82.2 87.2 92.7 76.3 82.4 89.9 73.1 79.9 87.8
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Table 3. Size and power (×100) of Ûn(M) for models (4.11)–(4.15).

M = 6 M = 12 M = 18

Model ρ d r
n 100 200 500 100 200 500 100 200 500

(4.11) 0.5 0.0 0.0 6.0 5.1 4.9 6.1 5.6 5.6 7.0 6.2 5.2
0.5 5.4 5.0 5.4 6.4 5.6 5.4 6.8 5.8 5.8
0.8 5.8 5.9 5.2 6.1 5.7 5.7 6.6 6.2 5.8

0.2 0.0 6.2 5.2 5.2 6.2 5.7 5.6 7.0 6.6 5.7
0.5 5.8 5.5 5.7 6.5 5.4 5.6 6.9 6.2 5.7
0.8 5.5 5.2 5.1 6.4 5.3 5.5 7.0 5.4 5.9

-0.5 0.0 0.0 5.6 5.0 4.7 6.5 5.1 5.2 7.2 5.6 5.8
0.5 5.5 4.8 4.8 5.8 5.0 5.3 6.5 5.1 5.6
0.8 5.0 4.3 5.3 5.5 4.6 4.8 6.5 5.3 5.2

0.2 0.0 5.4 4.7 5.0 5.9 5.4 5.7 6.8 6.1 5.2
0.5 5.4 5.3 5.3 5.9 5.7 5.1 6.3 5.9 5.8
0.8 5.4 5.4 5.0 6.2 5.6 5.3 6.9 6.1 5.6

(4.12) 0.5 0.0 0.0 13.2 26.6 51.0 13.3 30.4 65.6 12.6 29.9 67.9
0.5 13.5 26.0 50.8 13.5 31.0 63.7 13.2 30.6 66.1
0.8 13.4 26.7 51.4 13.1 32.4 64.0 12.4 31.8 66.7

0.2 0.0 13.6 31.2 59.4 12.9 33.9 66.0 12.0 31.3 64.7
0.5 14.2 32.0 59.9 13.6 33.0 66.8 12.6 30.4 65.4
0.8 13.7 31.0 60.0 13.6 32.6 66.8 12.6 30.4 65.2

-0.5 0.0 0.0 12.4 26.7 58.9 12.8 62.1 68.9 11.6 30.4 70.8
0.5 12.5 28.4 60.2 12.3 32.6 69.9 11.7 30.8 71.3
0.8 13.7 28.2 60.1 13.6 31.8 70.0 12.1 30.3 71.1

0.2 0.0 13.5 33.6 71.9 12.6 33.7 74.5 11.5 30.9 73.0
0.5 12.7 33.3 72.0 12.3 34.0 73.7 10.8 31.7 70.8
0.8 12.6 33.3 72.2 12.1 34.0 74.6 10.8 31.2 72.9

(4.13) 0.5 0.0 0.0 16.9 25.5 35.1 12.9 23.9 37.9 8.8 21.1 36.7
0.5 16.3 24.8 35.7 12.4 23.3 38.0 8.6 20.7 37.0
0.8 17.1 24.3 35.6 13.1 23.5 37.9 9.1 21.0 37.1

0.2 0.0 14.0 20.3 26.5 10.2 18.0 28.7 6.9 15.6 27.2
0.5 14.5 19.7 26.6 10.4 18.2 27.7 6.9 15.7 26.2
0.8 14.3 20.9 26.4 10.0 18.6 28.0 7.0 16.2 27.0

-0.5 0.0 0.0 21.0 31.3 57.3 18.2 30.0 56.6 14.4 28.0 54.8
0.5 20.4 31.7 57.9 16.5 30.9 56.7 13.7 28.4 55.1
0.8 20.9 31.9 58.8 17.9 30.8 57.9 14.8 28.5 56.4

0.2 0.0 21.4 26.6 43.0 18.5 26.6 42.6 14.8 24.2 41.4
0.5 21.3 26.0 42.1 19.0 26.0 40.8 15.9 23.1 40.1
0.8 21.4 26.5 43.5 17.7 25.4 42.5 14.2 23.8 41.8

(4.14) 0.5 0.0 0.0 7.0 22.4 76.7 6.7 20.7 77.9 6.7 18.1 74.6
0.5 7.6 22.0 77.2 8.0 20.0 77.5 8.1 18.3 74.5
0.8 7.6 22.2 75.4 7.8 19.1 76.5 8.1 16.9 73.5

0.2 0.0 8.4 23.9 71.5 7.7 19.2 64.7 7.5 16.4 57.7
0.5 8.6 24.1 71.4 8.3 18.5 64.9 8.2 15.4 58.3
0.8 9.5 25.8 69.8 9.0 20.6 64.7 8.5 17.0 57.3

-0.5 0.0 0.0 76.5 88.9 95.2 74.3 88.5 94.9 73.7 88.1 94.8
0.5 77.5 88.9 95.1 75.8 88.5 95.0 74.9 88.2 94.9
0.8 76.3 88.8 94.7 74.5 88.7 94.7 73.2 88.3 94.6

0.2 0.0 80.7 89.0 94.8 79.9 88.6 94.7 79.4 88.4 94.5
0.5 80.4 89.4 94.8 78.3 89.1 94.7 77.7 88.8 94.6
0.8 79.7 88.2 95.2 78.6 88.0 95.1 77.8 87.5 95.0

(4.15) 0.5 0.0 0.0 91.9 96.7 99.1 88.5 94.9 98.3 86.5 93.3 97.8
0.5 91.9 96.5 98.9 88.1 94.4 98.1 86.0 92.9 97.6
0.8 92.9 96.2 99.0 89.3 94.4 98.4 87.0 92.8 97.8

0.2 0.0 88.0 93.6 96.5 83.4 90.3 94.9 81.4 88.0 93.7
0.5 87.8 92.2 96.7 83.6 89.1 94.6 81.2 86.8 92.9
0.8 88.4 92.4 96.7 83.7 88.9 95.0 81.4 86.6 93.5

-0.5 0.0 0.0 91.1 97.0 99.1 87.2 94.9 98.1 84.9 93.3 97.4
0.5 91.5 96.8 99.1 87.1 94.7 98.2 84.9 93.1 97.5
0.8 91.3 96.4 99.1 87.2 94.6 98.3 84.6 93.4 97.7

0.2 0.0 88.6 92.7 96.6 84.3 89.3 94.7 81.8 87.0 93.4
0.5 88.7 92.6 97.0 84.3 89.1 95.2 81.7 86.6 93.5
0.8 88.3 93.2 96.4 83.4 89.5 94.0 80.6 87.3 92.5
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Figure 1. Plots of log(CO2) against log(GDP) for JAP and USA.

particular, the test is not affected by the endogeneity of the regressor, and it

works well for regressors driven by either short or long memory innovations.

These features are important for practitioners.

5. Application

In this section, we study the Carbon Kuznets Curve (CKC), which relates

the per capita CO2 emission of a country to its per capita GDP. As argued in

Piaggio and Padilla (2012) and Chan and Wang (2015), the CKC has an inverted

U-shape (see, e.g., the right panel in Figure 1). The upward slope of the CKC can

be interpreted as an increase in the depletion of natural resources as economic

activities grow. The downward slope of the CKC indicates a reduction in the

emission of air pollutants as the country continues to develop technological ad-

vance and stricter regulatory policies. Following the aforementioned two papers,

we consider a quadratic polynomial formulation below for the CKC in order to

capture its inverted U-shape:{
log(et) = θ1 + θ2 log(xt) + θ3[log(xt)]

2 + ut,

ut = ρ1ut−1 + ρ2ut−2 + · · ·+ ρput−p + νt,
(5.1)

for 1 ≤ t ≤ n, where et and xt are the per capita emissions of CO2 and GDP

in period t, respectively. Here, we use an AR(p) model to fit ut, because the
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Table 4. The choice of p and the p-values of Ûn(M) or Ũn(M) for 16 countries when
ut ∼ AR(p).

Countries
AUS AUT BEL CAN CHN DEN FIN FRA

p 1 1 1 1 2 1 1 1
M = 6 0.8470 0.1001 0.7905 0.9973 0.9473 1.0000 1.0000 0.9529
M = 12 0.9690 0.0713 0.9399 1.0000 0.9990 1.0000 1.0000 0.9975
M = 18 0.9929 0.0485 0.9805 1.0000 1.0000 1.0000 1.0000 0.9999

Countries
HOL IND IRE ITA JAP NOR SWI USA

p 1 1 1 1 2 1 1 1
M = 6 0.7338 0.9997 0.9492 0.9645 0.0000 0.5927 0.6042 0.2175
M = 12 0.9010 1.0000 0.9971 0.9987 0.0000 0.7650 0.7781 0.2284
M = 18 0.9587 1.0000 0.9998 0.9999 0.0000 0.8506 0.8626 0.2207

1 The value of p is selected by BIC.
2 When p = 1, the reported p-values are for Ûn(M), and when p = 2, the reported

p-values are for Ũn(M).

specification test in Wang, Wu and Zhu (2018) indicates that ut is unlike to be

an m.d.s.

Now, we wish to examine whether model (5.1) can fit the CKC adequately for

16 countries using annual data from 1951 to 2009 (see Piaggio and Padilla (2012)

and Chan and Wang (2015)). We first choose the order p ∈ {1, 2, . . . , 6} using

the Bayesian information criterion (BIC) for each data set. As such, we find that

p = 1 is selected in all cases except CHN and JAP; see Table 4. Hence, we apply

our portmanteau tests Ũn(M) for CHN (or JAP) and Ûn(M) for the remaining

countries in order to check the adequacy of model (5.1). The corresponding

results are given in Table 4, providing strong evidence that model (5.1) cannot

fit the CKC adequately for JAP. Note that if we apply the Akaike information

criterion (AIC) to select the order p, we get the same results as those based on

the BIC, except that p = 5 is selected for JAP. In this case, the p-value of Ũn(M)

(M = 6, 12, or 18) for JAP is also close to zero, supporting the above conclusion.

To gain additional evidence, Figure 1 plots the CKC for JAP and USA. From

this figure, we can see that the CKC for JAP does not have the inverted U-shape

shown for USA, which may result in the inadequacy of model (5.1) to fit the

CKC for JAP.

6. Conclusion

We have proposed a portmanteau test for the adequacy of nonlinear cointe-
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grating regression models. This test is based on a two-step estimation procedure.

However, unlike the portmanteau test for stationary models, we find that the lim-

iting distribution of the proposed test does not involve the estimation effect in

the first step of the estimation of the nonlinear cointegrating regression model.

Therefore, the limiting distribution of the test is the same as that of the sta-

tionary autoregressive model, and can be approximated by a simple chi-squared

distribution. Compared with the kernel-smoothed test of Gao et al. (2009b) and

Wang and Phillips (2012, 2016), the proposed test has two advantages. First,

our test is valid for an endogenous regressor driven by long memory innovations.

Second, our test is easy-to-implement and does not require the selection of band-

widths. Furthermore, we generalize the applicability scope of the proposed test

to include the additive nonlinear cointegrating regression model, the consistency

results of which are established. Simulation studies reveal that our proposed test

has wide applicability. Finally, we apply the proposed test to study the CKC in

16 countries.

Supplementary Material

The online Supplementary Material contains additional simulation results.
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Appendix: Proof of Main Results

A.1. Proofs of Theorems 1-3

In this appendix, we only prove Theorem 3, as others are similar except

simpler. To facilitate the proof, the following lemma is needed, and its proof is

referred to (7.2)-(7.3), (7.7) and (7.9) in Wang and Phillips (2016) with minor
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modifications due to the fact that, for the ut appeared in one of model (2.1),

Remark 3 and model (2.7), we may write ut =
∑∞

k=0 ψ1kνt−k with the coefficients

ψ1k satisfying
∑∞

k=0 k
1/4|ψ1k| <∞.

Lemma 1. Suppose that Assumption 1 holds.

(i) If l(x) is a bounded function satisfying
∫∞
−∞ |l(x)|dx <∞, then

dn
n

n∑
s=k+1

[
|l(xs)| (1 + |us−k|) + |l(xs−k)| |us|

]
= OP (1), (A.1)

(
dn
n

)1/2 n∑
k=1

l(xk)uk =

{
OP (1), under C1,

OP (log1/2 n), under C2.
(A.2)

(ii) If l(x) is a locally bounded function, then

1

n

n∑
s=k+1

[∣∣∣∣l(xsdn
)∣∣∣∣ (1 + |us−k|) +

∣∣∣∣l(xs−kdn

)∣∣∣∣ |us|] = OP (1). (A.3)

(iii) Let v(λ) be a positive real function which is bounded away from zero as

λ→∞. For any real function l(x) satisfying |l(λx)| ≤ C v(λ)(1 + |x|β) for

some β > 0 and

|l(λx)− l(λy)| ≤ C v(λ)
[
|x− y|+R1(λx) +R2(λy)

]
, (A.4)

whenever x and y are in a compact set, where R1(z) and R2(z) are bounded

and integrable functions, we have

1

v(dn)
√
n

n∑
s=k+1

[
l(xs)us−k + l(xs−k)us

]
= OP (1). (A.5)

(iv) Results in (i)–(iii) still hold if we replace xt and d2
n = var(xn) by zt and

d2
1n = var(zn), respectively.

Proof of Theorem 3. As noticed in Remark 1, using some standard arguments,

it suffices to show that, for any k ≥ 0, we have

1√
n

n∑
s=k+1

ûs ûs−k =
1√
n

n∑
s=k+1

us us−k + oP (1), (A.6)

where ût = yt − g(xt, θ̂n)− f(zt, η̂n). Let ∆s = ∆1,s + ∆2,s, where

∆1,s = g(xs, θ̂n)− g(xs, θ0) and ∆2,s = f(zs, η̂n)− f(zs, η0).
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For any k ≥ 0, we may write that ûs = us + ∆s and
n∑

s=k+1

ûs ûs−k =

n∑
s=k+1

usus−k +R1n +R2n +R3n, (A.7)

where

R1n =

n∑
s=k+1

us ∆s−k, R2n =

n∑
s=k+1

us−k ∆s and R3n =

n∑
s=k+1

∆s ∆s−k.

The result (A.6) will follow if we prove

Rin = oP (
√
n), i = 1, 2, 3. (A.8)

We first prove (A.8) for i = 2. Since f(x, θ) satisfies (2.9), it follows from

(A.1) with l(x) = T (x) that
n∑

s=k+1

|us−k| |∆2,s| ≤ h(‖η̂n − η0‖)
n∑

s=k+1

|us−k|T (xs)

= OP (
√
n)h(‖η̂n − η0‖) = oP (

√
n). (A.9)

On the other hand, under Assumption 3, we have
n∑

s=k+1

us−k ∆1,s :=

m∑
j=1

(θ̂nj − θ0j)

n∑
s=k+1

us−k
∂g(xs, θ0)

∂θj
+R∗2n,

where, by using (A.3),

|R∗2n| ≤ ‖θ̂n − θ0‖1+α
n∑

s=k+1

|us−k|T (xt)

≤ ‖θ̂n − θ0‖1+α v(dn)

n∑
s=k+1

|us−k|
[
1 +

(
|xt|
dn

)β]
= OP (1)nv(dn) ‖θ̂n − θ0‖1+α,

for some α > 0. This, together with (A.4) and Lemma 1, yields that∣∣∣∣∣
n∑

s=k+1

us−k ∆1,s

∣∣∣∣∣ ≤ OP (
√
n)

m∑
j=1

vj(dn) |θ̂nj − θ0j |+OP (1)nv(dn) ‖θ̂n − θ0‖1+α

= OP (1)
[
‖Dn(θ̂n − θ0)‖+ n(1−α)/2‖Dn(θ̂n − θ0)‖1+α

]
= oP (

√
n). (A.10)

It follows from (A.9) and (A.10) that, for any k ≥ 0,

|R2n| ≤
n∑

s=k+1

|us−k| |∆2,s|+

∣∣∣∣∣
n∑

s=k+1

us−k ∆1,s

∣∣∣∣∣ = oP (
√
n).
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Similarly, we have |R1n| = oP (
√
n).

We next consider R3n. By noting

|∆1,s| = |g(xs, θ̂n)− g(xs, θ0)| ≤ C ‖θ̂n − θ0‖ v(dn)

(
1 +

∣∣∣∣xsdn
∣∣∣∣β),

due to Assumption 3(i), we have
n∑
s=1

∆2
1,s ≤ C v2(dn)‖θ̂n − θ0‖2

n∑
s=1

(
1 +

∣∣∣∣xsdn
∣∣∣∣β)2

≤ C‖Dn(θ̂n − θ0)‖2 = oP (
√
n).

Similarly to (A.9), by using (2.9), we have
n∑
s=1

∆2
2,s ≤ h2(‖η̂n − η0‖)

n∑
s=1

T 2(xs) = oP (
√
n).

It follows from these inequalities that

|R3n| ≤
n∑
s=1

∆2
s ≤ 2

[ n∑
s=1

∆2
1,s +

n∑
s=1

∆2
2,s

]
= oP (

√
n).

We now establish (A.8), and hence completed the proof of Theorem 3.

A.2. Proof of Theorem 4

To prove Theorem 4, we first introduce two lemmas below. Let At and

Bt(θ), θ ∈ Θ, be well-defined sequences of random variables on some probability

space, where Θ ⊂ Rm is a compact set. Let Ḃt and B̈t be the first and second

derivatives of Bt(θ), so that Ḃt = ∂Bt/∂θ and B̈t = ∂2Bt/∂θ∂θ
′. We assume

these quantities exist whenever they are introduced. Set Ut = At − Bt(θ0),

where θ0 is a finite interior point of Θ, and define θ̂n = arg minθ∈ΘQn(θ), where

Qn(θ) =
∑n

t=1

[
At −Bt(θ)

]2
.

Lemma 2. Suppose that there exists a sequence of random variables Tj , j ≥ 1,

such that

(i) for each θ1, θ2 ∈ Θ,∣∣Bj(θ1)−Bj(θ2)
∣∣ ≤ h(‖θ1 − θ2‖)Tj , (A.11)

where h(x) is a bounded real function such that h(x) ↓ h(0) = 0, as x ↓ 0;

(ii) for an increasing sequence 0 < κn →∞,

(a) κ−2
n

∑n
j=1 Tj

[
1 + |Uj |+ Tj

]
= OP(1),

(b) κ−2
n

∑n
t=1[Bt(θ)−Bt(θ0)]Ut = oP(1) for each θ ∈ Θ;
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(iii) for any η > 0 and θ 6= θ0, where θ, θ0 ∈ Θ, there exist n0 > 0 and M > 0

such that

P

(
κ−2
n

n∑
t=1

[
Bt(θ)−Bt(θ0)

]2 ≥ 1

M

)
≥ 1− η, (A.12)

for all n > n0, where 0 < κn →∞ is given in (ii).

Then, we have θ̂n →P θ0.

Proof. The proof is similar to Theorem 5.8 of Wang (2015) with minor modifi-

cations. We omit the details.

Lemma 3. Suppose that there exist a sequence of constants {kn, n ≥ 1} and

a sequence of m × m nonrandom nonsingular matrices {Dn, n ≥ 1} satisfying

kn →∞ and kn ‖ D−1
n ‖→ 0, as n→∞, such that the following conditions hold:

(i) supθ:‖Dn(θ−θ0)‖≤kn ‖ (D−1
n )′

∑n
t=1

[
Ḃt(θ)Ḃt(θ)

′ − Ḃt(θ0)Ḃt(θ0)′
]
D−1
n ‖=

oP (δ−2
n );

(ii) supθ:‖Dn(θ−θ0)‖≤kn ‖ (D−1
n )′

∑n
t=1 B̈t(θ)

[
Bt(θ)−Bt(θ0)

]
D−1
n ‖= oP (δ−2

n );

(iii) supθ:‖Dn(θ−θ0)‖≤kn ‖ (D−1
n )′

∑n
t=1 B̈t(θ)UtD

−1
n ‖= oP (δ−2

n );

(iv) Yn := (D−1
n )′

∑n
t=1 Ḃt(θ0)Ḃt(θ0)′D−1

n →D M , where M > 0 (a.s.), and

Zn := (D−1
n )′

n∑
t=1

Ḃt(θ0)Ut = OP (δn), (A.13)

where 1 ≤ δn ≤ k1−ε0
n for some ε0 > 0. Then, we have

Dn(θ̂n − θ0) = Y −1
n Zn + oP (1) = OP (δn). (A.14)

Proof. The proof is similar to Theorem 4.1 of Wang and Phillips (2016) with

minor modifications. We omit the details.

Proof of Theorem 4. For the first part of (3.2), i.e., ‖Dn(θ̂n − θ0)‖ = OP (1),

we make use of Lemma 3 with δn = 1, kn = log n,

At = yt, Bt(θ) = g(xt, θ) and Ut = yt − g(xt, θ0).

By noting Ut = f(zt, η0) + ut under model (2.8), to verify conditions (i)-(iv) in

Lemma 3, it suffices to show that

I1n := sup
θ:‖Dn(θ−θ0)‖≤logn

∥∥∥∥∥(D−1
n )′

n∑
t=1

g̈(xt, θ) f(zt, η0)D−1
n

∥∥∥∥∥ = oP (1), (A.15)

I2n := (D−1
n )′

n∑
t=1

ġ(xt, θ0) f(zt, η0) = OP (1), (A.16)
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where Dn = diag(
√
nvġ1(dn), . . . ,

√
nvġm(dn)). In fact, it follows easily from

Assumption 6(ii) with p(x, θ0) = ġ(x, θ0) and (iv) that

‖I2n‖ ≤
C√
n

n∑
j=1

|f(zt, η0)|
[
1 +

(
|xt|
dn

)β]
max

1≤j≤m

v(dn)

vġj (dn)

= OP (1)

[
1 +

(
max

1≤k≤n

|xk|
dn

)β] 1√
n

n∑
j=1

|f(zt, η0)| = OP (1),

due to Lemma 1(iv) and max1≤k≤n |xk|/dn = OP (1). This proves (A.15). Simi-

larly, it follows from Assumption 6(i)–(ii) with p(x, θ0) = g̈(x, θ0) and (iv) that

I1n ≤ Cv−1(dn)
C

n

n∑
j=1

|f(zt, η0)|
[
1 +

(
|xt|
dn

)β]
max

1≤i,j≤m

v(dn)vg̈ij (dn)

vġi(dn)vġj (dn)

= OP (n−1/2) = oP (1),

which yields (A.16). So, the proof for the first part of (3.2) is completed.

We next consider the second part of (3.2), i.e., η̂n →P η0, by usng Lemma 2

with

At = ŵt, Bt(θ) = f(zt, η) and Ut = ŵt − f(zt, η0).

By noting Ut = ut+g(xt, θ̂n)−g(xt, θ0), to verify conditions (i)-(iii) in Lemma 2,

it suffices to show that

I3n := n−1/2
n∑
j=1

T (zj) |g(xt, θ̂n)− g(xt, θ0)| = OP(1); (A.17)

I4n := n−1/2
n∑
t=1

[f(zt, η)− f(zt, η0)]
[
g(xt, θ̂n)− g(xt, θ0)

]
= oP(1), (A.18)

for each θ ∈ Θ, where T (x) is bounded and integrable. Note that

|g(xt, θ̂n)− g(xt, θ0)| ≤ C ‖θ̂n − θ0‖ vg(dn)

[
1 +

(
|xt|
dn

)β]
(A.19)

= OP (n−1/2) ‖Dn(θ̂n − θ0)‖,

due to Assumption 6(i) with p(x, θ0) = g(x, θ0) and (iv). The proofs of (A.17)

and (A.18) are similar to those of the first part in (3.2). We omit the details.

We finally prove (3.3) by using Lemma 3 with δn = log1/2 n, kn = log n,

At = ŵt, Bt(θ) = f(zt, η) and Ut = ŵt − f(zt, η0).

Using the same ideas as in the proof of (3.2), together with Theorem 4.2 of Wang

and Phillips (2016), it suffices to show that
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I5n := sup
θ:‖Dn(η−η0)‖≤logn

‖ (D−1
n )′

n∑
t=1

f̈(zt, η)
[
g(xt, θ̂n)− g(xt, θ0)

]
D−1
n ‖

= oP (1), (A.20)

I6n := (D−1
n )′

n∑
t=1

ḟ(zt, η0)
[
g(xt, θ̂n)− g(xt, θ0)

]
= OP (1), (A.21)

where Dn = diag(
√
nvḟ1(d1n), . . . ,

√
nvḟm(d1n)). By recalling (A.19) and using

Assumption 7, the proofs of (A.20) and (A.21) are the same as those of (A.15)

and (A.16). We omit the details. The proof of Theorem 4 is now completed.
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