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This note contains detailed explanations of how to choose the triangulation for
the proposed method, more simulation studies, and proofs of Lemma 1, Theorems
1, 2 with some technical details.

S.1 Choosing the Triangulation

The triangulation selection is one of the key ingredients for obtaining good per-
formance of the bivariate splines estimation. An optimal triangulation is a par-
tition of the domain which is best according to some criterion that measures the
shape, size or number of triangles. For example, one of the well-known crite-
ria used to control the shape with a triangulation is the “max-min” criterion
which maximizes the minimum angle of all the angles of the triangles in the tri-
angulation. Based on the “max-min” criterion, the Delaunay triangulation al-
gorithm can be implemented to avoid sliver triangles (a triangle that is almost
flat) when a set of appropriate vertices is chosen. In the past few decades, var-
ious packages have been developed to realize the Delaunay algorithm; see MAT-
LAB program delaunay.m or MATHEMATICA function DelaunayTriangulation.
“Triangle” (Shewchuk, 1996) is also widely used in many applications, and one
can download it for free from http://www.cs.cmu.edu/~quake/triangle.html.
It is a C++ program for two-dimensional mesh generation and construction of
Delaunay triangulations. “DistMesh” is another method to generate unstruc-
tured triangular and tetrahedral meshes; see the DistMesh generator on http:

http://www.cs.cmu.edu/~quake/triangle.html
http://persson.berkeley.edu/distmesh/
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//persson.berkeley.edu/distmesh/. A detailed description of the program is
provided by Persson and Strang (2004). Once the shape of triangulations is han-
dled, we can simply focus on how to select the number of triangles, K, for quasi-
uniform triangulations in all the numerical studies.

As is usual with the one-dimensional (1-D) penalized least squares (PLS)
splines, the number of knots is not important given that it is above some min-
imum depending upon the degree of the smoothness; see Li and Ruppert (2008).
For bivariate PLS splines, Lai and Wang (2013) and Wang et al. (2017) also ob-
served that the number of triangles K is not very critical, provided K is larger
than some threshold. In fact, one of the main advantages of using PLS splines
over unpenalized splines is the flexibility of choosing knots in the 1-D setting and
choosing triangles in the 2-D setting. For unpenalized splines, one has to have
large enough sample according to the requirement of the degree of splines on each
subinterval in the 1-D case or each triangle in the 2-D case to guarantee that a
solution can be found. However, there is no such requirement for PLS splines.
When the smoothness r ≥ 1, the only requirement for bivariate PLS splines is that
there is at least one triangle containing three points which are not in one line (Lai,
2008). Also, PLS splines perform similarly to unpenalized splines as long as the
penalty parameter λ is very small. So in summary, the proposed bivariate PLS
splines are very flexible and convenient for data fitting, even for smoothing sparse
and unevenly sampled data over a domain with complicated boundary.

In practice, to form a good triangulation, we need to make certain that the
triangulation is sufficiently fine to capture the feature in the dataset and not so large
that computational burden is unnecessarily heavy. Wang et al. (2017) proposed to
choose the number of triangles by generalized cross-validation (GCV) (Craven and
Wahba (1979); Wahba (1990)). As suggested by Wang et al. (2017), we consider a
sequence of trial values of the number of vertices of the triangles “equally-spaced”
on the domain, and apply the Delaunay triangulation method. The more vertices
we insert, the finer the triangulation. For each trial value, the PLS spline is fitted,
and the value in that trial sequence that minimizes the GCV is selected. Wang et al.
(2017) provides extensive numerical studies to illustrate the practical performance
of the GCV triangulation selection scheme.

http://persson.berkeley.edu/distmesh/
http://persson.berkeley.edu/distmesh/
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S.2 More Simulation Results

S.2.1 Additional simulation result from Example 1

Figure S.1 shows the estimated functions over a grid of 500×200 points via different
methods for replicate 1 with ρ = 0.7. From those plots, it is clear that the BPST
and GLTPS estimates perform better than the other four estimates. There seems
to be some “leakage effect” in KRIG and TPS estimates, which is likely caused by
the fact that KRIG and TPS do not take the complex boundary into any account
and smooth across the gap inappropriately. Finally, as what we expected that the
BPST estimators based on the three different triangulations are very similar, which
confirms that the number of triangles is not very critical for the penalized spline
fitting as long as it is sufficiently large enough to capture the pattern and features
of the data.
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Figure S.1: Contour maps for the true function and its estimators (ρ = 0.7).

S.2.2 A new simulation example

In this example, we consider a rectangular domain, [0, 1]2, where there is no ir-
regular shape or complex boundaries problem. In this case, classical methods for
spatial data analysis, such as KRIG and TPS, will not encounter any difficulty.
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We obtain the true signal and noisy observation for each coordinate pair lying on
a 101× 101-grid over [0, 1]2 using the following model:

Y = ZTβ + g(X1, X2) + ε,

where β = (−1, 1)T and g(x1, x2) = 10{(x1−0.5)2+(x2−0.5)2}. The random error,
ε, is generated from an N(0, σ2

ε ) distribution with σε = 0.5. Similar to Example
1, we simulate Z1 ∼ uniform[−1, 1], and Z2 = cos[4π(ρ(X2

1 + X2
2 ) + (1 − ρ)U)],

where ρ = 0.0 or 0.7, U ∼ uniform[−1, 1] and is independent from (X1, X2) and
Z1. Next we take 100 Monte Carlo random samples of size n = 200 from the
101× 101 points.

Figure S.2 (a) and (b) display the true quadratic surface and the contour map,
respectively. We use the triangulation in Figure S.2 (e) and (f), and there are 8
triangles and 9 vertices as well as 18 triangles and 16 vertices, respectively. In
addition, the points in Figure S.2 (d) demonstrate the sampled location points of
replicate 100.

We compare the proposed BPST estimator with estimators from the KRIG,
TPS, LFE methods, which are implemented in the same way as in Section 4. To see
the accuracy of the estimators, we compute the RMSEs of the coefficient estimators
and the estimator of σε. To see the overall prediction accuracy, we make prediction
on the 101 × 101 grid points on the domain for each replication using different
methods, and compare the predicted values with the true function of g(·) at these
grid points, and we report the average mean squared prediction errors (MSPE)
over all replications.

All the results are summarized in Table S.1. As expected, KRIG and TPS work
pretty well since the domain is regular in this example. In both scenarios, BPST
performs the best. One also notices that, compared with the FEM, our BPST
estimator shows much better performance in terms of both estimation and predic-
tion, because BPST provides a more flexible and easier construction of splines with
piecewise polynomials of various degrees and smoothness than the FEM method.
As pointed out in Wood et al. (2008), the FEM method may require a very fine tri-
angulation in order to reach certain approximation power, however, BPST doesn’t
need such a strict fineness requirement as it uses piecewise polynomials of higher
degree yielding an larger order approximation power.

Figures S.3 and S.4 show the estimated functions via different methods for the
last replicate. Compare with the true function in Figure S.2, the BPST estimate
looks visually better than the other estimates. In addition, from Figures S.3 and
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Figure S.2: (a) true function of g(·); (b) contour map of g(·); (c) first triangulation
(41); and (d) second triangulation (42) on the domain.
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S.4, one also sees that the BPST estimators based on 41 and 42 are very sim-
ilar, which agrees our findings for penalized splines. In summary, Monte Carlo
experiment in this study also shows that once the minimum necessary number of
triangles has been reached for BPST, further increasing of the number of triangles
usually have little effect on the fitting process.

Table S.1: Root mean squared errors of the estimates.

Method β1 β2 σε g(·)

0.0

KRIG 0.0640 0.0557 0.0369 0.1797
TPS 0.0647 0.0551 0.0286 0.1640
LFE 0.0772 0.0604 0.0669 0.2978
BPST(41) 0.0642 0.0546 0.0266 0.1495
BPST(42) 0.0640 0.0556 0.0273 0.1395

0.7

KRIG 0.0647 0.0530 0.0365 0.1800
TPS 0.0653 0.0515 0.0281 0.1640
LFE 0.0769 0.0607 0.0668 0.2978
BPST(41) 0.0645 0.0513 0.0263 0.1497
BPST(42) 0.0644 0.0512 0.0265 0.1476

Table S.2 lists the accuracy results of the standard error formula in (18) for
β̂1 and β̂2 using BPST with triangulation 41. From Table S.2, one sees that the
estimated standard errors based on sample size n = 200 are very accurate.

Table S.2: Standard error estimates of the BPST coefficients.
ρ Parameter SEmc SEmean SEmedian SEmad

0.0
β1 0.0643 0.0622 0.0621 0.0032
β2 0.0546 0.0517 0.0516 0.0028

0.7
β1 0.0645 0.0621 0.0622 0.0030
β2 0.0515 0.0519 0.0518 0.0026

S.3 Residual Plots from Mercury Concentration

Studies

In this section, we provide some diagnosis plots of the residuals. Figure S.5 provides
the residuals vs fits plots for five different methods. From Figure S.5, one sees that
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Figure S.3: Contour maps for the estimators (ρ = 0.0).
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Figure S.4: Contour maps for the estimators (ρ = 0.7).
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the residuals “bounce randomly” around the zero line, and no residual “stands
out” from the basic random pattern of residuals. Figure S.6 further demonstrates
the residual scatter plot using five different methods. As seen in Figure S.6, the
absolute values of the residuals are relatively higher in the middle of the Piscataqua
river for KRIG and TPS compared to that of the BPST. Due to the small sample
size and the complex terrain, all methods have some difficulty in the estimation at
the confluence of the Salmon Falls River and Cocheco River. According to Steve
et al. (2009), the accumulation of mercury in this area is complex and includes
aspects of transport from urban point sources, atmospheric deposition from local
and distant sources, prevailing currents, equilibrium processes between overlying
water and the quality of sediments. Further research is warranted.

S.4 Technical Lemmas

In the following, we use c, C, c1, c2, C1, C2, etc. as generic constants, which may
be different even in the same line. For functions f1 and f2 on Ω × Rp, we define
the empirical inner product and norm as 〈f1, f2〉n = 1

n

∑n
i=1 f1(Xi,Zi)f2(Xi,Zi)

and ‖f1‖2
n = 〈f1, f1〉n. If f1 and f2 are L2-integrable, we define the theoretical

inner product and theoretical L2 norm as 〈f1, f2〉L2 = E {f1(Xi,Zi)f2(Xi,Zi)}
and ‖f1‖L2 = 〈f1, f1〉L2 . Furthermore, let ‖·‖Eυ be the norm introduced by the
inner product 〈·, ·〉Eυ , where, for g1 and g2 on Ω,

〈g1, g2〉Eυ =

∫
Ω

{∑
i+j=υ

(
υ

i

)
(Di

x1
Dj
x2
g1)2

}1/2{∑
i+j=υ

(
υ

i

)
(Di

x1
Dj
x2
g2)2

}1/2

dx1dx2.

Proof of Lemma 1. By (7), we have HT = Q1R1 since R2 = 0. That is,
H = RT

1 QT
1 . Thus,

Hγ =HQ2θ = RT
1 QT

1 Q2θ = 0

since QT
1 Q2 = 0. On the other hand, if

0 = Hγ = RT
1 QT

1 γ,

we have QT
1 γ = 0 since R1 is invertible. Thus, γ is in the perpendicular subspace

of the space spanned by the columns of Q1. That is, γ is in the space spanned
by the columns of Q2. Thus, there exists a vector θ such that γ = Q2θ. These
complete the proof.
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Figure S.5: Plots of the residuals vs fitted values of mercury concentrations.
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Figure S.6: Residual maps of mercury concentrations over the estuaries in New
Hampshire.
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Lemma S.1. [Lai and Schumaker (2007)] Let {Bξ}ξ∈K be the Bernstein polynomial
basis for spline space S with smoothness r, where K stands for an index set. Then
there exist positive constants c, C depending on the smoothness r and the shape
parameter δ in Condition (C6) such that

c|4|2
∑
ξ∈K

|γξ|2 ≤ ‖
∑
ξ∈K

γξBξ‖2
L2 ≤ C|4|2

∑
ξ∈K

|γξ|2

for all γξ, ξ ∈ K.

With the above stability condition, Lai and Wang (2013) established the follow-
ing uniform rate at which the empirical inner product approximates the theoretical
inner product.

Lemma S.2. [Lemma 2 of the Supplement of Lai and Wang (2013)] Let g1 =∑
ξ∈K cξBξ, g2 =

∑
ζ∈K c̃ζBζ be any spline functions in S. Under Conditions (C4)

and (C6),

sup
g1,g2∈S

∣∣∣∣〈g1, g2〉n − 〈g1, g2〉L2

‖g1‖L2 ‖g2‖L2

∣∣∣∣ = OP

{
(N log n)1/2/n1/2

}
.

For any smooth bivariate function g(·) and λ > 0, define

sλ,g = argmins∈S

n∑
i=1

{g(Xi)− s(Xi)}2 + λEυ(s) (S.1)

the penalized least squares splines of g(·). Then the non-penalized solution s0,g is
the discrete least squares spline estimator of g(·).

Lemma S.3. [Corollary of Theorem 6 in Lai (2008)] Assume g(·) is in Sobolev
space W `+1,∞(Ω). For bi-integer (α1, α2) with 0 ≤ α1 + α2 ≤ υ, there exists an
absolute constant C depending on r and δ, such that with probability approaching
1,

‖Dα1
x1
Dα2
x2

(g − s0,g) ‖∞ ≤ C
F2

F1

|4|`+1−α1−α2|g|`+1,∞,

where F2 appears in Assumption (C3) and F1 > 0 is a constant in a different
version of Assumption C2 (Lai, 2008).

We remark that the current version of Assumption (C2) is an improvement of
the original Assumption (C2). The improvement requires an extensive study. We
leave it to a future publication.
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Lemma S.4. Suppose g(·) is in the Sobolev space W `+1,∞(Ω), and let sλ,g be its
penalized spline estimator defined in (S.1). Under Conditions (C2), (C3) and (C6),

‖g − sλ,g‖n = OP

{
F2

F1

|4|`+1 |g|`+1,∞

+
λ

n |4|2

(
|g|υ,∞ +

F2

F1

|4|`+1−υ |g|`+1,∞

)}
.

Proof. Note that sλ,g is characterized by the orthogonality relations

n 〈g − sλ,g, u〉n = λ 〈sλ,g, u〉Eυ , for all u ∈ S, (S.2)

while s0,g is characterized by

〈g − s0,g, u〉n = 0, for all u ∈ S. (S.3)

By (S.2) and (S.3), n 〈s0,g − sλ,g, u〉n = λ 〈sλ,g, u〉Eυ , for all u ∈ S. Replacing u by
s0,g − sλ,g yields that

n ‖s0,g − sλ,g‖2
n = λ 〈sλ,g, s0,g − sλ,g〉Eυ . (S.4)

Thus, by Cauchy-Schwarz inequality,

n ‖s0,g − sλ,g‖2
n ≤ λ ‖sλ,g‖Eυ ‖s0,g − sλ,g‖Eυ

≤ λ ‖sλ,g‖Eυ sup
f∈S

{‖f‖Eυ
‖f‖n

, ‖f‖n 6= 0

}
‖s0,g − sλ,g‖n .

Similarly, using (S.4), we have

n ‖s0,g − sλ,g‖2
n = λ

{
〈sλ,g, s0,g〉Eυ − 〈sλ,g, sλ,g〉Eυ

}
≥ 0.

Therefore, by Cauchy-Schwarz inequality,

‖sλ,g‖2
Eυ ≤ 〈sλ,g, s0,g〉Eυ ≤ ‖sλ,g‖Eυ ‖s0,g‖Eυ ,

which implies that ‖sλ,g‖Eυ ≤ ‖s0,g‖Eυ . Therefore,

‖s0,g − sλ,g‖n ≤ n−1λ ‖s0,g‖Eυ sup
f∈S

{‖f‖Eυ
‖f‖n

, ‖f‖n 6= 0

}
.
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By Lemma S.3, with probability approaching 1,

‖s0,g‖Eυ ≤ C1AΩ

{
|g|υ,∞ +

∑
α1+α2=υ

∥∥Dα1
x1
Dα2
x2

(g − s0,g)
∥∥
∞

}

≤ C2AΩ

(
|g|υ,∞ +

F2

F1

|4|`+1−υ |g|`+1,∞

)
, (S.5)

where AΩ denotes the area of Ω. By Markov’s inequality, for any f ∈ S, ‖f‖Eυ ≤
C |4|−2 ‖f‖L2 . Lemma (S.2) implies that

sup
f∈S
{‖f‖n/ ‖f‖L2} ≥ 1−OP

{
(N log n)1/2/n1/2

}
.

Thus, we have

sup
f∈S

{‖f‖Eυ
‖f‖n

, ‖f‖n 6= 0

}
≤ C |4|−2 [1−OP

{
(N log n)1/2/n1/2

}]−1/2

= OP

(
|4|−2) . (S.6)

Therefore,

‖s0,g − sλ,g‖n = OP

{
λ

n |4|2

(
|g|υ,∞ +

F2

F1

|4|`+1−υ |g|`+1,∞

)}
,

‖g − sλ,g‖n ≤ ‖g − s0,g‖n + ‖s0,g − sλ,g‖n .

By Lemma S.3,

‖g − s0,g‖n ≤ ‖g − s0,g‖∞ = OP

(
F2

F1

|4|`+1 |g|`+1,∞

)
.

Thus, the desired result is established. �

Lemma S.5. Under Assumptions (A1), (A2), (C4)-(C6), there exist constants
0 < cU < CU < ∞, such that with probability approaching 1 as n → ∞, cUIp×p ≤
nU11 ≤ CUIp×p, where U11 is given in (9).

Proof. Denote by

Γλ =
1

n

(
BTB + λP

)
=

[
1

n

n∑
i=1

Bξ (Xi)Bζ (Xi) +
λ

n
〈Bξ, Bζ〉Eυ

]
ξ,ζ∈K
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a symmetric positive definite matrix. Then for V22 defined in (8), we can rewrite
it as V22 = nQT

2 ΓλQ2. Let αmin(λ) and αmax(λ) be the smallest and largest
eigenvalues of Γλ. As shown in the proof of Theorem 2 in the Supplement of Lai
and Wang (2013), there exist positive constants 0 < c3 < C3 such that under
Conditions (C4) and (C5), with probability approaching 1, we have

c3|4|2 ≤ αmin(λ) ≤ αmax(λ) ≤ C3

(
|4|2 +

λ

n|4|2

)
.

Therefore, we have

c4

(
|4|2 +

λ

n|4|2

)−1

‖a‖2 ≤ naTV−1
22 a = aT(QT

2 ΓλQ2)−1a ≤ C4|4|−2‖a‖2.

Thus, by Assumption (A2), we have with probability approaching 1

c5

(
|4|2 +

λ

n|4|2

)−1

|4|2‖a‖2 ≤ aTV12V
−1
22 V21a

= aTZTBQ2V
−1
22 QT

2 BTZa ≤ C5‖a‖2. (S.7)

According to (9) and (10), we have

(nU11)−1 = n−1(V11 −V12V
−1
22 V21) = n−1(ZTZ−V12V

−1
22 V21).

The desired result follows from Assumptions (A1), (A2) and (S.7). 2

S.5 Proof of Theorem 1

Let µi = ZT
i β0 + g0(Xi), µ

T = (µ1, . . . , µn), and let εT = (ε1, . . . , εn). Define

β̃µ = U11Z
T
(
I−BQ2V

−1
22 QT

2 BT
)
µ, (S.8)

β̃ε = U11Z
T
(
I−BQ2V

−1
22 QT

2 BT
)
ε. (S.9)

Then β̂ − β0 = (β̃µ − β0) + β̃ε.

Lemma S.6. Under Assumptions (A1), (A2), (C1)-(C5), ‖β̃µ−β0‖ = oP
(
n−1/2

)
for β̃µ in (S.8).
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Proof. Let g0 = (g0(X1), . . . , g0(Xn))T. It is clear that

β̃µ − β0 = U11Z
T
(
I−BQ2V

−1
22 QT

2 BT
)
g0

= U11Z
T
[
g0 −BQ2{QT

2 (BTB + λP)Q2}−1QT
2 BTg0

]
= nU11A,

where A = (A1, . . . , Ap)
T, with

Aj = n−1ZT
j

[
g0 −BQ2{QT

2 (BTB + λP)Q2}−1QT
2 BTg0

]
for ZT

j = (Z1j, ..., Znj). Next we derive the order of Aj, 1 ≤ j ≤ p, as follows. For
any gj ∈ S, by (S.2) we have

Aj = 〈zj, g0 − sλ,g0〉n = 〈zj − gj, g0 − sλ,g0〉n +
λ

n
〈sλ,g0 , gj〉Eυ .

For any j = 1, . . . , p, let hj(·) be the function h(·) that minimizes E{Zij −h(Xi)}2

as defined in (14). According to Lemma S.3, there exists a function h̃j ∈ S satisfy

‖h̃j − hj‖∞ ≤ C
F2

F1

|4|`+1 |hj|`+1,∞ , (S.10)

then

Aj = 〈zj−hj, g0−sλ,g0〉n+ 〈hj− h̃j, g0−sλ,g0〉n+
λ

n
〈sλ,g0 , h̃j〉Eυ = Aj,1 +Aj,2 +Aj,3.

Since hj satisfies 〈zj − hj, ψ〉L2(Ω) = 0 for any ψ ∈ L2(Ω), E (Aj,1) = 0. According

to Proposition 1 in Lai and Wang (2013),

‖g0 − sλ,g0‖∞ = OP

{
F2

F1

|4|`+1 |g0|`+1,∞

+
λ

n |4|3

(
|g0|2,∞ +

F2

F1

|4|`−1 |g0|`+1,∞

)}
.

Next,

Var (Aj,1) =
1

n2

n∑
i=1

E [{Zij − hj(Xi)} (g0 − sλ,g0)]
2

≤ ‖g0 − sλ,g0‖2
∞

n
‖zj − hj‖2

L2 ,
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which together with E (Aj,1) = 0 implies that

|Aj,1| = OP

{
F2

n1/2F1

|4|`+1 |g0|`+1,∞

+
λ

n3/2 |4|3

(
|g0|2,∞ +

F2

F1

|4|`−1 |g0|`+1,∞

)}
.

Cauchy-Schwartz inequality, Lemma S.4 and (S.10) imply that

|Aj,2| ≤ ‖hj − h̃j‖n ‖g0 − sλ,g0‖n

= OP

(
F2

F1

|4|`+1 |hj|`+1,∞

)
×OP

{
F2

F1

|4|`+1 |g0|`+1,∞

+
λ

n |4|2

(
|g0|2,∞ +

F2

F1

|4|`−1 |g0|`+1,∞

)}
.

Finally, by (S.5), we have

|Aj,3| ≤
λ

n
‖sλ,g0‖Eυ‖h̃j‖Eυ ≤

λ

n
‖s0,g0‖Eυ‖h̃j‖Eυ

≤ λ

n
C1

(
|g0|2,∞ +

F2

F1

|4|`−1 |g0|`+1,∞

)
×
(
|hj|2,∞ +

F2

F1

|4|`−1 |hj|`+1,∞

)
.

Combining all the above results yields that

|Aj| = OP

[
n−1/2

{
F2

F1

|4|`+1 |g0|`+1,∞ +
λ

n |4|3
(
|g0|2,∞

+
F2

F1

|4|`−1 |g0|`+1,∞

)}]
for j = 1, . . . , p. By Assumptions (C3)-(C5), |Aj| = oP (n−1/2), for j = 1, . . . , p. In

addition, we have nU11 = OP (1) according to Lemma S.5. Therefore, ‖β̃µ−β0‖ =

oP
(
n−1/2

)
. 2

Lemma S.7. Under Assumptions (A1)-(A3) and (C1)-(C6), as n→∞,[
Var

(
β̃ε |{(Xi,Zi) , i = 1, . . . , n}

)]−1/2

β̃ε −→ N (0, Ip×p) ,

where β̃ε is given in (S.9).



S.18 L. Wang, G. Wang, M.J. Lai and L. Gao

Proof. Note that

β̃ε = U11Z
T
(
I−BQ2V

−1
22 QT

2 BT
)
ε.

For any b ∈ Rp with ‖b‖ = 1, we can write bTβ̃ε =
n∑
i=1

αiεi, where

α2
i = n−2bT(nU11)

(
ZT
i −V12V

−1
22 QT

2 Bi

) (
Zi −BT

i Q2V
−1
22 V21

)
(nU11)b,

and conditioning on {(Xi,Zi) , i = 1, . . . , n}, αiεi’s are independent. By Lemma
S.5, we have

max
1≤i≤n

α2
i ≤ Cn−2 max

1≤i≤n

{
‖Zi‖2 +

∥∥V12V
−1
22 QT

2 Bi

∥∥2
}
,

where for any a ∈ Rp,

aTV12V
−1
22 QT

2 Bia = n−1aTV12(QT
2 ΓλQ2)−1QT

2 Bia ≤ Cn−1|4|−2aTZTBBia,

and the j-th component of n−1ZTBBi is 1
n

∑n
i′=1 Zi′j

∑
ξ∈KBξ (Xi′)Bξ (Xi). Using

Assumptions (A1) and (A2), we have

E

{
1

n

n∑
i′=1

Zi′j
∑
ξ∈K

Bξ (Xi′)Bξ (Xi)

}2

= O(1),

for large n, thus with probability approaching 1,

max
1≤i≤n

∣∣∣∣∣ 1n
n∑

i′=1

∑
ξ∈K

Zi′jBξ (Xi′)Bξ (Xi)

∣∣∣∣∣ = OP (1),

max
1≤i≤n

‖V12V
−1
22 QT

2 Bi‖2 = OP (|4|−2).

Therefore, max1≤i≤n α
2
i = OP (n−2|4|−2). Next, with probability approaching 1,

n∑
i=1

α2
i = Var

[
bTβ̃ε |{(Xi,Zi) , i = 1, . . . , n}

]
= bTU11Z

T
(
I−BQ2V

−1
22 QT

2 BT
) (

I−BQ2V
−1
22 QT

2 BT
)
ZU11bσ

2

= n−1bT (nU11)

{
n−1

n∑
i=1

(Zi − Ẑi)(Zi − Ẑi)
T

}
(nU11) bσ2, (S.11)
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where Ẑi is the i-th column of ZTBQ2V
−1
22 QT

2 BT. Using Lemma S.5 again, we have∑n
i=1 α

2
i ≥ cn−1. So max

1≤i≤n
α2
i /
∑n

i=1 α
2
i = OP (n−1|4|−2) = oP (1) from Assumption

(C4). By Linderberg-Feller CLT, we have

n∑
i=1

αiεi/

(
n∑
i=1

α2
i

)−1/2

−→ N (0, 1) .

Then the desired result follows. 2

For any j = 1, . . . , p and λ > 0, define

sλ,zj = argmins∈S

n∑
i=1

{zj(Xi)− s(Xi)}2 + λEυ(s), (S.12)

where zj is the coordinate mapping that maps z to its j-th component.

Lemma S.8. Under Assumptions (A1), (A2), (C2), (C3) and (C6), for sλ,zj de-
fined in (S.12),

∥∥s0,zj − sλ,zj
∥∥
n

= OP (λn−1|4|−5), j = 1, . . . , p.

Proof. Note that

n
〈
zj − sλ,zj , u

〉
n

= λ
〈
sλ,zj , u

〉
Eυ
,
〈
zj − s0,zj , u

〉
n

= 0, for all u ∈ S,

Inserting u = s0,zj − sλ,zj in the above yields that

n
∥∥s0,zj − sλ,zj

∥∥2

n
= λ

〈
sλ,zj , s0,zj − sλ,zj

〉
Eυ

= λ(〈sλ,zj , s0,zj〉Eυ − 〈sλ,zj , sλ,zj〉Eυ).

By Cauchy-Schwarz inequality,
∥∥sλ,zj∥∥2

Eυ
≤
〈
sλ,zj , s0,zj

〉
Eυ
≤
∥∥sλ,zj∥∥Eυ ∥∥s0,zj

∥∥
Eυ

,
which implies ∥∥sλ,zj∥∥Eυ ≤ ∥∥s0,zj

∥∥
Eυ
. (S.13)

By (S.6), we have for large n

n
∥∥s0,zj − sλ,zj

∥∥2

n
≤ λ

∥∥sλ,zj∥∥Eυ ∥∥s0,zj − sλ,zj
∥∥
n
×OP (|4|−2),

thus,
∥∥s0,zj − sλ,zj

∥∥
n
≤
∥∥s0,zj

∥∥
Eυ
× OP (λn−1|4|−2). Markov’s inequality implies

that ∥∥s0,zj

∥∥
Eυ
≤ C1

|4|2
∥∥s0,zj

∥∥
∞ . (S.14)
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Note that
∥∥s0,zj

∥∥
∞ ≤ C|4|−2 maxξ∈K |n−1

∑n
i=1Bξ (Xi)Zij| with probability ap-

proaching one. According to Assumptions (A1) and (A2),

max
ξ∈K

∣∣∣∣∣n−1

n∑
i=1

Bξ (Xi)Zij

∣∣∣∣∣ = OP (|4|).

The desired results follows. 2

Lemma S.9. Under Assumptions (A1)-(A3) and (C1)-(C6), for the covariance
matrix Σ defined in (17), we have c∗ΣIp ≤ Σ ≤ C∗ΣIp, and

Var
(
β̃ε |{(Xi,Zi) , i = 1, . . . , n}

)
= n−1Σ + oP (1).

Proof. According to (S.11),

Var
(
β̃ε |{(Xi,Zi)}

)
=n−1(nU11)

{
n−1

n∑
i=1

(Zi − Ẑi)(Zi − Ẑi)
T

}
(nU11)σ2.

By the definition of U−1
11 in (10), we have

(nU11)−1 =
1

n

n∑
i=1

Zi(Zi − Ẑi)
T =

(
〈zj, zj′ − sλ,zj′ 〉n

)
1≤j,j′≤p

.

As in the proof of Lemma S.6, let h̃j ∈ S and hj satisfy (S.10). Then,

〈zj, zj′ − sλ,zj′ 〉n = 〈zj − h̃j, zj′ − sλ,zj′ 〉n +
λ

n
〈sλ,zj′ , h̃j〉Eυ . (S.15)

According to (S.5), (S.13) and (S.14), we have∣∣∣〈sλ,zj′ , h̃j′〉Eυ ∣∣∣ ≤ ‖sλ,zj′‖Eυ‖h̃j′‖Eυ ≤ ‖s0,zj′
‖Eυ‖h̃j′‖Eυ

≤ C

|4|2
‖s0,zj′

‖∞‖h̃j′‖Eυ

≤ CC∗

|4|3

(∣∣h′j∣∣2,∞ +
F2

F1

|4|`+1−υ ∣∣h′j∣∣`+1,∞

)
.

Note that

〈zj− h̃j, zj′−sλ,zj′ 〉n = 〈zj−hj, zj′−hj′〉n+〈hj− h̃j, hj′− h̃j′〉n+〈zj−hj, hj′− h̃j′〉n
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+〈hj − h̃j, zj′ − hj′〉n + 〈zj − hj, h̃j′ − sλ,zj′ 〉n + 〈hj − h̃j, h̃j′ − sλ,zj′ 〉n. (S.16)

By (S.10), the second term on the right side of (S.16) satisfies that∣∣∣〈hj − h̃j, hj′ − h̃j′〉∞∣∣∣ ≤ ‖hj − h̃j‖∞‖hj′ − h̃j′‖∞ = oP (1).

By Lemma S.2 and (S.10), the third term on the right side of (S.16) satisfies that∣∣∣〈zj − hj, hj′ − h̃j′〉n∣∣∣ ≤ {‖zj − hj‖L2(1 + oP (1))} ‖hj′ − h̃j′‖∞ = oP (1).

Similarly,
∣∣∣〈hj − h̃j, zj′ − hj′〉n∣∣∣ = oP (1). From the triangle inequality, we have

‖h̃j − sλ,zj‖n ≤ ‖h̃j − hj‖n + ‖hj − s0,zj‖n + ‖s0,zj − sλ,zj‖n.

According to (S.10) and Lemma S.8, we have

‖h̃j − sλ,zj‖n ≤ ‖hj − s0,zj‖n + oP (1).

Define h∗j,n = argminh∈S‖zj − h‖L2 , then, from the triangle inequality,

‖hj − s0,zj‖n ≤ ‖hj − h∗j,n‖n + ‖h∗j,n − s0,zj‖n

Note that ‖hj − h∗j,n‖L2 = oP (1). Lemma S.2 implies that ‖hj − h∗j,n‖n = oP (1).
Next note that ‖s0,zj − h∗j,n‖2

L2 = ‖zj − s0,zj‖2
L2 − ‖zj − h∗j,n‖2

L2 and ‖zj − s0,zj‖n ≤
‖zj − h∗j,n‖n. Using Lemma S.2 again, we have

‖s0,zj − h∗j,n‖2
L2 = oP (‖zj − h∗j,n‖2

L2) + oP (‖zj − s0,zj‖2
L2).

Since there exists a constant C such that ‖zj − h∗j,n‖L2 ≤ C, so we have

‖zj − s0,zj‖L2 ≤ ‖zj − h∗j,n‖L2 + ‖h∗j,n − s0,zj‖L2 ≤ C + ‖h∗j,n − s0,zj‖L2 .

Therefore, ‖h∗j,n−s0,zj‖L2 = oP (1). Lemma S.2 implies that ‖h∗j,n−s0,zj‖n = oP (1).
As a consequence,

‖s0,zj − hj‖n = oP (1). (S.17)

For the fifth item, by Lemma S.2 and (S.17), we have∣∣∣〈zj − hj, h̃j′ − sλ,zj′ 〉n∣∣∣ ≤ {‖zj − hj‖L2(1 + oP (1))}
{
‖hj − s0,zj‖n + oP (1)

}
= oP (1).
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Similarly, for the sixth item, we have∣∣∣〈hj − h̃j, h̃j′ − sλ,zj′ 〉n∣∣∣ ≤ ‖hj − h̃j‖n {‖hj − s0,zj‖n + oP (1)
}

= oP (1). (S.18)

Combining the above results from (S.15) to (S.18) gives that

〈zj, zj′ − sλ,zj′ 〉n = 〈zj − hj, zj′ − h∗j′〉n + oP (1).

Therefore,

(nU11)−1 =
1

n

n∑
i=1

(Zi − Z̃i)(Zi − Z̃i)
T + oP (1) = E[(Zi − Z̃i)(Zi − Z̃i)

T] + oP (1).

Hence,

Var
(
β̃ε |{(Xi,Zi) , i = 1, . . . , n}

)
= n−1Σ−1 + oP (1) . �

S.6 Proof of Theorem 2

Let HZ = I− Z(ZTZ)−1ZT, then

θ̂ = U22Q
T
2 BTHZY = U22Q

T
2 BTHZg0 + U22Q

T
2 BTHZε = θ̃µ + θ̃ε.

According to Lemma S.3, ‖s0,g0 − g0‖∞ ≤ C F2

F1
|4|`+1|g0|`+1,∞. Denote by γ0 =

Q2θ0 the spline coefficients of s0,g0 . Then we have the following decomposition:

θ̂ − θ0 = θ̃µ − θ0 + θ̃ε. Note that

θ̃µ − θ0 = U22Q
T
2 BTHZg0 − θ0

= U22Q
T
2 BTHZ(g0 −BQ2θ0)− λU22Q

T
2 PQ2θ0.

According to (10), for any a

aTU−1
22 a = aTQT

2

(
BTHZB + λP

)
Q2a.

Since HZ is idempotent, so its eigenvalues πj is either 0 or 1. Without loss of
generality we can arrange the eigenvalues in decreasing order so that πj = 1,
j = 1, . . . ,m and πj = 1, j = m+ 1, . . . , n. Therefore, we have

aT(nU22)−1a =
1

n

m∑
j=1

πja
TQT

2 BTeje
T
j BQ2a +

λ

n
aTQT

2 PQ2a,
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where ej be the indicator vector which is a zero vector except for an entry of one
at position j. Using Markov’s inequality, we have

λ

n
Eυ

(∑
ξ∈K

aξBξ

)
≤ λ

n

C1

|4|2
C2‖a‖2.

Thus, by Conditions (C4) and (C5), naTU22a ≤ C|4|−2. Next

‖U22Q
T
2 BTHZ(g0 −BQ2θ0)‖ ≤ C1/2|4|−1n−1‖BTHZ(g0 −BQ2θ0)‖

≤ C1/2|4|−1n−1

[∑
ξ∈K

{BT
ξ HZ(g0 −BQ2θ0)}2

]1/2

= OP

(
F2

F1

|4|`|g0|`+1,∞

)
,

and

λ‖U22Q
T
2 PQ2θ0‖ ≤

Cλ

n|4|4
‖s0,g0‖Eυ ≤

Cλ

n|4|4

(
|g0|2,∞ +

F2

F1

|4|`−1|g0|`+1,∞

)
.

Thus,

‖θ̃ − θ0‖ = OP

{
λ

n |4|4
|g0|2,∞ +

(
1 +

λ

n |4|5

)
F2

F1

|4|` |g0|`+1,∞

}
.

For any α with ‖α‖ = 1, we write αTθ̃ε =
∑n

i=1 αiεi and

α2
i = αTU22Q

T
2 BTHZBQ2U22α.

Following the same arguments as those in Lemma S.7, we have max1≤i≤n α
2
i =

OP (n−2|4|−4). Thus,

‖θ̃ε‖ ≤ |4|−1|αTθ̃ε| = |4|−1|
n∑
i=1

αiεi| = OP (|4|−2n−1/2).

Therefore,

‖θ̂ − θ0‖ = OP

{
λ

n |4|4
|g0|2,∞ +

(
1 +

λ

n |4|5

)
F2

F1

|4|` |g0|`+1,∞ +
1√
n|4|2

}
.
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Observing that ĝ(x) = B(x)γ̂ = B(x)Q2θ̂, we have

‖ĝ − g0‖L2 ≤ ‖ĝ − s0,g0‖L2 + C
F2

F1

|4|`+1|g0|`+1,∞.

According to Lemma S.1, we have.

‖ĝ − g0‖L2 ≤ C

(
|4|‖γ̂ − γ0‖+

F2

F1

|4|`+1|g0|`+1,∞

)
= OP

{
λ

n |4|3
|g0|2,∞

+

(
1 +

λ

n |4|5

)
F2

F1

|4|`+1 |g0|`+1,∞ +
1√
n|4|

}
.

The proof is completed.
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