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Denote g (i) by au{n(Viiao, AN}, k= 1,24 =1,--- ,n. Let q =
(qr(), -+, qe ()" and W, be a diagonal matrix with diagonal elements

q.{7n}. Define

where D; = (B.(U)" X0 = 1,---,2p)7, Di(Z) = (ZI',DI", D =

10770
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(Dy,- -+, D,)" which is an nxp.J, matrix, and D(Z) = (Dy(Z), - - - , Dn(Z))"

which is an n x 2(q + pJ,,) matrix.

Lemma S.1 Let assumptions (A1) and (A4) be satisfied. For any vector
¢ = (¢l ) with ¢ = (¢ 1 < s < )" and 1G]] = 1, 1 =
1,---,2p, there exists constants 0 < cy < Cy < o0, such that for any

a € O and for large enough n,

et <TUe < CpJt, and CptJ, < CTUTNC <., (S.2)

) (m),

(S.3)

sup
1<5,8'<Jp,1<I<2p

n™"Y " D;aD; — E[D; yDi i)
i=1

sup
1<s,8'<Jn IV

n

-1

n E Di,lei,s’l’ _E[Di,lei,s’l’] -
i—1

and with probability approaching 1,
eyt < TUC < CpJt, and Cp'J, < ¢TUC < ¢y, (S.5)
where D; g = By, (u) Xy, i =1,--- n,s=1,---,J,, l=1,---,2p.

Proof of Lemma S.1: By Theorem 5.4.2 of DeVore and Lorentz

(1993) and assumption (Al), for any vector ¢; with ||;||]2 = 1 and for
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large enough n, there exist constants 0 < ¢; < C; < oo, [ =1,---,2p, such

that
alJ,' <¢TE[B(U)B,(U)"] ¢ < G

Let m;; = ZSJZI Co1Bsg(U;) and m; = (i1, ,Ti2p)’. By assumptions

(A1) and (A4), for large enough n, we have

2p 2
¢"E[UI¢ =F |¢:(7) Zﬂi,lj(i,z]
=1

<C: C,E[n]m)

2p
=C,Co )¢ E [B,(U)B.(U)'] ¢
=1
§2pC§2Cwmin1SlS2pClJ;1.
As the same way, we have ¢ E [U] ¢ > 2pc;, comaxi <i<opci,, . The second
result in (S.2) can be shown directly from the first inequalities. Similarly it

is easy to prove that (S.5) holds. (S.3) and (S.4) can be shown by Bernstein’s

inequality as Bosq (1998). [J

Lemma S.2 Let assumptions (A1) (A3) and (A4) be satisfied. For any

a € O, [[n7'Dq;(n)|l2 = Op(n~1/?).

Proof of Lemma S.2: By the law of large numbers, with probability
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approaching 1, we have

[n"'Dray ()= D [n_l > Buo(Ud)Xaq (m:)

1<s< Jn,1<1<2p i=1

=n"" Z E [Bs,q(Ui)XuCh (77:)} 2 +0a.5.(n7")

1<s<Jn,1<1<2p

=0as.(n7").

Lemma S.3 Let assumptions (Al) and (A4) be satisfied. There exists a

constant 0 < cp < 00, such that for large enough n,

|n0(2) "' D(Z) a0 < Cp.

A~

Proof of Lemma S.3: Let S, = U(Z) with

Sll 512
Sn - )

So1 S22
where Sy = n_lzTZ, Sia = Sle =n1Z"D and Sy, = U. Denote S99 1 =
Sog — 52151_11512. For any ¢ as given in Lemma S.1, we have
¢TS991¢ =¢TU¢ — 0 2¢"DTZ5;,'2TD¢

=¢"U¢ — .¢"U¢ = (1 - ¢.)¢"UE,

which is also followed by ¢% Sy} ¢ = csCTﬁ_lc , where ¢, and ¢, are con-
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stants. Thus, we have
|7 Oy x4, 1, )O(Z) ' D(Z) |
pInxqs LpJn q2 o0
7t (=g sasit s ) DO sl
=[In7 (=521 9250 2" + 551D )|
<[n7 S5l DTZS Z  ayllo + [0 7155 DT Ayl
_1’\_1
<ci[n™ U Daylls
~—1 1
<a[U  [leolln™ Daylle,
where ¢; is a constant. By Bernstein’s inequality in Bosq (1998), it can be
shown that |[n ™" 1) Dydy||oc = Op(J; ). We have |71 (025, g Tps, ) U(Z) ' D(Z) gy |c <
Co, Where ¢, is a constant. As the proof above, we have
17 (14 Ogx2p1, ) U(Z) ™' D(Z) " s o
“1 [ o _ _ _ _ _ T
=[n7" (S 2" + 5111 8125511 92151 2T — 511151255, D7) s
<|In~' SR ZT @lloo + 0 S 2T D S5, DTS 2 |
+[n 7S 2" D85, D ay
<cslln™ S 2 ay o

§C47

combining with above proof, which arrives at the second part of Lemma
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S.2, where c3 and ¢4 are constants.
OJ

The following Lemma states the convergence rate of the nonparametric

estimators 7y (u), i = 1,--- ,p and their first derivatives mj(u).
Lemma S.4 Let assumptions (A1)-(A4) be satisfied. We have

(a) N — oo and nN~t — oo, as n — oo,

|Bi(u) = By(w)] = Oa.s.(v/N/n+ N7")
uniformly for any u € [ay, b,];
(b) under N — oo and nN—3 — oo, as n — 0o,
1B/(u) = B](u)| = Oq.s5.(v/N3/n + N'7")
uniformly for any u € [ay, by].
Proof of Lemma S.4: According to the result of de Boor (2001), for 5(+)

satisfying assumption (A2), there is a function /3;(u) = B,.(u)”\;, such that

sup |Bi(u) — Bu(u)| = O(J,"). (5.6)

WE [Qu,bu)
Let B, (u) = (B,(w)", -+ B, (v)T)?, and A = (A1, -+, A\gp)”. The estimate

of \ solves equation

0=n"> q{i(Viie, \)}D;.

i=1
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Recalling U = Oqa.5.(J;1) and nN=2=2 — 0, via Taylor series, we have
ot iD' ()}
—n - ik
I~ - ~
- > a{} DD {(A = M)}(1 + 0as.(1)
i=1

1 A

:EDT(h{??} — U= N1 + 0as.(1)),

which results in

o~

1~ R
A=A=-U D"q,{7}(1+ oas.(1)).
For each u € [ay,b,], by Lemma S.3 and (S.5) and assumption (A3), with
probability approaching 1, we have
~ 2
E [BT(U)T()\ - )\)’ X,Z, U]

=5 [|oonB, ()T DT, 3} | X, 2, U] (14 0,(1))

—n202B,(u)'U " DT E[q, {7}**X, Z,UIDU " B, (u)(1 +o0,(1)) (57
—n L C2C,B, (u)TU B, (u)(1+ oas.(1))

:Oa.S.(Jn/n)u

which implies by the law of large numbers that for each u € [ay,b,],

|

in Lemma S.4 (a). Noting that |[Wi||. = O(J,) where W is defined in

B, (u)” (X — )\)H2 = Oas.(\/Jn/n). Thus, (S.7) combining (S.6) results

Section 2.2, one can show similarly that the second part of Lemma S.3

holds.
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Let P,(Z;) = DZTEZ, where ZZ = (le, e ,E;) is a 2p.J, X 2¢ matrix
and for k=1,---,2q,

n
~Z

¢ = argmin Y ¢x{7(Vi; 80, ) }(Zi — DI ¢F)*.

CReR@In 2y
Lemma S.5 Let assumptions (A1)-(A5) be satisfied, and nN~* — oo and

nN=2=2 50, as n — oo. We have

DI{A =2} =n"'DIU D q,{ii} - P(Z))" (& — o)
(S.8)

+ o[ = all2) + 0p (v N/n+ N77),
where X\ is defined in Lemma S.35.

Proof of Lemma S.5: The estimate of A\(0) solves equation
0=n"" zn: a1 {i(Vi; &, \)}D;.
=1
Recalling U = O,(J;1) and nN~2=2 — 0, via Taylor series, we have
0 =S D) ' S @ liIDDH( — X) + o0, (/NJ + N 7))
i—1 i=1
S I D (@ - ) + o - afl))
i—1

—n'DTq, {7} — U —A) + 0,(v/N/n+ N

—n"'D'W,Z{(a — a) + o,([|& — al|2)},

where W, is a diagonal matrix with diagonal elements q,{7}. Thus, we
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have

DI{X = A}
=n"'DI'T DT, {7}
— 7 'DTU DTW,Z{(a& — a) + 0,(||& — e|l2} + 0,(v/N/n + N77).

(S.9)

Along the same arguments of Liu et. al. (2016), we have
nIDTU DTW,,Z = P,(Z:) + O,(J\7).

As the same as Lemma S.3, we can show that |P,(Z;) — P(Z)|ls =
O,(\/N/n+N77). Therefore, with (S.9), this arrives at the result of Lemma
S.4. 0

Proof of Theorem 1: The estimates of e solve

0=n""Y q{i(Via N}z
i=1
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Then by Taylor expansion, we obtain

0=n" anql{ﬁi}zi

WL Z{(6 — a) + oy — all>)}
—nt zj; @ {7} 2:DT {\ — A + 0,(v/N/n + N7")}

=n"'Z"q{i} —n'Z"W,Z{(a - a) + o,(|a — a||2)}
e Z AT} ZDT0 D gy {7} + 0y(V/ N+ N
ot Z e {1} ZP(Z){(@ — o) + 0,(|@ — o)}

— ! zj;m-}z 2,-P@Z)| (@) +o(la—al.)
b2 ) — Z 0 (i) 0,0 Z BURIDIZ, + 0,0,

=07 Y ()% |2~ P(Z)] (@) +o,(a —al.)

o Z [Z - P(Zi)} {7l H1+ 0y(Jy ")} + 0p(n~112),

which arrives
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Thus, by the law of large numbers, we have

n- qu{m}z [ P(Z, )} — ¥ +0,(n?).

Because the observations Vy,---,V,, are independent, by Lindeberg-

Feller central limit theorem, it is easy to prove that

Wijh— )] afi} 5 N, D).

Then the proof of Theorem 1 can be completed by Slusky’s theorem.

O

Lemma S.6 Let assumptions (A1)-(A6) be satisfied, and nN~* — oo and

nN=2=2 50, as n — oo. We have

sup [P () = fi(u)| = Op(n" loglm),

ue (278 bu

and for any u € [a,, by),

m{@o(u) — Bi(u) — bl(u)hlz} A N(0,v(u)),

where

bi(u) =paf) (u)/2,
v(u) =|K|3{E[p(V)X|U = u]f(u)} .

Proof of Lemma S.6: To facilitate expression, we prove only

sup |32 (w) = 1 (w)| = O,(n~*7/log(n)).

uE[ambu]
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Xl,l R Xn,l
(ul — U)X171/h1 s (Un — U)Xn,l/hl

~ O ~ O .
ij (a) = ij (U, a) = dlag {Qj{ngl,l}Khl (ul o u)7 e 7Qj{n?1,n}Kh1 (Un - u)} )

where Qj{ﬁgl,i} = ¢;{n% (Vi;a,b, )} withn? (Vi;a,b, @) = aTZi"‘Zf:z Bl(“i)TXi,l+
a)~(i71—|—b(u,-—u))~(i,1 and 7 =1,2,i=1,---,n. The estimate (60,30) solves

equation
0=n""Y q{i%(Via®,°,a)} ’ K, (u; — ).
=1

Thus, we have
BO(u, @) = (1,0{X Wi (@)X} "X W, (&)(1 + 0,(1)).

Noting that ||& — a|| = O,(n~/?) by Property 1, it is not hard to see
that, for any u € [ay, by, WZ(&) = quj (@) + O,(n~'?), which implies

that

sup |B0(u,@) — B(u, )| = O,(n ). (5.10)

ue[au,bu]

Along the lines of Theorem 2.5 and 2.6 in Li and Racine (2007), we have,

under Assumption A.?

sup |80 (u, @) = fi(w)| = 0,(n~*°\/log(m).

Ue[auybu}
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which implies that

sup [BP(w.@) = mw)| < s [F00.8) - B+ sup [fu.0) - filw)

Ue[au,bu] Ue[au,bu] Ue[auybu

:Op(n_l/2) + Op(n_z/5 V1og(n))
=0,(n%°/log(n)),

Therefore, this arrives the first part of Lemma S.6, and

Vi { B2 (u, @) = i) = bu(w)hi } 5 N(0,01 ().

The second part can be show by combining (S.16) and the asymptotic nor-
mality of Elo(u, a).

O

Lemma S.7 Suppose that assumptions (A.1)-(A.6) in the Appendix hold,

and nN~ — oo and nN—% — 0 with § = min(2r + 2, 5r/2), then we have

sup |'(@°,1°) = Oq.s.(n"?logn).
UE [ ,bu]

Proof of Lemma S.7: We only prove the case of [ = 1, that is, consider
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a% =5 (u) and O = E{(u) in oracle case. Recall E’(&O,ZO) = 0. We have

0(@°,1°) =0'(@°,0°) — '@ ,°)
1 & N NS ST
== ({71 (Vi@ 00, 8)} = qu {7, (Vi a2, 5, @)} | K a Ko, (s — )
1=1

=S AV, 0,80} By () — By (n)]| KK (s — )
1=1

n p

Z (Bl(uz) — Bu(w))?)

i=1 =2

By Lemma S.4, we have 2 3™ S™ (8)(u;)—fBy(u;))? = Oas. (N/n+N-2").

S

+ Oas.(

Let B_;(u) = (Ba(u), -, By(u))T with By(u) being defined in Lemma S.4.

Thus, we can rewrite
7(@°,1°) = A, + By + Oas.(N/n+ N7,
where

1< OO ~ T
A “n Z Q2{77?1 (Vi ao’ b7, a)} [5_1(%) - 5_1(%’)] Xi1Xi 1 Ky (u — ),
i=1

1 & — .
B, :E Z %{ﬁ?l(vz‘;a@, b07 a)} [5_1(%) - ﬁ_l(uiﬂT Xi,—lXi,lKhl (Uz - U)
i=1

Noting that go(-) is bounded, by Lemma S.4, we have

S
3

Define &, = (471, -+, ¢15,) 7 @, = (671, .1, and @, = (¢T,, -+, ¢L,))7,

) Yr2p
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where

n

&, =U 3 [V @ N} — (Vi @)} D

i=1

1
=U lﬁqu{n(Vi,oz)}D
=1
d. =\—\— B, — D,

Along the line of proof in Liu et al. (2013), and by Lemma S.1 and Lemma
S.2, we can prove that [|[®;2 = Oa.s.(N7") and ||®,||2 = Oas.(N*/?n71).

We can decompose A,, = Ay, + As, + As,, where

n

1 — L
A == @{i%(Via®, 0% @)} (6B, (w), 1 =2, 20) " X; 1 X1 K, (07 — )

i=1
Z%{Ti L(Via2, 00, @)} B (ui), L =2, -, 2p)"X; 1 Xi 1 K, (u; — w)
Z%{U 1 (Vi@ 00, @) ol B (u), 1 =2, -+, 2p) X 1 X1 K, (s — w).

Applying Cauchy-Schwarz inequality, we have

sup |Ain| <C sup Z| ¢sz ui), l =2, >2p)TXi,—1Xi,lKh1(ui_u)|

Ue[au,bu] UE[CLu bu]
1/2

1 o
<C sup |[|®l2 > [EZ|str(ui)Xi,lX,-71|Khl(ui—u)]2

u€(au;bu] 2<I<p1<s<Jn  i=1

=C sup || ®y|l2/nOas.(J 1)

ue[au,bu

:Oa.s. (N_T)u

and similarly, SUPye[ay,bu] |As,| = Oas. (N3/2 ) Let Cz,l(u) = (Cl,l,la s 7CJn,l,1)T
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with

Copa(u) =n"" Z {70, (Vi3 a°,0°, @)} X1 K, (0 — w) By (u) "Xy, 1=2,--
i=1

By Lemma A.2 in Xia and Li (1999), we have

sup €y p1(u) = E{Cy 11 (u)}| = Oaus.(v/logn/(nh)).

uE[ambu}

By de Boor (2001), we have, for any u € [ay, by,

[E{Cu (W)} = E{Kn, (u; — w) E[g2{7 (Vi53°, 17, @)} X1 Bap ()" Xy i)}
<tof (W) E{ X1 Xi2lui = u}|| E[By,r(w)]| + O(h3) O(|E[ B, (u;)]])

=0(J, ),

which implies that |¢,;(u)| = O(J,'). It is easy can be shown further
that Sup,,c [y, . MAX1 <o< s, 1<1<2p [ Co 1 ()] = Oas.(Jn %) Define @, _; =

(¢la,- -+, Phs,)". By the definition of Ay,, we have Ay, = ¢, (u)" @, 1,
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which implies that
2
sup F (A2,|V)
UE[GU7bu]

= sup E(Cl(u)Tq)v,—l'i’;p,ACl(uﬂv)

ue [au 7bu}

= sup ((u)'E (®,_1®._1|V)(i(w)

uE[ambu}

< sup (|G (W) [BI1E (2,2 V) [l)

uE[ambu}

_ ~—1 PSS ~—1
= s GBI DTE ({7 (V0. 10,8)1% V) DU,

uE[ambu}

_ ~—1
<Cq sup n G (WU |l

uE[ambu}

=04.5.(n7").

Therefore, by the law of large numbers, we have sup,c(,. 5.1 |42n| = Oa.s.(n""/*logn).

O

Lemma S.8 Suppose that assumptions (A.1)-(A.6) in the Appendiz hold,
and nN* — oo and nN=° — 0 with § = min(2r + 2, 5r/2),
sup [["(a, )2 = Oa.s.(1),
UE [Aa ,bu)

for any (a,b) € A.

Proof of Lemma S.8: Let Xﬂ(u) = (Xi1, (U; — u)X;1/h1)T. According
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to the boundedness of ¢o(+) and the law of large numbers, we have

" (a,b) = ZqQ{n V(Visa, b, @)} Xy (u) 22 Ky, (u; — u)

=E [g2{7-1(Vi; a,b, @)} X1 (0)** Ky, (w; — u)] + Oas.(1)

=0a..(1).

O

Lemma S.9 Suppose that assumptions (A.1)-(A.6) in the Appendiz hold,

and nN* — oo and nN—° — 0 with § = min(2r + 2,51/2), then we have,

fO’f’lzl,"',p,

sup  |Bi(u, @) — B (u, @) = Og.s.(n"?1ogn),

uE[ambu}

where By(u, &) and B\lo(u, &) denotes By(u) and Blo(u), respectively.

Proof of Lemma S.9: Noting that 7 (5,/5) = 0, by the mean value theo-

rem, there exists a (@, b) € A between (@, b) and (@° bo) such that

—7(@°,1°) = 7(a,b) — £@°,1°) = "(a,b) |(@,b)" — (@°,°)"

which follows by

@.b)" - @.0°)" = ~0"(a, b) 0@, 1°).
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Combining Lemma S.7 and Lemma S.8, we have (5,§)T - (&\O,EO)T =
Oa.s.(n"'logn), which proves Lemma S.9 by noting B\l(u, a) — B\lo(u, a) =
(1,0) | (@,5)T — (@°,°)7|.
U
Proof of Theorem 2: Due to nh® = O(1), we have v/nhn="?logn =

0p(1). By Lemma S.9, we have

Vi Bilw, @) = filw) = ()b} = v/l { B0 (&) = Bi(w) = bi(w)hi } + 0,(1).

Lemma S.6 has proved that

Vb { B (4, @) = Biw) — b } 5 N0, u(w),

where b(u) = paf(u)/2, and v(u) = [|K|S{E[p(V)X?IU = u]f(u)}~".
Thus Theorem ??7 can be shown straightforwardly by Lemma S.6 and
Lemma S.9 in the Supplementary Materials.
O
La(Ho) = 321, QUo™ {77, (Vi3 @, 0)}, Y:) and 6, (Hy) = 3, Qg™ {7, (Vi &, 0)}.Y,),
where Ty, (Vi: &, 0) = ZT 6 1,+X7 00 11, (w)+ 2T &y 11, G; and Ty, (Vi; @, 8) =
ZT 6 g1, + X700 11, (W) +{ZT Gy g, + X7 0, g, (u)}Gi. We define the following

GLR test statistic,

Tap = 2(6u(Hy) — £,(Hp)). (S.11)
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To prove Theorem 3, we need following Lemma. Similarly to Liu et. al.
(2016), assuming that nonparametric functions B(u) are known, we can
construct a GLR statistic based on the “Oracle” estimator Bo(u). Consider
hypothesis test (3.14). Let B\IOHO(u) and B\I?Hl (u) be the “Oracle” estimates
under Hy and H; as the same as Section 2.1, respectively. The resulting

likelihoods under Hy and H; in hypothesis test (3.14) are
£O HO ZQ _1{77H0 aub\)}vn)v
(Q(Hy) = Z@ A5, (Vi 6,0)1, ),

~ ~0 ~

where 1) (Vi; &, 0) = Z] ao 1, +X] 6, g, (U;)+Z] 01,11, G; and 11, (Vi &, 0)
~0 ~0

Zl 0w, + X[ 00 1, (Up) + {Z] oy, + X[ 0y, (U;)}Gi. We define the follo-

wing Oracle-version GLR test statistic,
TNp = 26, (Hy) = £ (Ho)). (8.12)

Let ax = {K(0) — 1/2 [ K*(u)du}[ [{K (u) — 1/2K * K (u)}du]™*, where
K % K(u) denotes the convolution of K.
The following Lemma states the asymptotic distribution of T, under

NP
HYP.

Lemma S.10 Suppose that assumptions (A.1)-(A.6) in the Appendiz hold,

and nN* — oo and nN=2"=2 — 0, then under HY'" in (3.8), when nh?/? —
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Urfl(TNP Mn) N(O 1)
where 02 = 207 1|Q| [ {K (u) — 1/2K % K (u)}* du and p1,, = h™Y Q| {K(0) — 1/2 [ K?(u)du}.
Proof of Lemma S.10: Define

(. (Ho) ZQ 9~ 4, (Vis e, 6° )} Ya),

=1

0 (Hy) ZQ g i (Visa, .67}, Vi),
Tynp =2(6,(Hy) — £,(Ho)),

L . 2% T 0 i T 0 o~ 2% —
where nHO(V,-, o0 )=7 o)+ X; BovHo(U,-) +7Z, o and nHl(Vi,a,O ) =
ZIal + X?@ng(Ui) +{Z]al + X?@iHl(Ui)}Gi. It is easy to see that

02 (Ho) — £6,(Ho) =0,(1),
C(Hy) = 6, (Hy) =0,(1),
which implies that T'0p = T%p + O,(1). It remains to show that
- L
anl(TNP o ,un) - N(07 1)

~0 «
Denote 7y, (Vi;e,0 ) by 07y, and qi{n;y,} by €. Let X; = X;G;.
~0
By the mean value theory, there exists a 7*(V; a, 8 ) between 7, and

~0
M5, (Vi;a, 0 ) such that

* - L
Thp =2 &X; 0, 4, (U) + Z GioB, (U)X X, 0, (U,

i=1
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where g; o denotes ¢2{7*(V;; o) }. Invoking Lemma S.6 and Sjo(u) = 0, we

have

B, (1) = {0 (w) + Ra(u) }(1 + 0,(1))
where
an(u) = T(u) iei&K((w —u)/h),
Rufu) =T (u) Zf;{ewi)TXz- — (W) R PXK (U — u)/h),
and T(u) = {E[p(V)XX'|U = ulf(u)}, 7(u) = (6(w)7, h6'(w)T)T and
X; = X;(u) = (XT'Gy, XTGi(U; — u)/h)T. Define
R =2 Zn: &R, (U)X,
RY =2§;jqz-,zanwz-)TXiX?Rn(Ui),
R® = zn: Gio R (U)X X Ry (US).
Thus, we have _

9 n n 3 3
Tip ==Y & {Z ex X, D(U) X K (U, — UZ-)}
=1 k=1

1 _ - T S .
+ ﬁ Z Z Z qhgaiani F(Uk)Xka F(Uk)XJKh(UZ - Uk)Kh(U] - Uk)

k=1 i=1 j=1

+RY + R + RY 4+ 0y(n~"h7?)

=T, + S, + RV +R® + R® 1 0,(n"'h7?).
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By the condition nh%? — 0 and some direct but tedious calculations, it can

be shown
R, =RV + R® + R® = O,(nh* +n'2h%) = o,(h~1/?). (S.13)
It is easy to prove that

- 2 . 5
T, = 2h7 ' K(0)|9 + o ZgigkXZF(Ui)XiKh(Uk —Ui) + o, (R713).
i7k
(S.14)

Let S, = S,1 + S,2, where

1 n n - VT . 2
S - g £ E qk,z{XkT(Uk)Xz’Kh(Uk —U,-)} ;
i=1 k=1

1< "\ T o T 5
Sn2 2 Z&'%’ ZQk,ZXi L(Us) XX, T (U)X Ky (Ui = Ui ) K3, (U — Uy).
i#] k=1

It is easy to see that
Sp1 = 0n(1+0(1)) + O, (n=32h72) + O, ((nh*) ™) + 0, (L~ 1/?),
where

1 L T 3 )
00 = =gy o Bt KT U)X (U = U)
-

n(n—1)
According to Hoeffiding’s decomposition (Serfling 1980) for the variance of

U-statistics, by tedious calculations we can show that the variance of o, is

On = Op(n_lh_2).



24 Xu Liu! Ping-Shou Zhong 2 AND Yuehua Cui®

It is straightforward to calculate the expectation of o,

Fo, = —h~1Q)| /K?(t)dt +o,(h7Y),
which implies that

So1 = —h7Q /Kz(t)dt + 0,(h71/?). (S.15)
Spo can be further decomposed as S,2 = Syp21 + Spoo, Where

1 n n 3 o 3
Sumt =—5 Y cig; O GeaX; DU XXy, DU X K (Us — Up) K (U — Uy),
WU ki

n22 —

2h Ze ‘; [qZQX (U)X X, T(U)X; + 32X, T(U) XX, T(U)X; | Kn(U; - U;).
It can be show by tedious calculation that
var(Spae) = O(n2h™3),
which implies that
Spaz = o(h™V?). (S.16)
Let
Qijr = (jk,2F(Uk)XkXZF(Uk)Kh(Ui — U)Ky (U — Uy).

We can prove that

{*ZQW E Qi (U, U)) } ‘ZZEQW O((nh*)™1),

k1,5 k#i,j
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which implies that

n—2 - .
Szt == 3 eie X, B [Quiel (U U] X; + 0, (h712)
X . (S.17)
== e X DU XK (U = Uy)/h) + oy (h72),
i#]

where K (t) denotes the convolution of K (-). By (S.13)-(S.17), we have
Typ = pin + T(0)h2 4+ 0,(h71?),
where

i =h7|Q {2}((0) - /KQ(t)dt},
() = h2 S e KT ARK (U — Uj) /) — KU~ U) /1),
i#j

It remains to prove that
T(n) 5 N(0,v2)
with v? = 2|Q| [{K(t) — 1/2K(t)}2dt. Define
Dij = b2 X, T(U)XG{2K (Us = Uy) /h) = K((U; = Uy) [h)}

and

T(n)=>» Ty

1<j

where T;; = 1(®;;4+®;;). Define v? = Var(T(n)). According to Proposition

3.2 in de Jong (1987), it suffices to check following conditions:
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(2) T(n) is clean fsee de Jong (1987) for the definition],
(b) v2 — v

(c) ¢ is of lower order than v?,

(d) ¢ is of lower order than v!,

(e) (3 is of lower order than v,

where

Cl =E Z ng’

1<i<j<n

G=E > AY}Th+TI05 + TR

1<i<j<k<n

(3 =F Z YR E7E S7% 070 A7 S B0 70 UR D GV 675 670 T 70 3

1<i<j<k<i<n
Below we check each of conditions as follows. Condition (a) holds obviously.
Then we calculate the variance v? as follows. (a) implies that v2 = ET(n)?.
By de Jong (1987), we have
=FE 2= g o7
1<i<j<n 1<i<j<n
We can show that

By e = [ -

1<i<j<n

K(t)}Y2dt,

l\Dli—‘



FILL IN A SHORT RUNNING TITLE 27

which implies that (b) holds. Noting that

E Y (o} =0@’n"),E Y {®}d;}=0n’h?),E > {00} =

1<i<j<n 1<i<j<n 1<i<j<n
we have ¢; = O(h*n=)O(n?h=3) = O(n=2h~"'). Similarly conditions (d) is
shown by noting that
E Y ATTR} =mnt0(n’h %) =0,
1<i<j<k<n
which implies that (; = O(n™1). It is obvious by straightforward calculati-
ons that,

E Y {2;05%,;y} =O(n'h™),

1<i<j<k<I<n

E Y {2;05%,;Py} =O(n'h7),

1<i<j<k<I<n

E Y {2®u®;Pu} =0(n*h™),

1<i<j<k<I<n
which result in
E > {YYaX, T} = 0 n~O(n*h™") = O(h).
1<i<j<k<iI<n

Therefore, we have (5 = O(h), which implies that condition (e) holds. This
completes the proof of Lemma S.10.

O

O(n

2h_

%),
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Proof of Theorem 3: According to Lemma S.9, we have

(3 (Ho) — £n(Ho) =0, (logn),

(7 (Hy) = £u(Hy) =O,(logn),
which implies that
TNP = T](\?p + Op(logn)

Therefore, applying Lemma S.10, Theorem 3 can be proved directly.
O

Proof of Lemma 1: Invoking the proof of Theorem 1 and 3, we have

n'PS P (@ — o) =nTVPE2Y (2 — P(Zi))ei + 0p(1),

i=1

o (Txp — pin) =v~ 'Y (n) + 0p(1),

where & = ql(’f];Ho), T(n) = %h_1/2 ZZ’E] €Z€JX?F(UZ)Xj{2K((UZ—U])/h)—
K((U; — U;)/h)} and v* = 2|Q| [{K(t) — 1/2K(t)}*dt are defined in the

proof of Lemma S.10. Let

n

n o 3 ~

Ly =) ete;(Z; — P(Z:)X; D(U)XG{2K((U; = Uy)/h) = K((Us = Uj) /h)}.
i#]

It is easy to see that E[l;,] = 0 and E|ly,] = 0. Therefore, we have

COV(&1,&,) = n 20 22 (1, + 1) + 0,(1),



FILL IN A SHORT RUNNING TITLE 29
which results directly in COV (€, &,) Lo.
O
Proof of Theorem 4: This Theorem follows by Theorem 1 and Lemma
S.10.
O
The following Lemma states the asymptotic distribution of T¢p under

NP
Hl .

Lemma S.11 Suppose that assumptions in Theorem 5 hold, then under

HNP in (3.8),
0 (Tp = pin = dn) 5 N(0,1),
where da, = nE[p(V)0,(U)TXX" 0,(U)).
Proof of Lemma S.11: Along the lines of Lemma S.10, we can prove that
(O(Ho) — €(Ho) =0, (1),
CJ(Hy) = 6,(H1) =0,(1),
which implies that T¢p = Txp + O,(1). It remains to show that

_ * L

n

Denote iy, (Vi; @) = Oo(Uy) + 7 Z; + X, 0,(Us) by it ., and g1 {7 g1, }

by €. Let C5(H)) = Y0, Q(g ik, (Vi;)}, Y:). By the mean value
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theory, there exists a 7*(V;; ar) between 7); ;, and 77, (Vi; «) such that

Tiop =2(6,(Hy) — £5(Hy))

=2(03(H,) — 0,(Hy)) — 2(6,(Ho) — (Hy)

=2 iaXf(@lei) ~6,(U) + Z GO, (V) — 0,(U)" XX (B, () — 0,(17))
—I—QZ@X 6..( que NIX,X 0,(U;)

_zzaz )+ Ra(U2)(1 + 0,(1))
+ Zqig(an(m) + Ry(U)TXX] (an(U) + Ra(U))(1+ 0,(1))
+225X0 Znge X, X! 0,(U))

:225,-5@%” )+ qugan )TXX] a,(U;)

+23 X, 0,(Ui) — doo + RY + R? + RY + 0,(h71/?)

~T, + 8, + 2 &X 0,(U)) — don + R + R? + RY) + 0,(h™"/?)
i=1
where G; o denotes ¢o{7y, (Vi; @)}, day, is defined in Theorem 5, and T,, and
S, are defined in the proof of Lemma S.10. As the same argument of Lemma
S.10, we have
Tip — o+ do = Y2 12" X[ 0,(U) + 0, (17,
i=1

where Y (n) is defined in the proof of Lemma S.10. It is easy to see that the



FILL IN A SHORT RUNNING TITLE 31
variance of the second term on the right hand is 32 = nE[p(V)0,(U)TXX" 0, (U)] =

O, (h~Y*) by noting the assumption nh* — 0 and 0,,(u) = O,(n~/2h~1/4).
(Tip = tin + don) /70 5 N(0,1),

which completes the proof of Lemma S.11.
OJ
Proof of Theorem 5: According to Lemma S.11, this Theorem can be

proved similarly to Theorem 3.

O
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