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Abstract: Gene-environment (G×E) interactions play a crucial role in many com-

plex diseases. Many studies have highlighted the importance of the linear and

nonlinear effects of G×E interactions to the risk of contracting diseases. Linear ef-

fects can be modeled parametrically, whereas nonlinear effects are typically modeled

and estimated using nonparametric functions under the framework of partial linear

models. Because of the difference in the rates of convergence of the parametric and

nonparametric parts, few statistical studies have assessed the simultaneous effects

of the linear and nonlinear effects of G×E interactions in the context of a partial

linear model. In this study, we consider a hypothesis test to simultaneously detect

the linear and nonlinear effects in a generalized partial linear varying-coefficient

model. We propose a B-spline backfitted kernel method to estimate the effect

of nonlinear interactions. A Wald-type statistic is constructed for the joint testing

problem based on the nonparametric generalized likelihood ratio statistic. We show

that the joint test statistic asymptotically follows a χ2-distribution under the null

hypothesis of no G×E interaction effect, and a noncentral χ2-distribution under

the alternative. Moreover, the proposed test can simultaneously detect alternatives

at optimal rates for both the parametric and the nonparametric components. The

utility of the method is demonstrated using extensive simulations and a case study.

Key words and phrases: B-spline back-fitting, genetic association, non-linear G×E

interaction, partial linear effect.

1. Introduction

A gene-environment (G×E) interaction is defined as a phenomenon in which

the influence of genotypes on phenotypes is different under different environmen-

tal conditions (Falconer (1952)). Such interactions are key drivers of epigenetic

effects. A growing number of reports have confirmed the role of G×E interaction

in many diseases, such as Parkinson’s disease (Ross and Smith (2007)) and type-

2 diabetes (Zimmet, Alberti and Shaw (2001)). Although linear G×E effects

are commonly assumed in many statistical analyses, there is increasing evidence
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of nonlinear effects of G×E interactions on the risk of disease (Martinez et al.

(2003); Sparrow et al. (2012)). Certain methods for detecting nonlinear G×E

effects (e.g., Ma et al. (2011); Wu and Cui (2013)) involve applying varying-

coefficient (VC) models to model the effects of nonlinear interactions. A key

feature of the VC model is its flexibility in capturing the dynamics of gene effects

over a spectrum of environmental changes.

A typical genetic study on G×E interactions collects both continuously and

discretely measured environmental variables. For example, a mother’s nutri-

tion intake can be considered a continuously measured environmental variable,

whereas gender or a person’s smoking status can be regarded as a discrete vari-

able when studying the effects of G×E interactions on birth weight. Discrete

environmental variables, such as smoking status, do not interact with genes non-

linearly, whereas continuous environmental variables can do so (Ma et al. (2011)).

When both types of interactions are considered in a model, a partial linear VC

model (PLVCM) can be applied to study the linear and nonlinear effects of G×E

interactions, where the former are typically modeled and estimated nonparamet-

rically. Zhang, Lee and Song (2002) considered the PLVCM by introducing a

two-step estimation procedure, proposing a root n-consistent estimator for the

parametric component. Fan and Huang (2005) proposed a profile likelihood

method to estimate parameters based on a local linear method. The PLVCM

has been extended to a generalized partially linear VC model (GPLVCM) by Lu

(2008) when the response is discrete. Fan and Zhang (2008) reviewed the statis-

tical methods for the VCM and PLVCM, including applications of the VCM to

survival, longitudinal, and functional data, as well as time series data.

Let Y be a disease trait that can be quantitative or qualitative. We consider

the following GPLVCM:

η(V;α,β) = g{µ(V)} = ZTα0 + β0(U) + {XTα1 + β1(U)}G, (1.1)

where g{·} is a given link function; µ(V) is the conditional mean regression func-

tion of Y , given V = (Z, U,G), where Z = (Z1, . . . , Zq)
T is a q-dimensional

covariate vector containing both discrete and continuous variables; U is a con-

tinuously measured environmental variable of interest; and X is a p-dimensional

vector that is a subset of Z. This vector contains environmental variables that

show the linear interactions with G that affects Y , where G is a gene variable

(e.g., SNP). In addition, α0 and α1 are parametric coefficients, and β0(u) and

β1(u) are nonparametric functions. In particular, α1 models the linear G × X
interaction effect and β1(u) models the nonlinear G × U effect. These form our
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primary focus.

Several methods have been developed to estimate the parameters in model

(1.1) based on a local likelihood, such as the two-step estimation procedure

(Zhang, Lee and Song (2002)) and the profile likelihood method (Fan and Huang

(2005)), which iteratively estimate the linear and nonlinear parts and is very

time consuming. These procedures are needed to smooth the bandwidth when

the nonparametric component is estimated by a local likelihood. In this study,

we propose estimating the linear and the nonparametric parts in two stages us-

ing the B-spline backfitted kernel smoothing (BSBK) procedure introduced by

Wang and Yang (2007). The BSBK is a two-stage method. In the first stage,

we estimate the linear part by approximating the nonparametric functions with

B-spline bases. Then, the nonparametric functions can be obtained component-

wise, based on the local likelihood, when the linear part and the other components

of the nonparametric functions from the B-spline estimation are plugged in. Liu,

Yang and Härdle (2013) studied a generalized additive model using the BSBK,

which was later extended by Ma and Song (2015) to estimate the varying-index

coefficient model. Liu, Cui and Li (2016) applied the BSBK to study a partial

linear varying multi-index coefficients model for G×E interactions. The BSBK is

considerably faster than the existing two-step method and the profile likelihood

method without the requirement of under-smoothing.

Statistical inferences have been studied extensively for the VCM and PLVCM,

but these studies deal separately with the parametric and nonparametric com-

ponents. In our study, the test for the parametric component is formulated as,

HP
0 : α1 = 0 v.s. HP

1 : α1 6= 0. (1.2)

The likelihood ratio test statistic (LRT) can be applied (see Fan and Huang

(2005); Fan and Zhang (2008)), and has been shown to be asymptotically χ2-

distributed with p degrees of freedom. It is also interesting to assess the inter-

action between U and G, and to determine whether any nonlinear interactions

exist. This results in the following nonparametric component test problem:

HNP
0 : β1(·) = 0 v.s. HNP

1 : β1(·) 6= 0. (1.3)

Fan and Huang (2005) proposed a generalized likelihood ratio statistic (GLRT)

that extended the GLRT for the VC model (Fan, Zhang and Zhang (2001); Cai,

Fan and Li (2000)). They proved that the GLRT under the null hypothesis con-

verges to a normal distribution, and can be asymptotically approximated by a

χ2-distribution that reveals Wilk’s phenomenon for nonparametric and semipara-

metric models. Because of the difference in the rates of convergence between the
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parametric (α1) and the nonparametric parts (β1(·)), simultaneous inferences of

the effects of linear and nonlinear interactions have not been studied thus far.

In this work, we assess the overall effects of G×E interactions: that is, we

simultaneously determine whether α = 0 and β1(·) = 0. We frame this joint test

problem as follows:

HPNP
0 : α1 = 0, β1(·) = 0 v.s. HPNP

1 : α1 6= 0 or β1(·) 6= 0. (1.4)

The challenge posed by the joint test is that the parametric and nonparametric

components have different convergence rates. We can easily obtain the
√
n-

consistent parametric estimator α̂1, but cannot do so for the nonparametric

estimator β̂1(·). Recently, Cheng and Shang (2015) proposed a joint test for the

parametric and nonparametric functions at fixed points, instead of assessing the

functions entirely. Their testing problem is defined as

H0 : α1 = 0, β1(u0) = β01(u0) vs. H1 : α1 6= 0 or β1(u0) 6= β01(u0),

where u0 is a given fixed point and β01(·) is a given function. In our setting,

the test for the function at some given points is not meaningful. We are more

interested in testing whether the entire function is zero. This motivates our joint

hypothesis test defined in (1.4).

The remainder of this paper is organized as follows. We introduce the model,

the method of estimation, and the statistical properties of the estimators in

Section 2. In Section 3, we lay out the hypothesis testing framework and derive

the asymptotic distribution of the test statistic. Out simulations and a real data

analysis are described in Sections 4 and 5, followed by a discussion in Section 6.

All technical details are provided in the Appendix and the online Supplementary

Material.

2. Model and Estimation

We denote the conditional mean of Y , given V = (Z, U,G), by µ(v) =

E(Y |V = v). For an ordinary generalized linear model (GLM), the conditional

density of Y , given V = v, belongs to an exponential family,

fY |V (y|v) = exp[yξ(v)− b{ξ(v)}+ c(y)],

for known functions b{·} and c(·), where ξ(v) is the canonical parameter. In this

study, we consider the model defined in (1.1).

Under the quasi-likelihood framework, where only the relationship between

the mean and the variance is specified, we can estimate the conditional mean by

replacing the conditional log-likelihood log{fY |V (y|v)} with a quasi-likelihood
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function Q{µ(v), y}. Let the conditional variance of Y , given V, be Var(Y |V =

v) = σ2V (µ(v)), with an unknown function V (·). Thus, the quasi-score function

can be given by (see Carroll et al. (1997) and Cai, Fan and Li (2000))

∂

∂u
Q(u, y) =

y − u
V (u)

. (2.1)

2.1. Parameter estimation in GPLVCM

We define Z̃ = (ZT ,XTG)T , α = (αT
0 ,α

T
1 )T , and β(u) = (β0(u), β1(u))T .

The X variables contain the environmental variables that interact linearly with

G. Thus, X is a subset of Z, and the dimensionality of X is smaller than that of

Z. Model (1.1) can then be simplified as follows:

η(V;α, λ) = β0(U) + β1(U)G+ Z̃
T
α, (2.2)

where λ contains the parameters used to estimate the nonparametric functions

β0(U) and β0(U). Consider the knot sequence ξ1 = · · · = 0 = ξr < ξr+1 <

· · · < ξr+Nn < 1 = ξr+Nn+1 = · · · = ξNn+2r, where the number of interior knots

N = Nn increases with the sample size n. Let Jn = N + r. We denote by J the

space of the B-spline basis function of order r (r ≥ 3) (de Boor (2001)), with the

B-spline basis Br(u) = (Bs,r(u) : 1 ≤ s ≤ Jn)T , u ∈ [au, bu], where [au, bu] is the

support of U . Then, βl(u), l = 0, 1, are approximated using the following spline

functions:

β̃l(u) ≈
Jn∑
s=1

Bs,r(u)λs,l = BT
r (u)λl,

where λ = (λT1 , λ
T
2 ), with λl = (λs,l, 1 ≤ s ≤ Jn)T . Then, α and the B-spline

coefficients λ are estimated by

(α̂T , λ̂T )T = arg min
α∈Θα,λ∈R2Jn

`n(α, λ), (2.3)

with the log-likelihood function given as

`n(α, λ) =

n∑
i=1

Q(g−1{η̃(Vi;α, λ)}, Yi), (2.4)

where η̃(V;α, λ) = Z̃
T
α + β̃0(U) + β̃1(U)G, β̃(u) = (β̃0(u), β̃1(u))T , and Θα is

the parametric space of α.

The consistency of the spline estimators for the nonparametric functions

β̃l(u), l = 0, 1 can be established. As in Wang and Yang (2007) and Liu, Cui

and Li (2016), we use the BSBK estimator to establish the asymptotic normality.

We define η̂−0(Vi; a, b) = Z̃
T
i α̂+ β̃1(ui)Gi + a+ b(ui−u), η̂−1(Vi; a, b) = Z̃

T
i α̂+
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β̃0(ui) +aGi+ b(ui−u)Gi, and ̂̀l(a, b) =
∑n

i=1Q(g−1{η̂−l(Vi; a, b)}, Yi)Khl(ui−
u), where K(·) is a kernel function and hl is the bandwidth, for l = 0, 1. We

can obtain the BSBK estimator of βl(u) as β̂l(u) = â using local linear fitting,

as follows:

(â, b̂) = arg min
(a,b)∈A

̂̀
l(a, b), (2.5)

where A ⊂ R2 is a subset.

We set the space M as a collection of functions with a finite L2-norm on

[au, bu]×R byM =
{
κ(u, g) = β0(u) + β1(u)g,Eβl(U)2 <∞, l = 0, 1

}
. For 1 ≤

j ≤ p+q, let g0(u, g) be a minimizer inM for the following optimization problem:

κ0(Z̃j) = g0(u, g) = arg min
κ∈M

E{Z̃j − κ(U,G)}2,

where E represents the conditional expectation of Zj , given (U,G). Let Pj(Z̃j) =

κ0(Z̃j) and P(Z̃) = (P1(Z̃1), . . . , Pp+q(Z̃p+q))
T . Let Ẑ = Z̃−P(Z̃). Let qj(x) =

(∂j/∂xj)Q{g−1(x), y}, for j = 1, 2, 3. Then, q1(x) = {y − g−1(x)}ρ1(x), q2(x) =

{y − g−1(x)}ρ′1(x) − ρ2(x), and ρj(x) = {dg−1(x)/dxj}/V {g−1(x)}. We define

the covariance matrix of α as

Σα0 = E
{
ρ2(V)−1ẐẐ

T
}−1

.

Here, Σα0 can be simplified as Σα0 = ρ0E{ẐẐ
T
}−1 if the error variance ρ(V) is a

constant ρ0. Let µk =
∫
tkK(t)dt, and νk =

∫
tkK2(t)dt. Then, we can establish

the asymptotic normality for the parametric estimator α̂ and the nonparametric

estimator β̂l(u). Theorems 1 and 2 below are special cases of the theorems in

Liu, Gao and Cui (2016) when the dimension of the loading parameter is one.

We omit the proofs of these theorems.

Theorem 1. Suppose that assumptions (A.1)–(A.5) in the Appendix hold, nN−4

→∞ and nN−2r−2 → 0; then,

‖α̂−α‖2 = Op(n
−1/2).

Furthermore, as n→∞,

n1/2 (α̂−α)
L→ N(0,Σα0),

where α is the true parameter of α.

Theorem 2. Suppose that assumptions (A.1)–(A.5) in the Appendix hold, nN−4

→∞ and nN−2r−2 → 0; then, for l = 0, 1,

(nhl)
1/2
{
β̂l(u)− βl(u)− bl(u)h2l

}
L→ N(0, vl(u)), as n→∞,
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where v0(u) = ν0{E [ρ2(V)|U = u] f(u)}−1, v1(u) = ν0{E [ρ2(V)G|U = u]

f(u)}−1, and bl(u) = µ2β
′′
l (u)/2.

3. Hypothesis Test

Our model can simultaneously assess the effects of linear and nonlinear G×E

interactions. This can be achieved by simultaneously testing the parametric and

nonparametric components α1 and β1(·), which allows us to jointly discover

trends in the interactions of the linear and nonlinear environmental effects. We

consider the following more general hypothesis test to detect whether α1 and

β1(u) are simultaneously equal to specific parametric forms:

H0 : α1 = α∗1, β1(·) = β∗1(·) v.s. H1 : α1 6= α∗1 or β1(·) 6= β∗1(·), (3.1)

where α∗1 are given constants, and β∗1(·) is a given parametric form with unknown

parameters, such as the linear form β∗1(u) = δ0 +δ1u. Note that hypothesis (1.4),

that is, HPNP
0 : α1 = 0, β1(·) = 0, is a special case of hypothesis (3.1). To make

the work more general, we develop the testing procedure following this general

setup.

3.1. Generalized likelihood ratio test

To test the nonparametric function β1(·), that is,

HNP
0 : β1(·) = β∗1(·) v.s. HNP

1 : β1(·) 6= β∗1(·), (3.2)

we can construct a generalized likelihood ratio (GLR) test. Let α̂ = (α̂T
0 , α̂

T
1 )T be

the BSBK estimate of α proposed in Section 2.1. Let β̂H0
(u) and β̂H1

(u) be the

estimates of β1(u) underH0 andH1, respectively. Let the log-likelihood functions

under H0 and H1 in hypothesis test (3.2) be `n(H0) =
∑n

i=1Q(g−1{η̂H0
(Vi; α̂,

β̂)}, Yi) and `n(H1) =
∑n

i=1Q(g−1{η̂H1
(Vi; α̂, β̂)}, Yi), respectively, where

η̂H0
(Vi; α̂, β̂) = β̂0,H0

(Ui)+α̂T
H0

Z̃i+β̂1,H0
(Ui)Gi, and η̂H1

(Vi; α̂, β̂) = β̂0,H1
(Ui)+

α̂T
H1

Z̃i + β̂1,H1
(Ui)Gi. We define the following GLR test statistic:

TNP = −2(`n(H0)− `n(H1)). (3.3)

To facilitate expression, we use the same bandwidth h for all coefficients.

We denote the support of U as Ω, and the length of Ω as |Ω|. Then, σ2n =

2h−1|Ω|
∫
{K(u)− 0.5K ∗K(u)}2du and µn = h−1|Ω|(K(0)− 0.5ν0), where K ∗

K(u) denotes the convolution of K(u). Following the same arguments as in

Fan, Zhang and Zhang (2001), we can show that under some regular conditions,

σ−1n (TNP − µn) is asymptotically normally distributed.
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Theorem 3. If assumptions (A.1)–(A.5) in the Appendix hold, nN−4 →∞, and

nN−2r−2 → 0, then, under H0 in (3.2), when nh9/2 → 0,

σ−1n (TNP − µn)
L→ N(0, 1),

where σ2n = 2h−1|Ω|
∫
{K(u)− 1/2K ∗K(u)}2 du and µn = h−1|Ω|{K(0)−

1/2ν0}.

Let ξ1 =
√
nΣ
−1/2
α∗

1
(α̂1−α∗1), ξ2 = σ−1n (TNP −µn), and ξ = (ξT1 , ξ2)

T , where

Σα∗
1

is the asymptotical covariance of α̂1. Σα∗
1

is the bottom-right block diagonal

matrix of Σα∗ with dimension p×p. This motivates us to construct the following

test statistic to simultaneously assess both the parametric and the nonparametric

parts:

Tn = ‖ξ‖22. (3.4)

Lemma 1. Suppose that assumptions (A.1)–(A.5) in the Appendix hold; then,

under H0 in (3.1),

COV(ξ1, ξ2)
P→ 0.

Lemma 1 states that ξ1 is asymptotically unrelated to ξ2.

Theorem 4. If assumptions (A.1)–(A.5) in the Appendix hold, under H0 in

(3.1),

Tn
L→ χ2

p+1.

Theorem 4 states that Tn has an asymptotic χ2-distribution with p+1 degrees

of freedom. Note that Cheng and Shang (2015) obtained a similar result for fixed

points. However, we can test the entire function instead of testing it at fixed

points.

3.2. Power approximation

In this section, we examine the power of the joint test using the following

sequence of local alternatives:

H1n : α1 = α∗1 + α1n or β1(·) = β∗1(·) + β1n(·), (3.5)

where β1n(·) is a vector-valued function. Before discussing (3.5), we first consider

the alternative of testing the nonparametric component:

HNP
1n : β1(·) = β∗1(·) + β1n(·). (3.6)

Theorem 5. If assumptions (A.1)–(A.5) in the Appendix hold, nN−4 → ∞,

and nN−2r−2 → 0, and if nh4 → 0 and nh1/2E[ρ(V)β1n(U)2G2]→ C(β), where
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C(β) is a constant, then, under HNP
1n in (3.6),

(TNP − µn − d2n)

σn

L→ N(0, 1),

where d2n = nE[ρ(V )β1n(U)2G2].

Let φ = φα + φβ, where φα = limn→∞ nα
T
1nΣ−1α α1n and φβ = limn→∞ d2n.

The following theorem states the asymptotic distribution of the statistic Tn under

H1n in (3.5).

Theorem 6. Suppose that the assumptions in Theorem 5 hold and n−1/2‖α1n‖ →
C, where C is a constant. Then, under H1n in (3.5), the statistic Tn in (3.4)

converges to a noncentral χ2-distribution with degrees of freedom p+ 1 and non-

centrality φ.

Theorem 6 implies that the test can simultaneously detect alternatives with

orders α1n = n−1/2C and β1n(u) = n−1/2h−1/4βc(u), with a given constant C

and a given function βc(u). This simultaneously yields the parametric and non-

parametric convergence rates (see Hardle and Mammen (1993); Gao and Gijbels

(2008)).

4. Monte Carlo Simulation

The finite-sample performance of the proposed method was evaluated by

simulation. In example 1, we assumed a quantitative trait, but assumed a binary

disease trait in example 2.

Example 1 (continuous response). Consider the following PLVCM model:

Y = αT
0 Z + β0(U) + {αT

1 X + β1(U)}G+ ε,

where Z = (Z0, Z1, Z2, Z3)
T and X = (Z1, Z2, Z3)

T . We generated Z0, Z1, and

Z2 from an independent normal distribution N(0, 1), Z3 from a Bernoulli dis-

tribution Ber(1, 0.5), and U from a uniform distribution U(0, 1). G was coded

as (2, 1, 0) corresponding to genotypes (AA, Aa, aa), respectively . We set the

minor allele frequency (MAF) pA = (0.1, 0.3, 0.5) and assume a Hardy–Weinberg

equilibrium. Single nucleotide polymorphism (SNP) genotypes AA, Aa, and aa

were simulated from a multinomial distribution with frequencies p2A, 2pA(1−pA),

and (1 − pA)2, respectively, for the three genotypes. The error ε follows a nor-

mal distribution N(0, σ2). We set α0 = (0.7, 0.6, 0.8, 0.5)T , α1 = (0.6, 0.8, 0.5)T ,

β0(u) = cos(πu), and β1(u) = sin(πu). We assess the performance of the joint

test under H0 : α1 = 0, β1(·) = 0 in (1.4). Note that we first tested whether

both terms are zero, because researchers are typically interested in whether an
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Table 1. Testing size with σ = 0.1, 0.5, 1.0, pA = 0.1, 0.3, 0.5, and n = 200, 500, 1,000.

n = 200 n = 500 n = 1,000
σ pA =0.1 pA =0.3 pA =0.5 pA =0.1 pA =0.3 pA =0.5 pA =0.1 pA =0.3 pA =0.5

1.0 0.063 0.060 0.057 0.056 0.061 0.054 0.057 0.053 0.052
0.5 0.063 0.063 0.060 0.058 0.065 0.055 0.055 0.052 0.052
0.1 0.067 0.058 0.059 0.057 0.060 0.054 0.056 0.053 0.051

overall interaction effect exists. We also evaluated the power under a sequence

of alternative models indexed by τ , that is, Hτ
1 : ατ

1 = τα1, β
τ
1 (·) = τβ1(·).

We used the BIC criterion to select the number of interior knots, while fixing

the order of the basis function as cubic to approximate the unknown functions,

as described in Ma and Song (2015). The BSBK estimator β̂l(u) is sensitive

to the choice of the bandwidth hl, for l = 0, 1. Bandwidth selection has been

extensively studied (see Sepanski, Knickerbocker and Carroll (1994); Ruppert,

Sheathers and Wand (1995)). To avoid estimating high-order derivatives, we

employed a bandwidth selector based on the MSE criterion, called the empirical

bias bandwidth selection (EBBS) (Ruppert (1997); Carroll, Ruppert and Welsh

(1998); Liu, Jiang and Zhou (2014)).

Table 1 reports the size (τ = 0) under different standard deviations (σ =

0.1, 0.5, 1.0), different MAFs (pA = 0.1, 0.3, 0.5), and different sample sizes (n =

200, 500, 1,000). We can see that the sizes tend to 0.05 as the sample size n

increases. The same phenomenon is observed as the MAF approaches 0.5 and

the standard deviation increases. Figure 1 shows the size and power function

(τ > 0) at the 0.05 significance level, based on 500 Monte Carlo simulations

with different sample sizes and MAFs. The empirical type 1 errors in the three

scenarios are very close to the nominal level 0.05. We observe a drastic power

increase when the MAF increases from 0.1 to 0.3 in all scenarios. The sample size

and error variance also have a significant impact on the testing power, as shown

in the figure. Overall, the results indicate that our method can reasonably control

the false positive rate and has appropriate power to detect the joint association

signal.

Example 2 (Binary response). This simulation design assumes an underlying

GPLVCM model for binary responses, with the logistic regression model given

as,

logit{P (Y = 1|Z, U,G)} = αT
0 Z + β0(U) + {αT

1 X + β1(U)}G, (4.1)

where U and G are generated in the same manner as in Example 1, Z =
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τ

pA = 0.1, n = 200

σ = 0.1
σ = 0.5
σ = 1.0

1

τ

pA = 0.3, n = 200

σ = 0.1
σ = 0.5
σ = 1.0

τ

pA = 0.5, n = 200

σ = 0.1
σ = 0.5
σ = 1.0

τ

pA = 0.1, n = 500

σ = 0.1
σ = 0.5
σ = 1.0

1

τ

pA = 0.3, n = 500

σ = 0.1
σ = 0.5
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Figure 1. The empirical size and power function of test statistic Tn for the simulta-
neous inference of parametric and nonparametric parameters under different simulation
settings.

(Z0, Z1, Z2, Z3)
T is generated from an independent normal distribution N(0, 1),

and X = (Z1, Z2, Z3)
T , α0 = (0.7, 0.6, 0.8, 0.5)T , and α1 = (0.6, 0.8, 0.5)T . We

set β0(u) = cos(πu) and β1(u) = sin(πu). Figure 2 shows the size (τ = 0) and

power function (τ > 0) at a significance level of 0.05 based on 1,000 Monte Carlo

simulations with different sample sizes and PA = 0.3. Similar results to those

in example 1 are observed for PA = 0.1 and PA = 0.5, and hence are omitted.

The results demonstrate the finite sample performance of the proposed joint test

statistic.

Intuitively, we expect a power gain for the joint test when both the paramet-

ric and nonparametric components contribute something, as pointed out by one

reviewer. When one component has a weak signal, the joint test signal could be

diluted. To demonstrate this, we conducted further simulations. We simulated

data assuming three scenarios. In scenario 1 (denoted as S1), both the paramet-

ric and nonparametric components are assumed to have an effect. In scenario

2 (S2), there is only parametric interaction effect, while the nonparametric ef-

fect is assumed to be zero. In S3, no parametric effect is assumed and only the

nonparametric effect is included. Scenarios S2 and S3 are extreme cases. The

corresponding data-generating model under the alternative in the three scenarios
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pA = 0.3

 

 

n = 200
n = 500
n = 1,000

τ

Figure 2. The empirical size and power function of the test statistic Tn for the simulta-
neous inference of both parametric and nonparametric parameters with binary response
with different sample sizes.

are given as follows, where each component is described in Example 1:

(S1). Hτ
1 : Y = αT

0 Z + β0(U) + τ{αT
1 X + β1(U)}G+ ε.

(S2). Hτ
1 : Y = αT

0 Z + β0(U) + ταT
1 XG+ ε.

(S3). Hτ
1 : Y = αT

0 Z + β0(U) + τβ1(U)G+ ε.

where the data (Z, U,G) are generated as in Example 1; X is a subset of Z;

and the model in Hτ
1 is a sequence of alternative models indexed by τ , for τ =

0, 0.01, . . . , 0.1. For this simulation, we focus on cases with a sample size n = 500,

MAF=0.3, and error variance σ2 = 1 in all three scenarios. Similar performance

is observed under other settings, and hence are omitted.

We consider the following three hypothesis testing problems:

(1). Joint test, denoted by “JointTest”, i.e., H0 : α1 = 0, β(·) = 0.

(2). Partial parametric test, denoted by “ParTest”, i.e., H0 : α1 = 0.

(3). Partial nonparametric test, denoted by “NonparTest”, i.e., H0 : β(·) = 0.

Figure 3 shows the power functions of the three tests under three different

scenarios. In all cases, the size (τ = 0) of the three tests can be reasonably con-

trolled. In S1, where both the parametric and nonparametric effects are present,
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τ τ

JointTest

ParamTest

NonparmTest

JointTest

ParamTest
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τ

JointTest

ParamTest

NonparmTest

Figure 3. Plot of testing size and power for “JointTest” (solid line), “ParamTest” (dotted
line) and “NonparamTest” (dot-dashed line) under scenarios S1, S2 and S3.

we observed better power of the joint test than that of the two partial tests,

highlighting the power gain when both components contribute something. In S2,

where includes only a parametric effect, the partial size for the nonparametric

test is well controlled (dotted line). The power of JointTest is sightly smaller than

that of ParTest, owing to the signal dilution from the nonparametric component.

In S3, where no parametric effect exists, the partial size for the parametric test is

well controlled (dot-dashed line). The power of JointTest is sightly smaller than

that of NonparTest, owing to the signal dilution from the parametric component.

From this simulation, we see that the joint test achieves a power gain when

both the parametric and nonparametric components contribute something. In

extreme cases, where one component does not show any effect or shows a weak

effect, the joint test will incur a power loss, owing to potential signal dilution

by the weaker effect. Although we cannot theoretically show the conditions

under which the joint test has larger power than that of the individual tests,

this simulation result does illustrate the power gain of the joint test and gives us

some practical insight into the proposed test.

5. Case Study

We applied the proposed GPLVCM model to a data set from the Gene En-

vironment Association Studies initiative (GENEVA, http://www.genevastudy.

org), funded by the trans-NIH Genes, Environment, and Health Initiative (GEI),

to show the utility of the proposed method. Birth weight was the primary

variable of interest of the trait. Fetal growth is not only determined by fe-

tal genes, but is also controlled by complex interactions between fetal genes

and the maternal uterine environment. In this example, we focused on a Thai

population, with 1,126 subjects genotyped with the Omni1-Quad v1-0 B plat-

http://www.genevastudy.org
http://www.genevastudy.org
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Table 2. List of SNP ID, gene to which the SNP belongs, MAF, alleles (minor allele
is shown as bold font), and p-values for SNP rs1490352 on chromosome 6, under the
marginal and joint tests.

SNP ID Gene MAF Alleles
p-values

JointTest ParTest NonparTest
rs1490352 NKAIN2 0.4082 G/A 4.349E-07 0.259 5.087E-08

form. Because the mother’s glucose level can have a significant impact on fetal

growth, we chose b CordPGC mg (the fetus-cord glucose level) as the varying

environmental variable U to try to understand whether fetal genes respond to

the mother’s glucose level to influence birth weight. The discrete variable, de-

noted by Z1, contains the gender of the fetus. The continuous variables, denoted

by Z2 and Z3, respectively, contain m HtM OGTT (the mother’s mean OGTT

height) and m OneHrPG CLC mg (the mother’s one-hour OGTT glucose). We

set Z = (Z1, Z2, Z3)
T and X = (Z2, Z3)

T . To show the utility of the method, we

picked chromosome 6 for the demonstration. There are 43,261 SNPs following the

removal of those with minor allele frequencies less than 0.05 or p-values < 0.001

for testing the Hardy-Weinberg equilibrium. Our goal is to determine whether

there are any SNPs associated with birth weight in the Thai population and if

so, how the SNPs respond to mother’s glucose level (the environment) changes

to influence birth weight, and to further determine the mechanism of interaction.

We tested to determine whether any SNP was associated with birth weight

based on the joint test, that is, H0 : α1 = 0 and β1(·) = 0. We individually

tested each SNP and applied the local false discovery rate (LFDR) (see Efron et

al. (2001); Storey (2002); Storey and Tibshirani (2003)) to adjust the multiple

testing. We used the R package “fdrtool” with “bootstrap” method (Strimmer

(2008)) to calculate the local FDR, and then estimated the proportion of null p-

values for the joint test, calculated as η0 = 0.7237. The bandwidth constant was

chosen as c = 0.4125 in the bandwidth calculation formula h = c×sd(U)×n−2/9.
We used the same notation as given in Section 4: the proposed joint test (denoted

by “JointTest”); partial parametric test (denoted by “ParTest”); and partial

nonparametric test (denoted by “NonparTest”). The Q-Q plot of the − log10(p-

values) for these three tests are depicted in Figure 4. It can be seen that the

chosen bandwidth does not lead to inflated p-values. Based on the proportion

of null p-value estimate η0 = 0.7237, there is only one SNP (rs1490352) showing

statistical significance.

Table 2 shows the SNP rs1490352 with the SNP ID, MAF, alleles, and
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Figure 4. The QQ-plot of the -log10(p-values) for the “JointTest” (left), “ParTest”
(middle) and “NonparTest” (right) with a chosen bandwidth constant c = 0.4125.

the p-value of each for the joint and separate tests. Alleles in bold represent

minor alleles. We also separately tested the two interaction effects. We see

that the joint test yielded p-values closer to those of the nonparametric testing.

The parametric component is not statistically significant. The weak effect of

the parametric component may dilute the joint test signal, leading to a slightly

larger p-value of the joint test than that of the nonparametric test. This result

is consistent with and supported by our simulation study.

6. Discussion

The evaluation of G×E interactions is an important topic in research on

genetic association studies. With the development of statistical models, for ex-

ample, the partially linear varying-coefficient model, we can assess the nonlinear

G×E interactions in a model-based framework. In this study, we proposed and

verified a joint testing framework to assess the effects of G×E interactions in-

cluding linear and nonlinear interactions. Note that the joint test is equivalent

to assessing the total genetic effect (the main genetic effect is embedded into the

nonparametric function. See below for further explanation). In a genetic associa-

tion study, the natural choice is to assess the total genetic effect first, then assess

the effects of the interaction. This is another motivation, in addition to the gain

in power offered by the proposed joint testing framework. Linear and nonlinear

interactions can be assessed separately if the null hypothesis of the joint test is

rejected.

We theoretically assessed the distribution of the joint test statistic under the
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proposed estimation framework. Both the simulation and the real data analysis

demonstrated the utility of the method. Novel genetic insight can be obtained

from the joint test. In contrast to the work of Cheng and Shang (2015), where the

parametric and nonparametric functions were jointly assessed at fixed points, we

assess the two components globally. Although the parametric and nonparametric

components have different convergence rates, the proposed test can simultane-

ously yield their respective optimal rates. In addition to the application of G×E

interactions, our work also contributes to the theory of semiparametric inferences.

Under the proposed GPLVCM model, the joint test of the effects of the G×E

interaction is equivalent to testing the total genetic effect. If we take β1(u) =

β1 + f(u), where f(u) can be linear or nonlinear in u, β1(u)G = β1G + f(u)G.

It can be seen that the term β1(u)G contains the marginal effect of G on Y .

If we use a B-spline to approximate the basis functions of β1(u), a change in

the normalized basis functions can be obtained with the first column of the

basis functions containing all ones (Schumaker (1981)). Such a transformation

does not change the nature of the spline functions, but allows us to separate

the marginal and interaction-related effects. Thus, the main genetic effects and

those of nonlinear G×E interactions can be tested separately under the proposed

framework.

Our method was motivated and demonstrated by a genetic association study.

It can be applied to other studies, where a partial linear structure can be fitted.

Partial linear models have been extensively studied in the literature. While most

studies focus on the estimation problem, little research has been dedicated to

testing the significance of the joint parametric and nonparametric effects. Our

work fills this gap beyond the application of assessing G×E interactions. In

addition, it can be extended to generalized partially linear additive models (e.g.,

Zhang and Liang (2011) and Ma and Yang (2011)) and partially linear varying

multi-index coefficient models (Liu, Cui and Li (2016)). This extension allows us

to assess the nonlinear G×E effect when more than one continuous environmental

variable of interest is considered.

Supplementary Material

The technical details, including proofs of the major theorems and lemmas

used in this paper, can be found in the Supplementary Material.
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Appendix: Proofs

Notations: For any vector ξ = (ξ1, . . . , ξs)
T ∈ Rs, ‖ξ‖∞ = max1≤l≤s |ξl|.

For any nonzero matrix As×s, denote its Lr norm by ‖A‖r = maxξ∈Rs,ξ 6=0 ‖A‖r
‖ξ‖−1r . For any matrix A = (Aij)

s,t
i,j=1, ‖A‖∞ = maxi≤i≤s

∑t
j=1 |Aij . Let

C(p)[au, bu] = {ψ : ψ(p) ∈ C[au, bu]} be the space of pth-order smooth func-

tions. Denote the space of Lipschitz continuous functions for any fixed constant

c0 by Lib([au, bu], c0) = {ψ : |ψ(x1) − ψ(x2)| ≤ c0|x1 − x2|, ∀x1, x2 ∈ [au, bu]}.
The following assumptions are required to show the consistency and asymptotic

normality of our estimators:

Assumptions:

A.1 The random variable U has compact support [au, bu]. The density function

fu(·) of random variable U is bounded away from zero on Ω, and there exists

a constant 0 < c0 <∞ such that fu(·) ∈ Lib([au, bu], c0).

A.2 The nonparametric function ml ∈ C(p)[au, bu], l = 0, 1.

A.3 cx ≤ ‖E{ZTZ|U = u}‖2 ≤ Cx.

A.4 The kernel function K(·) is a symmetric density function with compact

support [−1, 1] and K ∈ Lib([au, bu], cK) for some constant cK .

A.5 The functions u3K(u) and u3K ′(u) are bounded, and
∫
u4K(u)du <∞.

Denote qk(η̃i) by qk{η̃(Vi;α0, λ)}, k = 1, 2, i = 1, . . . , n. Let qk = (qk(η̃1),

. . . , qk(η̃n))T and Wq2 be a diagonal matrix with diagonal elements q2{η̃}. Define

U = E[q2(η̃i)DiD
T
i ], Û =

1

n
DTWq2D,

U(Z) = E[q2(η̃i)Di(Z)Di(Z)T ], Û(Z) =
1

n
D(Z)TWq2D(Z),

(A.1)

where Di = (Br(Ui)
T X̃i,l, l = 1, . . . , 2p)T , Di(Z) = (ZTi , D

T
i )T , D = (D1, . . . ,

Dn)T which is an n× pJn matrix, and D(Z) = (D1(Z), . . . , Dn(Z))T which is an

n× 2(q + pJn) matrix.

www.liwenbianji.cn/ac
www.liwenbianji.cn/ac
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The proofs of Theorems 1 and 2 are omitted here; they are special cases in

Liu, Gao and Cui (2016). The details are shown in the Supplementary Materials.

To prove Theorem 3, we define “oracle” estimation. Similar to (2.5), we can

obtain the “Oracle” kernel estimator of βl(u) as β̂Ol (u) = âO + b̂Ou by local

linear fitting:

(âO, b̂O) = arg min
(a,b)∈A

˜̀(a, b), (A.2)

where ˜̀(a, b) =
∑n

i=1Q(g−1{η̂O−l(Vi; a
O, bO)}, Yi)Khl(ui − u), η̂O−0(Vi; a, b) =

α̂T Z̃i + β1(ui)Gi + a + b(ui − u) and η̂O−1(Vi; a, b) = α̂T Z̃i + β0(ui) + aGi +

b(ui − u)Gi. The “Oracle” means that we already know the true functional

structure before estimating function βl(u).

As in Liu, Cui and Li (2016), assuming that the nonparametric functions

β(u) are known, we can construct a GLR statistic based on the “Oracle” esti-

mator β̂O(u). Consider hypothesis test (3.5). Let β̂Ol,H0
(u) and β̂Ol,H1

(u) be the

“Oracle” estimates under H0 and H1, the same as in Section 2.1, respectively.

The resulting likelihoods under H0 and H1 in hypothesis test (3.5) are

`On (H0) =

n∑
i=1

Q(g−1{η̂OH0
(Vi; α̂, θ̂)}, Yi),

`On (H1) =

n∑
i=1

Q(g−1{η̂OH1
(Vi; α̂, θ̂)}, Yi),

where η̂OH0
(Vi; α̂, θ̂) = ZTi α̂0,H0

+XT
i θ̂

O
0,H0

(Ui)+ZTi α̂1,H0
Gi and η̂OH1

(Vi; α̂, θ̂) =

ZTi α̂0,H1
+ XT

i θ̂
O
0,H1

(Ui) + {ZTi α̂1,H1
+ XT

i θ̂
O
1,H1

(Ui)}Gi. We define the following

Oracle-version of the GLR test statistic as

TONP = 2(`On (H1)− `On (H0)). (A.3)

Let aK = {K(0)−1/2
∫
K2(u)du}[

∫
{K(u)−1/2K ∗K(u)}du]−1, where K ∗K(u)

denotes the convolution of K.

Proof of Theorem 3: According to Lemma S.9 in the Supplementary Materials,

`On (H0)− `n(H0) = Op(log n),

`On (H1)− `n(H1) = Op(log n),

which implies that

TNP = TONP +Op(log n).

Lemma S.10 in the Supplementary Materials states that under the assumptions
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of Theorem 3,

σ−1n (TONP − µn)
L→ N(0, 1),

where σ2n = 2h−1|Ω|
∫
{K(u)− 1/2K ∗K(u)}2 du and µn = h−1|Ω|{K(0) − 1/2∫

K2(u)du}. This results directly in Theorem 3.

Proof of Lemma 1: Invoking the proof of Theorem 1 and 3,

n1/2Σ−1/2α (α̂−α∗) = n−1/2Σ−1/2α

n∑
i=1

(Z̃i −P(Z̃i))εi + op(1),

σ−1n (TNP − µn) = v−1Υ(n) + op(1),

where εi = q1(η
∗
i,H0

), Υ(n) = (1/n)h−1/2
∑n

i 6=j εiεjX̌
T
i Γ(Ui)X̌j{2K((Ui−Uj)/h)−

K̃((Ui − Uj)/h)}, and v2 = 2|Ω|
∫
{K(t) − 1/2K̃(t)}2dt are defined in the proof

of Lemma S.10 in the Supplementary Materials. Let

I1n =

n∑
k 6=i,j

(Z̃k −P(Z̃k))εk

n∑
i 6=j

εiεjX̌
T
i Γ(Ui)X̌j

{
2K

(
Ui − Uj

h

)
− K̃

(
Ui − Uj

h

)}
,

I2n =

n∑
i 6=j

ε2i εj(Z̃i −P(Z̃i))X̌
T
i Γ(Ui)X̌j

{
2K

(
Ui − Uj

h

)
− K̃

(
Ui − Uj

h

)}
.

It is easy to see that E[I1n] = 0 and E[I2n] = 0. Therefore,

COV(ξ1, ξ2) = n−1/2v−1Σ−1/2α (I1n + I2n) + op(1),

which results directly in COV(ξ1, ξ2)
P→ 0.

Proof of Theorem 4: Theorem 1 and Theorem 3 imply that

‖ξ1‖22
L→ χ2

p, and ξ22
L→ χ2.

Theorem 4 follows from Lemma 1.

Proof of Theorem 5: We proved in Lemma S.11 that under HNP
1 in (4.1),

σ−1n (TONP − µn − dn)
L→ N(0, 1), (A.4)

where d2n = nE[ρ(V )θn(U)T X̌X̌
T
θn(U)]. According to Lemma S.9 in the Sup-

plementary Materials,

`On (H0)− `n(H0) = Op(log n),

`On (H1)− `n(H1) = Op(log n),
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which implies that

TNP = TONP +Op(log n). (A.5)

Thus, Theorem 5 can be shown by (A.4) and (A.5).

Proof of Theorem 6: From Theorem 1,

ξ1 =
√
nΣ−1/2α1

(α̂1 −α∗1)

=
√
nΣ−1/2α1

(α̂1 −α1) +
√
nΣ−1/2α (α1 −α∗1),

which implies that ξ1 is asymptotically normally distributed with mean√
nΣ
−1/2
α1 α1n and variance one. Along the lines of the proof of Lemma 1, we can

prove that ξ1 and ξ2 are asymptotically uncorrelated under H1n. It is easy to see

that ‖ξ1‖22 converges to a noncentral chi-squared distribution with q degrees of

freedom and noncentrality parameter φα = limn→∞ nα
T
1nΣ−1α1

α1n. This implies

that T converges to a noncentral chi-squared distribution with q + 1 degrees of

freedom and noncentrality parameter φ = φθ + φθ, where φθ = limn→∞ d2n.
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Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression

fits. The Annals of Statistics 21, 1926–1947.
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